lechre Ia

The natural numbers and induction

Definincen A nathmi number is a member of he sequence $0,1,2, \ldots$ formed by Sharing from 0 and succemvely adding 1. We wink $\mathbb{N}=\{0,1,2, \ldots\}$.
Remark O i somehmes included ii \mathbb{N}, and sometimes not.

- We can add and multiply natron numbers. So if $m, n \in \mathbb{N}$ then $m+n$ and $m \times n$ are also nahum numbers. ($m \times n$ is oles willen $m n$)
- Tao mapatur natural number are 0 and 1, which acre ne addithre and multiplicative identinei, i.e. for any $n \in \mathbb{N}, n+0=n$ and $n x 1=n$.
- The natural numbers hove ar ardenng, so we can ante things like $M \leq n$.

Defininan Let $m, n \in \mathbb{N}$. We nite $m \leqslant n$ to mean That Nee exit a nahool number k such nat $m+k=n$.
'Theorem' (Pnnciple of manematical induction). Let $P(n)$ be a family of shentevents indexed by ne natural number. Suppose (i) $P(0)$ is true, and (ii) for any $n \in \mathbb{N}$, if $P(n)$ is time ten $P(n+1)$ is true. Then $P(n)$ is the for all $n \in \mathbb{N}$.

Proposition For any $n \in \mathbb{N}, \quad \sum_{k=0}^{n} k=\frac{1}{2} n(n+1)$
Prof: $P(0)$ is true, since for $n=0$, HS $=0$ \& $R H S=0$.
Supper $P(a)$ is true. Then

So $P(n+1)$ in who true. By induchin, $P(n)$ is the for all $n \in \mathbb{N}$.

Theorem (Strong induchair) bet P_{a}) be a funnily of shierents indexed by \mathbb{N}.
Suppose (i) $P(0)$ is true, and (ii) for any $n \in \mathbb{N}$, if $P(0), P(1), \ldots, P(n)$ are tree,
Den $P(n+1)$ is true. Ten $P(n)$ is the for all $n \in \mathbb{N}$.
proof: Define $Q(a)$ to he ne oratervent ' $P(k)$ is the f or $k=0,1, \ldots, n$ '. Rex we know that (i) $Q(0)$ is the and (ii) for any $\wedge \in \mathbb{N}$, if $Q(\wedge)$ is true, hen $Q(a+1)$ is the, so by mduchon, $Q(\wedge)$ is true for all $A \in \mathbb{N}$.
Hence $P(n)$ is the for all $n \in \mathbb{N}$.

Proposhai: Every natural number greater than I can be expressed as a product of are or mare primes.
Proof: Let $P(A)$ be the ohberent that n can be exposed as a product of ponies. $P(2)$ is true since 2 is shelf pine.
let $n>2$, and suppose hat $P(m)$ hods for all $m<\wedge$.
If n in pome, ten $P(n)$ is true. If n in at prime, Nee $n=$ rs for some $r, s \in \mathbb{N}$, with $r, s<n$. By moluchae hyponins, r and s can be expressed as product of proves, and hence S_{0} con $n=r S$. So $P(a)$ is the. By string induchas, $P(n)$ hade for all $n \in \mathbb{N}$.
lechure Ib

Defriikai (addikun ar \mathbb{N}) Defire addimn by the muer Ratr, for any $m \in \mathbb{N}$,
(i) $\mu+0=m$
(ii) for any $n \in \mathbb{N}, n+(n+1)=(n+n)+1$

Proporinai Addiknen is associahve, ie. for any $x, y, z \in \mathbb{N}$

$$
x+(y+z)=(x+y)+z
$$

proof: we nduct an z. For $z=0$,

$$
\begin{aligned}
\text { LHS }=x+(y+0) & =x+y \quad \text { (uning (i) frum the defa] } \\
& =(x+y)+0=\text { RHS }
\end{aligned}
$$

Suppose © hadd for $z=n$. Din for $z=n+1$,

$$
\begin{aligned}
\text { LHS }=x+(y+(x+1)) & =x+((y+1)+1) \quad \text { Cunag (ii) fun The defx]. } \\
& =(x+(y+n))+1 \quad \text { [unay induchere hyporens]. } \\
& =((x+y)+1)+1 \quad \\
& =(x+y)+(n+1)=\text { RHS }
\end{aligned}
$$

So ($\&$ hoids for $z=n+1$. By induchai, $(*)$ hods for all $z \in \mathbb{N}$.

Proposinai (well-ardening property of the natural number)
Every nan-emply subset of N han a leapt element.
proof: Assume, for a contradichon, that S is a nou-empty subset of \mathbb{N} nat does not have a leann element. Consider $S^{*}=\{n \in \mathbb{N}: n \notin S\}$. Note that $0 \in S^{*}$, since $0 \notin S$ else is would be the lear dement. If $0,1, \ldots, n \in S^{*}$, Hen $n+1 \notin S$, else it amid be the lean element. So $n+1 \in S^{*}$ By shrug induchan, $n \in S^{*}$ for all $n \in \mathbb{N}$. Hence S is empty, a cartradichan. W $\}$

Lechure $2 a$
The binomial Reacm \& an intorduchen \hbar sets

Defninen For $n, k \in \mathbb{N}$, we define binomial coestheient as

$$
\binom{n}{k}={ }^{n} C_{k}=\frac{n!}{(n-k)!k!} \quad \text { for } 0 \leqslant k \leqslant n \quad\left[\binom{n}{k}=0 \text { for } k>n\right]
$$

$[$ Note: $0!=1]$
These appear in Pascal's tinge

\[

\]

Lemma let $n, k \in \mathbb{N}$ wi $1 \leqslant k \leqslant n$, hen

$$
\binom{n}{k-1}+\binom{n}{k}=\binom{n+1}{k}
$$

prof: LAS $=\frac{n!}{(n-k+1)!(k-1)!}+\frac{n!}{(n-k)!k!}=\frac{n!(K+n-\chi+1)}{(n-k+1)!k!}=\frac{(n+1)!}{(n+1-k)!k!}=$ RHS

Theorem (binomial Theorem), Let x, y be real or complex numbers, and let $n \in \mathbb{N}$. Den

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}
$$

Prof: We use induchar mn n.
For $n=0$, LH $\delta=1$ \& RMS $=1$, so true for $n=0$.
Suppose the for n, and consider $n+1$,

$$
\begin{aligned}
(x+y)^{n+1}=(x+y)(x+y)^{n} & =(x+y) \sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k} \quad \text { [iaduchri hydrnexi]. } \\
& =\sum_{k=0}^{n}\binom{n}{k} x^{k+1} y^{n-k}+\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n+1-k}
\end{aligned}
$$

$$
\begin{aligned}
& =x^{n+1}+\sum_{\hat{k}=0}^{n-1}(\hat{k}) x^{\hat{k}+1} y^{n-\hat{k}}+\sum_{k=1}^{n}\binom{\hat{k}}{k} x^{k} y^{n+1-k}+y^{n+1} \\
& =x^{n+1}+\sum_{k=1}^{n}\left[\binom{n}{k-1} x^{k} y^{n+1-k}+\binom{n}{k} x^{k} y^{n+1-k}\right]+y^{n+1} \\
& \left.=x^{n+1}+\sum_{k=1}^{n}\binom{n+1}{k} x^{k} y^{n+1-k}+y^{n+1} \quad \text { [unay the lemana }\right] . \\
& =\sum_{k=0}^{n+1}\binom{n+1}{k} x^{k} y^{n+1-k}=\text { RHS }
\end{aligned}
$$

By induchani, Re remil hadd for all $n \in \mathbb{N}$.

Lechure $2 b$

A set is a collechur of objects. The object h are called the elements or members. We sunk the set with eleventh $a_{1}, a_{2}, \ldots, a_{n}$ an $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$.
Defrnihai A is a subset of S if every elevent of A is an element of S. We ark $A \subseteq S$. If $A \neq S$, it is called a proper subset.
Defrikai The empty set \varnothing is the set with no elements.
Examples $\cdot\{n \in \mathbb{N}: 1$ diusible by 2$\} \subseteq \mathbb{N}$ i he set of even ratal number.

- \mathbb{Z} u he set of inhegas $\{0, \pm 1, \pm 2, \cdots\}$
- Qu a the ser of nharal number $\left\{\frac{m}{n}: M_{r} \wedge \in \mathbb{Z}, \wedge>0\right\}$
- \mathbb{R} a the set of real numbers
- \mathbb{C} i the fer of complex numbers $\{a+i b: a, b \in \mathbb{R}\}$ where $i=\sqrt{-1}$
- $M_{M n}(\mathbb{R})$ is the set of m by \wedge matrices whoa real coefficients.
- $\{(\dot{u}),(\because)\}$

We arno hare intervals (subsets of \mathbb{R}): if $a, b \in \mathbb{R}$ wis $a \leq b$

$$
\begin{array}{ll}
(a, b)=\{x \in \mathbb{R}: a<x<b\} & {[a, b]=\{x \in \mathbb{R}: a \leq x \leq b\}} \\
(a, \infty)=\{x \in \mathbb{R}: x>a\} & (-\infty, b]=\{x \in \mathbb{R}: x \leq b\}
\end{array}
$$

Defrithai The pres set of a set A, denoted $P(A)$, is ne set of all subsech of A. eg. $A=\{0,1\}$. Den $P(A)=\{\varnothing,\{0\},\{1\},\{0,1\}\}$
Remark Nov that a in not the sine thing as $\{a\}$.

We car combine two elements a, b as an ordered pair (a, b) If $a, b \in \mathbb{R}$, thu i is gur a rector.
Defininan Giver seth A and B, the Corternan product $A \times B$ u the sot of all ordered pain (a, b) whee $a \in A$ and $b \in B$. If $B=A$, hen we ante $A \times A=A^{2}$
eq. If $A=\mathbb{R}$, hen the Cartencu product in \mathbb{R}^{2}, he set of all pants an a plane.
Mare generally, $A_{1} \times A_{2} \times \ldots \times A_{n}$ in the set of all ordered n-tuples $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$.
If A_{i} are all the sure, we unite thus as A^{\wedge}.
Warning (Russel's paradox) Jupon we thy th define the set

$$
H=\{\operatorname{sen} S: S \notin S\}
$$

If $H \in H$, then is y defaikan of $H, H \notin H$
If $H \notin H$, Res iv sahsfers the cundinous such mar $H \in H$

Lechur 3
Algesin of sith, trum hates, cardinality

Defrinanis Given subsets A and B of a set S, we defrei

- the union $A \cup B=\{x \in S: x \in A$ or $x \in B\}$
- The intesechar $A \cap B=\{x \in S: x \in A$ and $x \in B\}$
- The compleverar $A^{c}=\{x \in S: x \notin A\}$
- Re sit diffence $A \backslash B=\{x \in A: x \notin B\}$

Definition Two sets are disjunct if $A \cap B=\varnothing$.
If $\left\{A_{i}\right\}$ in a family of subsets, indexed by $i \in I$ (eg. a subset of N), hen

$$
\bigcup_{i \in I} A_{i}=\left\{x \in S: x \in A_{i} \text { for same } i \in I\right\} \quad \bigcap_{i \in I} A_{i}=\left\{x \in S: x \in A_{i} \text { for all } i \in I\right\}
$$

Prposinan (dausle inclusian) For two seh $A, B \subseteq S$
$A=B$ if and anly if $A \subseteq B$ and $B \subseteq A$
proff. Suppose $A=B$. Then every element of A in an elenent of B. So $A \subseteq B$. Simicely, $B \subseteq A$.
Cavesely, suppose $A \subseteq B$ and $B \subseteq A$. For any $x \in S$, if $x \in A$, nen sice $A \subseteq B, x \in B$.
If $x \notin A$, flen since $B \subseteq A, x \notin B$. So ne devers of A and B cre Re sime. ic. $A=B$.
Proporhani (distribuhere lams) Let $A, B, C \subseteq S$. Den
(i) $A \cup(B \cap C)=(A \cup B) \wedge(A \cup C)$
(ii) $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$

proof of (i): Suppose $x \in$ LHS. Then $x \in A$ or $(x \in B$ and $x \in C)$. In einer care, $x \in A \cup B$ and $x \in A \cup C$, so $x \in$ RHS. ie. LHS \subseteq RHS.
Convensey, suppose $x \in R H S$. Then $x \in A \cup B$ and $x \in A \cup C$. Einer $x \in A$, ar, if $x \notin A$ Alen $x \in B$ and $x \in C$ (and nerefore $x \in B \cap C$). Hexce $x \in A \cup(B \cap C)=$ LHS So LISS \subseteq Riis. Hence, by dable inclunai, LHS $=$ RHS

Propositin (De Margan's lans) Let A, B be subsets of S. Ten
(i) $(A \cup B)^{c}=A^{c} \cap B^{c}$
(ii) $(A \cap B)^{c}=A^{c} \cup B^{c}$
prot of (i): Suppose $x \in(A \cup B)^{c}$. Rex x is nde in einer A or B, s $x \in A^{c}$ and $x \in B^{c}$, so $x \in A^{c} \cap B^{c}$.
Caurescly, suppoxe $x \in A^{c} \cap B^{c}$. Ien $x \notin A$ and $x \notin B$, so x is in neiter A nor B. Hence $x \notin A \cup B$. ie. $x \in(A \cup B)^{c}$.
By double indunin $(A \cup B)^{c}=A^{c} \cap B^{c}$.
De Merguis laws extend \hbar fumelies of sets:

$$
\left(\bigcup_{i \in I} A_{i}\right)^{c}=\bigcap_{i \in I} A_{i}^{c} \&\left(\bigcap_{i \in I} A_{i}\right)^{c}=\bigcup_{i \in I} A_{i}^{c}
$$

Lechure 3b

Truth taskes these pronde an altematre method for pruag set ideathieer.

A	B	$A \cup B$
F	F	F
F	T	T
T	F	T
T	T	T

We put T / F in the hise to catulagre the diffeent cases of whener a gieen elevent is in or our of each set.

We con use Thi t pruve De Magan's law $(A \wedge B)^{c}=A^{c} \cup B^{c}$

A	B	$A \cap B$	$(A \cap B)^{c}$	A^{c}	B^{c}	$A^{c} \cup B^{c}$
F	F	F	T	T	T	T
F	T	F	T	T	F	T
T	F	F	T	F	T	T
T	T	T	F	F	F	F

The fucd that thexe two caluass are the sume thass that thex two seth cre equal.

Defriman (fisiteren and cardinality for forte sets)
\varnothing in faille and has cardinality $|\phi|=0$. A set S is finite win cordinatity $|S|=n+1$ if here exurbs an devest $s \in S$ such nat $|S \backslash\{s\}|=n$ for sane $n \in \mathbb{N}$, otherwise the set S is said \hbar be infinite.

If follow That $|S|$ is the number of dishact elements in S.

$$
\left[\text { eg. } S=\left\{\frac{m}{n}: m, n \in \mathbb{Z}, 0<m, n \leqslant 10^{6}\right\} \text { in frith, and }|S|=\right.\text { ?] }
$$

proporinain Let A, B be fate sets. Der $|A \cup B|=|A|+|B|-|A \cap B|$.
prof: see problem sheet,
proporinan (sussect of a faite set). Let A be a forte set, win $|A|=n$. Ten $|P(A)|=2^{\wedge}$.
proof. We us induchan.
For $n=0, A=\phi$, and $P(\phi)=\{\phi\}$, which has $|P(\phi)|=1=2^{\circ}$.
Suppose the result holds for n, and let A hare $|A|=1+1$.
Den Mere exurb sane $a \in A$ such $\operatorname{nav} A \backslash\{a\}=A^{\prime}$ has cardinahty $\left|A^{\prime}\right|=1$. Any fusser of A ernes contains a ar nod. So we can urine
$P(A)=P\left(A^{\prime}\right) \cup\left\{S \cup\{a\}: S \in P\left(A^{\prime}\right)\right\}$. These two sets acre disjant, and each has cardinality $\left|P\left(A^{\prime}\right)\right|=2^{n}$, by the induchat hyponeni.
Hence $|P(A)|=2^{\wedge}+2^{n}=2^{n+1}$
By induchan, the result hold n for all $n \in \mathbb{N}$.
For infinite sits, node $\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R}$, but $|\mathbb{N}|=|\mathbb{Z}|=|\mathbb{Q}|<|\mathbb{R}|$

Lechue 4

Logical nothhen, relahais, and equinterce relahmis

We deal with lets of logical statement or asserhans, eg.

$$
P:^{\prime} n=2^{\prime}
$$

Q: ' n is even'
R : 'there exist $x, y, z \in \mathbb{Z}^{+}$such that $x^{3}+y^{3}=z^{3}$.,
We con combine statements, or negate sheerest:
$P \vee Q$ mean ' P or Q '
eg. ' n u' even'
$P \wedge Q$ means ' P and Q '
T P means 'rot P '

$$
\begin{aligned}
& \prime \\
& \\
& \\
& \\
& n \neq 2^{\prime}
\end{aligned}
$$

There is a direct analogy y between 'or,' 'and', and 'arr', and 'usm', 'inkencchas' end 'complement. and Dey Nereus aby De Magi's lass:
(i) $\operatorname{not}(P$ or $Q)=(\operatorname{not} P)$ and $(\operatorname{nov} Q)$
(ir) $\operatorname{nor}(P$ and $Q)=(\operatorname{nor} P)$ or $(\operatorname{nov} Q)$.

We write $P \Rightarrow Q$ to mean ' P implies Q ', or 'if P hen Q '.
We unite $P \Leftrightarrow Q$ to mean $P \Rightarrow Q$ and $Q \Rightarrow P$, or ' P if and only if Q ', ar ' P is equirvies $t \frac{Q}{}$ '. Save people write 'iff'.

We wrote \forall he men 'for all' (eg. $\forall n \in \mathbb{N}$), or 'for every'. - Ne universal quanhper
We untie \exists to mean 'here exon's' (eg. $\exists x \in \mathbb{R}$ s.t. $x^{2}=4$) - ne existernal $\frac{\text { quanhfer }}{}$
We write \exists ! th mean 'Rare exits unique' (eg. \exists ! $x \in \mathbb{R}$ s.t. $x^{2}=0$)
Prot of Re double inclusion pracaple $(A=B \Leftrightarrow A \subseteq B$ and $B \subseteq A)$.

$$
\begin{aligned}
A=B & \Leftrightarrow \forall x \in S \quad(x \in A \Leftrightarrow x \in B) \\
& \Leftrightarrow \forall x \in S \quad(x \in A \Rightarrow x \in B \text { and } x \in B \Rightarrow x \in A) \\
& \Leftrightarrow A \subseteq B \text { and } B \subseteq A
\end{aligned}
$$

Lechre 4 b

Defining A relahai R an sets A and B in a subset of $A \times B$. If $(a, b) \in R$, we untie $a R b$. (opes $A=B$)
Example if $A=B=\{1,2,3\}$. Ten

$$
\begin{aligned}
& \leq=\{(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)\} \\
& { }^{\prime}=\{(1,1),(2,2),(3,3)\}
\end{aligned}
$$

If S i ne see of students at Oxford, and C in the set of colleges, tex are define R such That for any $S \in S, c \in C, S R C \Leftrightarrow s$ in a member of C
Definhais Let S be a set and R a relation an S. Den
(i) R in reflexive if $x R x$ for all $x \in S$.
(ii) R is symmetric if wherever $x R_{y} R_{\text {er }} y R x$ for all $x, y \in S[\forall x, y \in S, x R y \Rightarrow y R x]$
(iii) R in anh-symmemic if wherever $x R_{y}$ and $y R_{x} \operatorname{Ren} x=y$.
(iv) R is transinge if wherever $x R y$ and $y R z$ Men $x R z$.

Exmuples $\leqslant a n \mathbb{R}$ ì reflestre, nd symmetuc, is anti-symmetric, and is tenosinvi. \neq on \mathbb{R} in ndr reflexire, is symmetre, nel anti-symeme, and not bunsinvi
Defininen A relahue R is called a parhal order if it a reflexive, anti-symmemz and transinne.
It's called a Whal arder if for any $x, y \in S$, ener $x \cap y$ or $y R x$.
(eg. 'diudes' on \mathbb{N}-dended ' 1 ' - i an exauple of a pachal arder that a aot a Whil arder)
Example let $n \geqslant 2$, and defrie R on \mathbb{Z} by $a R b \Leftrightarrow b-a$ in a mulhple of n.
Thin is congmence modulo n
R in reflexive, and symmetmi and tracsitive

$$
\begin{aligned}
(a R b \text { and } b R c & \Rightarrow b-a=k n \text { and } c-b=\ln \text { for same } k_{1} l \in \mathbb{Z} \\
& \Rightarrow c-a=(k+l)_{n} \Rightarrow a R_{c}
\end{aligned}
$$

Defninan A relahen R ar a set $S \dot{n}$ an equivalence retahain if it n reflexire, symmetric and transitive. In Thu case, we winte it as \sim
Exhaples $S=\mathbb{Z}$, and $\sim \dot{u}$ cougmence vodulo n (we write $a \sim b$ as $a=b \bmod n$)
$S=\mathbb{C}$ and $z \sim w \Leftrightarrow|z|=|w|$
$S=\left\{\right.$ set of polygars in $\left.\mathbb{R}^{2}\right\}$ and \sim is congmence.
$S=M_{\lambda}(\mathbb{R})$ in he set of $n \times \dot{\wedge}$ matruces wirh real coeffrieent, and \sim is simitarty of matrices $\left(A \sim B \Leftrightarrow\right.$ 子an inverible matrx x s.t. $\left.A=P^{-1} B P\right)$
Defnithen Given an equirilesce relahen \sim ar a set S, and given an elerest $x \in S$, we dehre equisilence clan of x as

$$
\bar{x}=\{y \in S: y \sim x\}
$$

Defrithai A partition of a set S in a collector of aurempty disgant subsets, whose union is S.

$$
\left(\left\{A_{i}: i \in I\right\} \text { such Mat } A_{i} \neq \varnothing \text { fr all } i \in I, \bigcup_{i \in I} A_{i}=S \text {, and } A_{i} \cap A_{j}=\varnothing \text { for } i \neq j\right. \text {) }
$$

Given a pathan of a set S, we con defier an equivalence relation ~ by saying that $x \sim y \Leftrightarrow x$ and y are in the Sase part of the parkin.
Example if S i Re sot of Oxford students, we can parthian according to colleges, and Ven $x \sim y$ if x and y are at the sane college.
Proposinan Giver an equivalence reata ~ an a sot S, the equivalence classes form a parthian of S.

