Lechure 5

Funchais

Defrisine let X and Y be seth. A function, ar map, $f: x \rightarrow Y$ in an assignment of a value $f(x) \in Y$ to ever $x \in X$. X is called the domain, and Y is the coddomain

Examples $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{2}$
$f: R \rightarrow \mathbb{Z}$ defied by the mile that $f(x)$ is he least integer that is lanes than or equal to x. Thu in the ceiling funchar $\left.\Gamma_{x}\right\urcorner$.
Remark The defnithan of the funchai murk assign a unique value of $f(x)$ to every $x \in X$.
eq. $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=\frac{1}{x} x$ would be on ill-defred funchan.
(ir dues aol prude a recipe for $x=0$)
$f: \mathbb{Q} \rightarrow \mathbb{Z}$ gen by $f\left(\frac{\mu}{n}\right)=\wedge$ nd well -defied since ir does nov assign a un que value for every $q \in \mathbb{Q}$.

Defrinais Given a furchan $f: X \rightarrow 4$, He image, or range, is

$$
f(X)=\{f(x): x \in X\} \subseteq Y
$$

If $A \subseteq X$, ne image of A under $f \hat{n} \quad f(A)=\{f(x): x \in A\} \subseteq Y$
If $B \subseteq y$, the pre-inage of B under f is $f^{-1}(B)=\{x \in X: f(x) \in B\} \subseteq X$
Examples $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{2}$, has $f(\mathbb{R})=[0, \infty), f([0,1])=[0,1]$ and $f^{-1}([0,1])=[-1,1]$.
The ceiling funchar has $f(\mathbb{R})=\mathbb{Z}$, and $f^{-1}(\{n\})=(n-1, n]$
Depriving' Govern a finches $f: X \rightarrow Y$, and a subset $A \subseteq X$, ne reornichan of f to A in $\left.f\right|_{A}: A \rightarrow Y$ u defied by $\left.f\right|_{A}(x)=f(x)$. For all $x \in A$.
Defruinan Given a set X, he idenhty map id $X: X \rightarrow X$ in defied by id $_{X}(x)=x$ for all $x \in X$.

Defininais tet $f: x \rightarrow 4$ be a funchari.
(i) f is injectrei, ar ane-one $(1-1)$, if Wenever $f\left(x_{1}\right)=f\left(x_{2}\right)$ Den $x_{1}=x_{2}$
(i) f is surjechre, ar onto, if for evey $y \in Y$, nere exurts $x \in X$ such that $f(x)=y$.
(iii) f is bjechre, and is called a bijechan, if it in ingechre and surjechre.

bifechue

injechre, not ourgecture

not injechri, surfechre

Exumples $f: \mathbb{R} \rightarrow \mathbb{R}$ gien by $f(x)=x^{2}$ in neiner ingecher aor surgechei. $f:(0, \infty) \rightarrow[0, \infty) \quad$ " $\quad \overline{\text { ingechere and surgechere. }}$ $f: \mathbb{R} \rightarrow[0, \infty)$ " ù not ingeche, hat il is sugechri.
The cerlng funchai is surgechie, but not injechre.

Lechve $5 b$

Definite (carclinality of a fraiteset). A non-emply for S is finite and has corcliaality $n \in N$ if ter exist a bjechin from $\{1,2, \ldots, n\}$ th S.

Note that if x and y are finite sets, and $f: x \rightarrow y$ is ingechre, then $|y| \geqslant|x|$.
This is the prgemhde principle. If f is surjechre, ter $|x| \geqslant|y|$.
If f u bijechrie, hen $|x|=|y|$
Defrinan Let $f: x \rightarrow y$ and $g: y \rightarrow z$ be funchani. De composinan $g \circ f: x \rightarrow z$ u defined by $(g \circ f)(x)=g(f(x))$ for all $x \in X$.

If $x=y=z$, we con also defre fog, hut $f \circ g \neq g \circ f$.
eg. $x=y=z=\mathbb{R}$, and $f(x)=x^{2}, g(x)=e^{x}$. Rex $(f \circ g)(x)=e^{2 x},(g \circ f)(x)=e^{x^{2}}$

Defrinan A funches $f: X \rightarrow Y$ in invernhle if nore exusts $g: Y \rightarrow X$ such that

Proponien if $f: x \rightarrow y$ ì inverthbe then the invene is unique.
prof: Suppose g_{1} and g_{2} cee both inveses. ie $g_{i} \circ f=1 d_{x}$ and $f_{\circ} g_{i}=i d y$ for $i=1,2$.

$$
g_{1}=g_{1} \circ i d_{y}=g_{1} \circ\left(f \circ g_{2}\right)=\left(g_{1} \circ f\right) \circ g_{2}=i d_{x} \circ g_{2}=g_{2}
$$

[comporshan of funchan is assouative]

Theorem A funchai $f: x \rightarrow 4$ is inverhsle if and arly if it is bijechive.
proof: Suppose f is inverhice. So nere exurts g such raak $g \circ f=i d_{x}$ and $f \circ g=i d_{y}$. We need to show (NTP) nat f is ingechere and f is sirgechre.
To show f is injechure, suppose $f\left(x_{1}\right)=f\left(x_{2}\right)$, ner applying g givis $x_{1}=g\left(f\left(x_{1}\right)\right)=g\left(f\left(x_{2}\right)\right)=x_{2}$. So f is infechri. To shad f is surgechri, nde That for any $y \in Y$, nere exurrs $x=g(y) \in X$ such hat $f(x)=f(g(y))=y$. So f is serjechav. Herce f is bijechri.
Convencly, syppose f is bijechri. We need to aefine an inverse $g: y \rightarrow x$.
Note that for any $y \in Y, \exists x \in X$ s.t. $f(x)=y$ (since f is surgechrie) and mereover Nat x is unique (since f is injechir). Thu pronder a recipe to conshnuct a map $x=g(y)$ That in well-defried and has te prysethei $f(g(y))=y \& g(f(x))=x$. So f in inverhble.

Lecture 6
Hardling logical notuhan and quantipers

Cemarks abmit if $P \operatorname{Ren} Q^{\prime}$ wr $P \Rightarrow Q^{\prime}$

- The fullaning vear the sune:
if $P \operatorname{Ren} Q, P \Rightarrow Q, P$ only if Q, whereves P halds Nen Q halds, P usuffricent for Q, Q u recessary for P,

- To perve such a Bratement ever suppae Pis true and Bhad Q is true, ar suppare Q a nod me and thew that P is act troee.
- Note nar the coubraconhere or ad the sire as the converse (if Q nen $P, Q \Rightarrow P$), Which in a diffeert stakment.
- To despare such a Dintenet, we need ti fiad sane ciruarstance under which P is true and Q in not the .
- No causuality is impliced by saying if ρ ner Q^{\prime}
- If P in vever tre, he shikreatr 'if P ner Q ' i vacuarly tive.
- Denit mix and march if... nen...' and \Rightarrow, eg. If $x=-1 \Rightarrow x^{2}=1$
eg. $\begin{aligned} x^{2}+2 x+1 & =0 \quad 1 \text { suggers adt to un } \Rightarrow t \\ (x+1)^{2} & =0 \quad \text { cennect evey line of }\end{aligned}$ $\begin{aligned}(x+1)^{2} & =0 \\ x & =-1\end{aligned} \quad$ wasking, hot resens iv for une in more cencise Staterents.

$$
x=-1
$$

Remarter abcur ' P if and anly if Q ', ' $P \Leftrightarrow Q$ '

- Usually bert to treat such sinterents separtely ar $P \Rightarrow Q$ and $Q \Rightarrow P$.
- Sonchmes ir mag be helphil to read nex onkrens as ' P n equivalur to Q '. ' $f: X \rightarrow Y$ i injechie' $\Leftrightarrow '\left(\forall x_{1}, x_{2} \in X, f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}\right)^{\prime}$
Remarh abcul 'or'
- PVQ means Pùtrue or Q ù tree ar bolh cere tree.
- If we mean exclusvie $a r$, wrinte ' $P \sim Q$, hut ad both', $w(P \wedge \neg Q) \vee(\neg P \wedge Q)$

Lecture 6 b

Remarks abort quantifies

- Rex are mos uschal for prodding concise Blaterents of defraikisis. eg. If $f: x \rightarrow y$,
f is ingechure if $\quad \forall x_{1}, x_{2} \in X, \quad f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}$.
f is surgeche if $\quad \forall y \in Y, \exists x \in X$ shh $f(x)=y$.
- We shane specify the set to which the quankher relates, eg. dent unite $\forall x, x^{2} \geqslant 0$.
However, in Analyses, we might uni Rings like ' $\forall \varepsilon>0, \ldots$ ' in which it vi understand That ε is a real number.
- To prove a Thitereent of the fire ' $\forall x \in X, \ldots$ ', we should shat the prot wis 'let $x \in X$.' And treat x as fixed for ne rest of the pots.

$$
\text { [Te prof could who Shat 'Given } x \in X, \ldots \text { '.] }
$$

nemak abut the order of quartheis.
Suppose S i ne set of studert at Oxtred, and Cu' h sed dy colleges. Censider the sthereent

$$
\begin{align*}
& \text { (*) } \forall s \in S, \quad \exists c \in C \text { s.t. } s \in c \tag{i}\\
& \exists c \in C \text { s.t. } \forall s \in S, \quad s \in c \tag{i}
\end{align*}
$$

We ohuald read fou lett th right, and ary elerent inhordwed by a quashlfer can depend an prenusty inturducel eleients, but not ones that cre get to be inhorduced.
Remarh about regahea of quanhfiers
If $P a n e$ shtenear ' $\forall x \in X, Q(x)$ ', nd P n' ' $\exists x \in X$ s.t. $Q(x)$ ì aor mue' If P is The shmenent ' $\exists x \in X$ s.t. $Q(x)$ ', not P is ' $\forall x \in X, Q(x)$ in not true?' To regate a Rukerens in odung quanhfess, change $\forall \hbar \exists$, and vie vessu, and regate the shitenent th whal ney relate.
eg. The regatim of *) in $\exists s \in S$ s.r. $\forall c \in C, s \notin c$

Lechre 7
Coushuching matematical Thetements and proofs

Formulahar of mathematical shements
Mast Rowers are of R overall struchre if P Ven Q ' P is called the hypotions, Q is the conclusion.
Intermediate value theorem. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a cartixuaus funchei, and suppose $a, b \in \mathbb{R}$, with $a<b, f(a)<0$, and $f(b)>0$. Then here exits $c \in(a, b)$ wis $f(c)=0$.

eg. 'every prove number greater then 2 ii odd.'
'Let p be a pome number greater non 2. Ten p ù odd '

Rherem (AM-GM inequality), Let x, y be nen-negahre real numbers. Den $\sqrt{x y} \leqslant \frac{1}{2}(x+y)$
Direct proof Assume P is true, and use a sequence of logical steps to arne at Q. eg. Note That $(x-y)^{2} \geqslant 0$. So $x^{2}-2 x y+y^{2} \geqslant 0$. Adding $4 x y$ gives $(x+y)^{2} \geqslant 4 x y$. Square rat (nohng $\left.x, y \geq 0\right)$ th get $\frac{1}{2}(x+y) \geqslant \sqrt{x y}$.
Pouf by coulradizhai Assume P is true, suppox Q u not the and anne at a calludichen.
eg. Suppose, for a conbraclchiar, nat $\sqrt{x} y>\frac{1}{2}(x+y)$. Rem $4 x y>(x+y)^{2}=x^{2}+2 x y+y^{2}$,
so $0>(x-y)^{2}$, which is a curraduchai. Heace $\sqrt{x} y \leq \frac{1}{2}(x+y)$.
Prof by induchin useful to prove sinterents indexed by \mathbb{N}.
eg. Let $x_{1}, x_{2}, \ldots, x_{n}$ le ren-negahve real numbers. Den $\left(x_{1} x_{2} \ldots x_{n}\right)^{1 / n} \leqslant \frac{1}{n}\left(x_{1}+x_{2}+\ldots+x_{n}\right)$

Least cnminal (combuatun of induchon and contradichin). If pronigg olukmenth $Q(a)$, we suppose a coulrndichai. Deve nurt be a leart n for which $Q(a)$ ì adt the, so foces on ther N, and loch for a coulradichari.
eg. To show $n+n^{2}$ is even for all $n \in \mathbb{N}$, suppose Duat is nod tme. Den nere in a keart n, call it k, such n al $k+h^{2}$ is odd. Den $(k-1)+(k-1)^{2}=k+h^{2}-2 k$ u alro odd, whech coulradicts ne minimality of k.
Counter exumples (for refuting or dispronng a ohkenent).
Loch for simple or extreme cases as counterexnuples.
eg. Claim Lev x, y be real numben. Oer $\sqrt{|x y|} \leqslant \frac{1}{2}(x+y)$.
Refutuhen: thi i sod the A coanter exmple is $x=1, y=-1$.

Lecture 7b

Propositi Let $f: x \rightarrow y$ and $g: y \rightarrow z$ be funchais.
(i) If f and g are injechre, teen $g \circ f$ is injechri. Carvessly, if got is injechro, her f is injechre, but g reed nor be.
(ii) If f and g ore sirgechre, ten $g \circ f$ is surgechre. Canvescey, it $g \circ f$ is surjechree, Nan g is sugechri, hat f reed not be.
prof of (i). Suppose f and g are ingechri. Need ti shaw g of is ingechre. Let $x_{1}, x_{2} \in X$ have $(g \circ f)\left(x_{1}\right)=(g \circ f)\left(x_{2}\right)$. Then $g\left(f\left(x_{1}\right)\right)=g\left(f\left(x_{2}\right)\right)$, and since g is infective thu meas $f\left(x_{1}\right)=f\left(x_{2}\right)$. Ten since f is ingechve, th n mean $x_{1}=x_{2}$. So $g \circ f$ is injechre.

Thought: f is injechri $\Leftrightarrow \forall x_{1}, x_{2} \in X$, if $f\left(x_{1}\right)=f\left(x_{2}\right)$ her $x_{1}=x_{2}$.

Canverely, suppose gof is injechrei. Need th ohaw f is ingechri. Suppose, for a coulrudichon, that f n not ingechre. Den Rere exstr $x_{1} \neq x_{2}$ such Rat $f\left(x_{1}\right)=f\left(x_{2}\right)$. Then $(g \circ f)\left(x_{1}\right)=(g \circ f)\left(x_{2}\right)$, whech conlraducts $g \circ f$ banig ingeehri. So f in injechve.
To see taat g reed not be ingeonre, the $x=\{0\}=z$ and $y=\{0,1\}$, and $f(0)=0$ and $g(0)=0, g(1)=0$.

General advice an coustaching proves

- Be clear abort hyponeses and carclunenis.
- Unpack any defaniharis. Ne state what you know, ard wal you need to shaw.
- Ir you cont progress directly, try 'seeking a cautradichion'.
- If shourny uniqneme, suppose Rare are tho of Ne Dings, and sha hey are equal.
- Look fur extreme/ simple cases as counterexamples.
- Don't be afraid th experiment, but hare in mind what you're aiming for.
- Draw diagrams te gain intuihan.
- Reread year fall proof. Be critical, and deck your convinced.

Lechre 8
Proken solvag excmples

Example. (Images and preimages). Let $f: X \rightarrow Y$ be a mapping and let $A, B \subseteq X$ and $C, D \subseteq Y$. Are the following statements true or false?
(i) $f(A \cap B)=f(A) \cap f(B)$,
(ii) $f^{-1}(C \cap D)=f^{-1}(C) \cap f^{-1}(D)$.
(i) False. A counterexample in $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=0$ for all $x \in \mathbb{R}$. Den if $A=\{0\}$ and $B=\{1\}$, then $f(A \wedge B)=\varnothing$ and $f(A) \cap f(B)=\{0\}$.
(ii) The . pout: Suppose $x \in f^{-1}(C \cap D)$. Den $f(x) \in C \cap D$, so $f(x) \in C$ and $f(x) \in D$. Den $x \in f^{-1}(C)$ and $x \in f^{-1}(D)$, and hence $x \in f^{-1}(C) \cap f^{-1}(D)$. So LHS $\subseteq R H S$. couvensly, if $x \in f^{-1}(c) \AA f^{-1}(0)$, ter $x \in f^{-1}(c)$ and $x \in f^{-1}(0)$, so $f(x) \in C$ and $f(x) \in D$. Hence $f(x) \in C \cap D$, and here fore $x \in f^{-1}(C \cap D)$. So RHS \subseteq CHS. So LHS = RHS .

Allemahre port:

$$
\begin{aligned}
x \in f^{-1}(c \wedge 0) & \Leftrightarrow f(x) \in C \cap D \\
& \Leftrightarrow f(x) \in C \text { and } f(x) \in D \\
& \Leftrightarrow x \in f^{-1}(c) \text { and } x \in f^{-1}(D) \\
& \Leftrightarrow x \in f^{-1}(c) \cap f^{-1}(D)
\end{aligned}
$$

Example. (Modular arithmetic). Let $n \geq 2$ be an integer and let \mathbb{Z}_{n} be the set of equivalence classes $\{\overline{0}, \overline{1}, \ldots, \overline{n-1}\}$ defined by congruence modulo n on \mathbb{Z}.
(i) Show that the operation \otimes on \mathbb{Z}_{n} defined by

$$
\bar{x} \otimes \bar{y}=\overline{x \times y}
$$

is well-defined, where $x \times y$ denotes standard muliplication on \mathbb{Z}.
(ii) If $\bar{x} \neq \overline{0}$, a multiplicative inverse \bar{y} has the property that $\bar{x} \otimes \bar{y}=\overline{1}$. Is there a multiplicative inverse for every $\bar{x} \neq \overline{0}$? What if n is prime?
[You may assume Bezout's lemma, which says that if integers a and b are coprime, there exist integers k and l such that $a \times k+b \times l=1$.]

Note Rat $x \sim y \Leftrightarrow y-x$ in a mulhple of n.
(i) Need th thew that if $\bar{x}_{1}=\bar{x}_{2}$ and $\bar{y}_{1}=\bar{y}_{2}$ then $\overline{x_{1} y_{1}}=\overline{x_{2} y_{2}}$ (we anil \times for brents)

Note that $x_{2}-x_{1}=k n$ and $y_{2}-y_{1}=\ln$ for sure integer k, l.
So $x_{2} y_{2}=\left(x_{1}+k_{n}\right)\left(y_{1}+l n\right)=x_{1} y_{1}+\underbrace{k y_{1}+l n x_{1}+k l_{n}^{2}}_{\left(k y_{1}+l x_{1}+k l_{1}\right) n}$, so $\overline{x_{2} y_{2}}=\overline{x_{1} y_{1}}$
Hence \otimes in well-defined.
(ii) For general n, Rere und recersenty a mulhplicaha invere for evey $\bar{x} \neq \overline{0}$. eg. For $n=4, \overline{2}$ does nd have an inverse.

For 1 promi, the equisblerce classer are \bar{x} for $0 \leq x<n$. For $1<x<n$, x and a are coprime, so the Lemma tells us Rav Dere esus integens k and l such nal $x k+n l=1$. Ren $\overline{x k}=\overline{1}$, ie. $\bar{x} \otimes \bar{k}=\bar{T}$. So $\bar{k} \dot{u}$ the multiplicatore invese of \bar{x}. Heace all $\bar{x} \neq 0$ hare a mulhplicahus invers in te care whar 1 is prome.

Lechre 8b

Example. (Limits). A continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ tends to zero as $x \rightarrow \infty$ if

$$
\forall \varepsilon>0, \exists X \in \mathbb{R} \text { s.t. } \forall x \in \mathbb{R} \text {, if } x>X \text { then }|f(x)|<\varepsilon .
$$

Prove or disprove whether the following functions tend to zero as $x \rightarrow \infty$:
(i) $f(x)=e^{-x}$;
(ii) $f(x)=\cos x$.
(i)

$$
e^{-X}=\varepsilon \quad \Leftrightarrow \quad X=-\ln \varepsilon
$$

Let $\varepsilon>0$ be given. Den let $X=-\ln \varepsilon$. Ran $\forall x \in \mathbb{R}$, if $x>X$ new

$$
|f(x)|=\left|e^{-x}\right|<\left|e^{-x}\right|=\varepsilon
$$

Hence f tends ts zero as $x \rightarrow \infty$.

Example. (Limits). A continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ tends to zero as $x \rightarrow \infty$ if

$$
\forall \varepsilon>0, \exists X \in \mathbb{R} \text { s.t. } \forall x \in \mathbb{R} \text {, if } x>X \text { then }|f(x)|<\varepsilon .
$$

Prove or disprove whether the following functions tend to zero as $x \rightarrow \infty$:
(i) $f(x)=e^{-x}$;
(ii) $f(x)=\cos x$.
(ii) Note that the negates of the given detrition in
$\exists \varepsilon>0$ s.t. $\forall X \in \mathbb{R}, \exists x \in \mathbb{R}$ st. $x>X$ and $|f(x)| \geqslant \varepsilon$

Take $\varepsilon=\frac{1}{2}$, and let $X \in \mathbb{R}$ be given. Den Mere exits $x=2 \pi n(f o r$ sine $n \in \mathbb{Z})$ such $n a t$ $x>X$, and $|f(x)|=1 \geqslant \varepsilon$.
Hence $f(\hat{x})=\cos x$ does nd lend \hbar zero as $x \rightarrow \infty$.

