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Chapter 1

Thin film flows

1.1 Lubrication theory

Lubrication theory refers to a class of approximations of the Navier–Stokes equations
which are based on a large aspect ratio of the flow. The aspect ratio is the ratio of two
di↵erent directional length scales of the flow, as for example the depth and the width.
Typical examples of flows where the aspect ratio is large (or small, depending on which
length is in the numerator) are lakes, rivers, atmospheric winds, waterfalls, lava flows,
and in an industrial setting, oil flows in bearings (whence the term lubrication theory).
Lubrication theory forms a basic constituent of a viscous flow course and will not be
dwelt on here.

In brief the Navier–Stokes equations for an incompressible take the form

r.u = 0,

⇢[ut + (u.r)u] = �rp+ µr2u, (1.1)

at least in Cartesian coordinates. It should be recalled that the actual definition of
r

2
⌘ rr. �r⇥r⇥, and the components of r2u = r

2uiei (we use the summation
convention) is only applicable in Cartesian coordinates. For other systems, one can
for example consult the appendix in Batchelor (1967).

We begin by non-dimensionalising the equations by choosing scales

x ⇠ l, t ⇠
l

U
, u ⇠ U, p� pa ⇠

µU

l
; (1.2)

this is the usual way to scale the equations, except that we have chosen to balance the
pressure with the viscous terms. The pressure pa is an ambient pressure, commonly
atmospheric pressure. The resulting dimensionless equations are

r.u = 0,

Re u̇ ⌘ Re [ut + (u.r)u] = �rp+r
2u, (1.3)

where

Re =
⇢Ul

µ
(1.4)
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Figure 1.1: A slider bearing.

is the Reynolds number; the overdot denotes the material derivative. For Re ⌧ 1
we have Stokes flow, where the inertial terms can be neglected, and for Re � 1,
boundary layers generally occur (and the pressure would be rescaled to balance the
inertia terms, thus p ⇠ Re).

Lubrication theory describes a situation where the geometry of the flow allows
the neglect of the inertial terms, even if the Reynolds number is not small. Suppose
for example that l measures the extent of the flow in the x direction, but the fluid
thickness in the (say) z direction is small. A simple example is the slider bearing,
shown in figure 1.1, in which the fluid is confined between two surfaces, which we
might take to be z = 0 and z = h(x), and one of the surfaces moves at speed U
relative to the other. To be specific, we assume a two-dimensional flow in which the
coordinates are (x, z), the velocity components are (u, w), the bearing (z = h) is of
finite length l and lies above a flat surface z = 0 which moves at speed U ; the bearing
is open to the atmosphere at each end, and the gap width h ⇠ d ⌧ l. We define the
small parameter

" =
d

l
, (1.5)

so that in non-dimensional terms, the bearing is at z = "h(x) (where we scaled the
dimensional h with d, so that the dimensionless h is O(1)). It is then appropriate to
rescale the variables as follows:

z ⇠ ", w ⇠ ", p ⇠
1

"2
, (1.6)

and the equations then take the form

ux + wz = 0,

"2Re u̇ = �px + uzz + "2uxx,

"4Re ẇ = �pz + "2(wzz + "2wxx), (1.7)
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with boundary conditions

u = 1, w = 0 at z = 0,

u = w = 0 at z = h,

p = 0 at x = 0, 1. (1.8)

At leading order we then have p = p(x, t), and thus, integrating, we obtain

u =
z

h
�

1
2px(hz � z2). (1.9)

The final part of the solution comes from integrating the mass conservation equa-
tion from z = 0 to z = h. This gives

0 = �[w]h0 = �

Z
h

0

wz dz =

Z
h

0

ux dz =
@

@x

Z
h

0

u dz, (1.10)

where we can take the di↵erentiation outside the integral because u is zero at z = h.
In fact we can write down (1.10) directly since it is an expression of conservation of
mass across the layer; and this applies more generally, even if the base is not flat, and
indeed even if both surfaces depend on time, and the result can be extended to three
dimensions; see question 1.2. Calculating the flux from (1.9), we obtain

Z
s

b

u dz = 1
2h�

1
12h

3px = K (1.11)

is constant. Given h, the solution for p can be found as a quadrature, and is

p = 6


f2(x)�

f2(1)f3(x)

f3(1)

�
, fn(x) =

Z
x

0

dx

hn
. (1.12)

In three dimensions, exactly the same procedure leads to the equation

1
12rH .(h

3rHp) =
1
2hx, (1.13)

where the plate flow direction is taken along the x axis; derivation of this is left as
an exercise.

1.2 Droplet dynamics

When one of the surfaces is a free surface (meaning it is free to deform), such as a
droplet of liquid resting on a surface, or a rivulet flowing down a window pane, there
are two di↵erences which must be accounted for in formulating the problem. One is
that the free surface is usually a material surface, so that a kinematic condition is
appropriate. In three dimensions, this takes the form

w = st + usx + vsy � a. (1.14)
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Here, z = s is the free surface, and (u, v, w) is the velocity; the term a is normally
absent, but a non-zero value describes surface accumulation (which might for example
be due to condensation); if a < 0 it describes ablation due for example to evaporation.

The other di↵erence is that the boundary conditions at the free surface are gen-
erally not ones of prescribed velocity but of prescribed stress. In the common case of
a droplet of liquid with air above, these conditions take the form

�nn = �pa, �nt = 0, (1.15)

representing the fact that the atmosphere exerts a constant pressure on the surface,
and no shear stress. Commonly the pressure is taken as gauge pressure, i. e., measured
relative to atmospheric pressure, which is equivalent to taking pa = 0 in (1.15). To
unravel these conditions, we will consider the case of a two-dimensional incompressible
flow. In this case, the components of the stress tensor are

�11 = �p+ ⌧1, �13 = �31 = ⌧3, �33 = �p� ⌧1, (1.16)

where
⌧1 = 2µux, ⌧3 = µ(uz + wx), (1.17)

and then with

n =
(�sx, 1)

(1 + s2
x
)1/2

, t =
(1, sx)

(1 + s2
x
)1/2

, (1.18)

we have

�nn = �ijninj = �p�
[⌧1(1� s2

x
) + 2⌧3sx]

1 + s2
x

,

�nt = �ijnitj =
[⌧3(1� s2

x
)� 2⌧1sx]

1 + s2
x

. (1.19)

The dimensionless equations are virtually the same, as we initially scale p�pa, ⌧1 and
⌧3 with µU/l, and then when the rescaling in (1.6) is done (note that consequently
we rescale ⌧3 ⇠ 1/"), the surface boundary conditions become

p+
"2[⌧1(1� "2s2

x
) + 2⌧3sx]

1 + "2s2
x

= 0,

⌧3(1� "2s2
x
)� 2"2⌧1sx = 0, (1.20)

where
⌧1 = 2ux, ⌧3 = uz + "2wx. (1.21)

Putting " = 0, we thus obtain the leading order conditions

p = ⌧3 = 0 on z = s. (1.22)

We can then integrate uzz = px, assuming also a no slip base at z = b, to obtain an
expression for the flux Z

s

b

u dz = �
1
3h

3px, (1.23)
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and the conservation of mass equation then integrates (see question 1.2) to give the
evolution equation for h = s� b in the form

ht =
1
3

@

@x
[h3px]. (1.24)

1.2.1 Gravity

The astute reader will notice that something is missing. Unlike the slider bearing,
nothing is driving the flow! Indeed, since p = p(x, t) and p = 0 at z = s, p = 0
everywhere. Related to this is the fact that there is nothing to determine the velocity
scale U . Commonly such droplet flows are driven by gravity. If we include gravity
in the z momentum equation, then it takes the dimensional form . . . = �pz � ⇢g . . .,
and since in the rescaled model all the other terms are negligible, the pressure will be
hydrostatic, p ⇡ pa + ⇢g(s� z), and this gives a natural scale for p� pa ⇠ ⇢gd, and
equating this with the eventual pressure scale µUl/d2 determines the velocity scale
as

U =
⇢gd3

µl
. (1.25)

The dimensionless pressure then becomes p = s� z, so that px = sx, and (1.24) now
takes the form of a nonlinear di↵usion equation,

ht =
1
3

@

@x
[h3sx]. (1.26)

One might wonder how the length scales l and d should be chosen; the answer to
this, at least if the base is flat, is that it can be taken from the initial condition for s.
The reason for this is that, since (1.26) is a di↵usion equation, the drop will simply
continue to spread out: there is no natural length scale in the model. Associated with
this is the consequent fact that for an initial concentration of liquid at the origin (again
on a flat base), the solution takes the form of a similarity solution (see question 1.6).
On the other hand, if b is variable, then it provides a natural length scale. Indeed,
for a basin shaped b (for example x2, dimensionlessly), the initial volume (or cross-
sectional area) determines the eventual steady state as a lake with s constant, and
both d and l prescribed.

1.2.2 Surface tension

Another way in which a natural length scale can occur in the model is through the
introduction of surface tension at the interface. Let us digress for a moment to con-
sider how surface tension arises. Surface tension is a property of interfaces, whereby
they have an apparent strength. This is most simply manifested by the ability of
small objects which are themselves heavier than water to float on the interface. The
experiment is relatively easily done using a paper clip, and certain insects (water
striders) have the ability to stay on the surface of a pond.
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Figure 1.2: The simple mechanical interpretation of surface tension.

The simplest way to think about surface tension is mechanically. The interface
between two fluids has an associated tension, such that if one draws a line in the
interface of length l, then there is a force of magnitude �l which acts along this line:
� is the surface tension, and is a force per unit length. The presence of a surface
tension causes an imbalance in the normal stress across the interface, as is indicated
in figure 1.2, which also provides a means of calculating it. Taking ds as a short
line segment in an interface subtending an angle d✓ at its centre of curvature, a force
balance normal to the interface leads to the condition

p+ � p� =
�

R
, (1.27)

where

R =
ds

d✓
(1.28)

is the radius of curvature, and its inverse 1/R is the curvature.
For a two-dimensional surface, the curvature is described by two principal radii of

curvature R1 and R2, the mean curvature is defined by

 = 1
2

✓
1

R1
+

1

R2

◆
, (1.29)

and the pressure jump condition is

p+ � p� = 2� = �

✓
1

R1
+

1

R2

◆
, (1.30)

although this is not much use to us unless we have a way of calculating the curvature
of a surface. This leads us o↵ into the subject of di↵erential geometry, and we do not
want to go there. A better way lies along the following path.
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Figure 1.3: The energetic basis of surface tension.

The sceptical reader will in any case wonder what this surface tension actually
is. It manifests itself as a force, but along a line? And what is its physical origin?
The answer to this question veers towards the philosophical. We think we understand
force, after all it pops up in Newton’s second law, but how do we measure it? Pressure,
for example, we conceive of as being due to the collision of molecules with a surface,
and the measure of the force they exert is due to the momentum exchange at the
surface. We pull on a rope, exerting a force, but the measure of the force is in the
extension of the rope via Hooke’s law. Force is apparently something we measure via
its e↵ect on momentum exchange, or on mechanical displacement; we can actually
define force through these laws.

The more basic quantity is energy, which has a direct interpretation, whether as
kinetic energy or internal energy (the vibration of molecules). And in fact Newton’s
second law for a particle is equivalent to the statement that the rate of change of
energy is equal to the rate of doing work, and this might be taken as the fundamental
law.

The meaning of surface tension actually arises through the property of an interface,
which has a surface energy � with units of energy per unit area. The interfacial
condition then arises through the (thermodynamic) statement that in equilibrium
the energy of the system is minimised.

To be specific, consider the situation in figure 1.3, where two fluids at pressures
p� and p+ are separated by an interface with area A. Consider a displacement of
the interface causing a change of volume dV as shown. Evidently the work done on
the upper fluid is p+ dV , which is thus its change of energy, and correspondingly the
change for the lower fluid is �p� dV . If the change of interfacial surface area is dA,
then the total change of energy1 is

dF = (p+ � p�) dV + � dA, (1.31)

1This energy is the Helmholtz free energy.
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Figure 1.4: Calculation of
@A

@V
.

and at equilibrium this must be zero (since F is minimised). The equilibrium inter-
facial boundary condition is therefore

p+ � p� = ��
@A

@V
, (1.32)

which, it turns out, is equivalent to (1.30).

Computation of
@A

@V
can be done as follows. We consider a displacement of the

interface as shown in figure 1.4. An element of surface A is displaced to A + dA,
and we can form a connecting volume dV such that the normal n to the interface is
always parallel to the connecting surface between the end faces A and A + dA. We
need to distinguish between the normal n̂ to the surface of the connecting volume
and the normal to the interfacial surface. Evidently we have n = n̂ at the end faces,
but n.n̂ = 0 on the connecting cylindrical surface.

Applying the divergence theorem, we see that the change in area is

dA =

Z

@(dV )

n.n̂ dS =

Z

dV

r.n dV, (1.33)

and thus
@A

@V
= r.n. (1.34)

For example, if the interface is represented as z = s(x, y, t), then

r.n = �r.


rs

(1 + |rs|2)1/2

�
, (1.35)

where on the right hand side r = rH =

✓
@

@x
,
@

@y

◆
, and for small interfacial dis-

placement, this may be linearised to obtain

2 = �
@A

@V
= �r.n = r.


rs

(1 + |rs|2)1/2

�
⇡ r

2s. (1.36)
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1.2.3 The capillary droplet

Now we use this in the droplet equation. Again we restrict attention to two-dimensional
droplets. For three-dimensional droplets, see question 1.7. The surface boundary con-
dition is now approximately p� pa = ��sxx, and non-dimensionally

p = �
1

B
sxx on z = s, (1.37)

where B (commonly also written Bo) is the Bond number, given by

B =
⇢gl2

�
. (1.38)

This gives a natural length scale for the droplet, by choosing B = 1, thus

l =

✓
�

⇢g

◆1/2

; (1.39)

in this case the dimensionless pressure is p = s� z� sxx, and thus mass conservation
leads to

ht =
1
3

@

@x

⇥
h3(sx � sxxx)

⇤
, (1.40)

and the surface tension term acts as a further stabilising term.2

Surface tension acts to limit the spread of a droplet. Indeed there is a steady state
of (1.40) which is easily found. Suppose the base is flat, so s = h. We prescribe the
cross-sectional area of the drop, A. In dimensionless terms, we thus require

Z
h dx = 2↵ =

✓
⇢g

�

◆1/2 A

d
. (1.41)

Let us choose d so that the maximum depth is one (note that the value of d remains
to be determined). We can suppose that the drop is symmetric about the origin, and
that its dimensionless half-width is �, also to be determined. Thus

h(±�) = 0, h(0) = 1, (1.42)

as well as (1.41), and both ↵ and � are to be determined.
A further condition is necessary at the margins. This is the prescription of a

contact angle, which can be construed as arising through a balance of the surface
tension forces at the three interfaces at the contact line: gas/liquid, liquid/solid, and
solid/gas. All three interfaces have a surface energy, and minimisation of this corre-
sponds to prescription of a contact angle. Specifically, if ✓ is the angle between the

2This can be seen by considering small perturbations about a uniform solution h = s = 1 (with
a flat base), for which the linearised equation has normal mode solutions / exp(�t + ikx), with
� = �

1
3 (k

2 + k
4).
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gas/liquid and liquid/solid interfaces, then resolution of the surface tension tangential
to the wall leads to

�SL + � cos ✓ = �SG, (1.43)

where �SL is the solid/liquid surface energy, and �SG is the solid/gas surface energy.
Defining S = l tan ✓/d, this implies that

hx = ⌥S at x = ±�. (1.44)

The steady state of (1.40) is easily found. The flux is zero, so hx � hxxx is zero,
and integration of this leads to

h = 1�

✓
cosh x� 1

cosh�� 1

◆
, (1.45)

and then (1.41) and (1.44) yield

↵ =
� cosh�� sinh�

cosh�� 1
,

sinh�

cosh�� 1
= S. (1.46)

S(�) is a monotonically decreasing function of � (why?), and tends to one as � ! 1,
and therefore the second relation determines � providing S > 1. It seems there is a
problem if S < 1, but this is illusory since both ↵ and S depend on the unknown d,
so it is best to solve

↵

S
=

A

2l2 tan ✓
=

� cosh�� sinh�

sinh�
; (1.47)

the right hand side increases monotonically from 0 to 1 as � increases, and therefore
provides a unique solution for � for any values of A and ✓; d is then determined by
either expression in (1.46).

It is of interest to see when the assumption d ⌧ l is then valid. From (1.46),

" = tan ✓

✓
cosh�� 1

sinh�

◆
. (1.48)

The expression in � increases monotonically from 0 to 1 as � increases. Thus " ⌧ 1
if either ✓ ⌧ 1, or (if tan ✓ ⇠ O(1)) � ⌧ 1. From (1.47), this is the case provided

A ⌧ l2, i. e.,
⇢gA

�
⌧ 1. For air and water, this implies A ⌧ 7 mm2.

1.2.4 Stability

We now consider the stability of steady solutions of (1.40), which we take in the form

ht =
⇥
1
3h

3(hx � hxxx)
⇤
x
. (1.49)

Before doing so, we comment on the meaning of the fourth derivative term, which is
present due to surface tension. The gravity term is clearly di↵usive (with a nonlinear
di↵usion coe�cient 1

3h
3), but what does the surface tension term represent? In other
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contexts it is referred to as a long-range or non-local di↵usion (or dispersion) term.
To understand such a reference, suppose that the flux of a quantity having density ⇢
is given not by Fick’s law J = �Dr⇢, but by

J = �DrW, W =

Z

R3

⇢(x+ ⇠, t)K(⇠) d⇠, (1.50)

where the kernel function K = K(⇠) (here ⇠ = |⇠|) is spherically symmetric in an
isotropic medium, and can be taken (by choice of D) to have integral over all space
equal to one. If K is a delta function, K = �(x � ⇠), then we regain Fick’s law,
but more generally we might suppose it is a Gaussian, for example. (1.50) allows
a di↵usive motion due to non-local concentrations. An example of such dependence
might be in tra�c flow, where the motion of individual ‘molecules’ (cars) is a↵ected
by the observation of conditions further ahead. Another example might be in herd
migration.

If we suppose that K is delta function-like, in the sense that it varies rapidly with
⇠, then it is appropriate to approximate (1.50) by Taylor expansion of ⇢, and this
leads to

J = �Dr⇢�D2rr
2⇢+ . . . , (1.51)

where

D2 =
1
6D

Z

R3

⇠2K(⇠) d⇠ = 2
3⇡D

Z 1

0

⇠4K(⇠) d⇠. (1.52)

Solutions of the conservation law ⇢t = �r.J, using the truncated expression in
(1.51), have the normal mode form

⇢ = eik.x+�t, � = �Dk2 +D2k
4, (1.53)

and we see that the well-posedness (� < 0 as k ! 1) in this truncated form requires
D2 < 0, which seems unlikely, unless K becomes negative at large ⇠.

If we use the full expression in (1.50), then we find that (1.53) is replaced by

� = �4⇡kDI(k), I(k) =

Z 1

0

rK(r) sin kr dr (1.54)

(use spherical polar coordinates and take the z axis in the direction of k). For example,
the (normalised) Gaussian

K(⇠) =
1

(⇡⌫)3/2
e�⇠

2
/⌫ (1.55)

leads to
� = �k2De�

1
4⌫k

2
, (1.56)

and expansion of this for small ⌫ (or k) leads to the truncated version above. Note
that for the full expression, the limits ⌫ ! 0 and k ! 1 do not commute.

Returning to the matter at hand (equation (1.49)), we first consider the case of
an infinite uniform layer of fluid, with constant solution h = 1. In this case we write
h = 1 + h1 and linearise on the basis that h1 ⌧ 1. This simply gives

h1t =
1
3(h1xx � h1xxxx), (1.57)
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which has the normal mode solutions h1 = eikx+�t, and

� = �
1
3(k

2 + k4), (1.58)

and the steady solution is stable.
For the case of a finite droplet with solution h0(x) given by (1.45), we write

h = h0 + h1, and again supposing h1 ⌧ h0, we linearise as before, which leads (since
h000
0 = h0

0) to
h1t =

⇥
1
3h

3
0(h1x � h1xxx)

⇤
x
, (1.59)

and normal mode solutions are of the form h1 = H(x)e�t, and then

�H =
⇥
1
3h

3
0(Hx �Hxxx)

⇤
x
. (1.60)

This equation requires boundary conditions, but there are issues. If the margins
move, then the linearisation must become invalid, since it requires the assumption
that h1 ⌧ h0, which cannot in general be true if the margins move. Consideration
of this case requires a more subtle approach, which uses the method of strained
coordinates, but will be foregone here.

Let us suppose, then, that the margins do not move. In this case we should
prescribe

H = H 0 = 0 at x = ±�. (1.61)

This provides four conditions, the gradient condition occurring because of the pre-
scribed contact angle. However, we note that the equation is degenerate since h0(±�) =
0, so that the full complement of boundary conditions may not be able to be satis-
fied. Often in such singular problems (think of Bessel’s equation), one only needs to
suppress singular solutions. If (1.61) can be satisfied, then automatically H ⌧ h0 as
x ! ±�, which is required for the validity of the analysis.

Perhaps an ingenious exact solution of (1.60) can be found, but failing that, we
resort to an energy-type argument. If we multiply both sides of the equation by
H �Hxx and integrate, then we find

� =

�

Z
�

��

1
3h

3
0(Hx �Hxxx)

2 dx

Z
�

��

(H2 +H2
x
) dx

, (1.62)

and thus � < 0: the droplet is stable. (1.62) actually provides a variational principle
for �: see question 1.3.

Coming back to the issue of the behaviour of H at the end points, we put, for
example, X = x+ �, so that

�↵H ⇡ [X3(HX �HXXX)]X , ↵ =
3|�|

S3
, (1.63)
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and we find possible solution behaviours as X ! 0 of the form

H ⇠ X2 + cX3 + . . . ,

H ⇠ 1� bX lnX, (1.64)

where b and c are specific constants (see exercise 1.3). Therefore it seems in fact that
only one condition can be applied at each end, in keeping with the degenerate nature
of the equation, but that in fact the extra gradient condition in (1.61) is satisfied
automatically.

It should be mentioned that when droplets move, there are issues both with the
viability of prescribing a constant contact angle, because of experimentally observed
contact angle hysteresis, and also with the application of the no-slip condition, which
causes a contact line singularity. So the above discussion of stability is slightly inac-
curate.

1.2.5 Advance and retreat

When a droplet is of finite extent, it is possible to describe the behaviour near the
margins by a local expansion. Typically the surface approaches the base with local
power law behaviour, and this depends on whether the droplet is advancing or re-
treating. Consider, for example, the gravity-driven droplet with an accumulation or
ablation term:

ht =
1
3

�
h3hx

�
x
+ a, (1.65)

where a > 0 for accumulation, and a < 0 for ablation. (1.65) represents a simple
model for the motion of an ice sheet such as Antarctica, where a > 0 represents
accumulation due to snowfall. If we suppose that near the margin x = xs in a two-
dimensional motion, h ⇠ C(xs�x)⌫ , then a local expansion shows that if the front is
advancing, ẋs > 0, then ⌫ = 1

3 and ẋs ⇠
1
9C

3; in advance the front is therefore steep.
On the other hand, if the front is retreating, then this can only occur if a < 0 (as is in
fact obvious), and in that case ⌫ = 1 and ẋs ⇠ �|a|/C. The fact that the front slope
is infinite in advance and finite in retreat is associated with ‘waiting time’ behaviour,
which occurs when the front has to ‘fatten up’ before it can advance.

We can try and carry out the same analysis for the droplet with gravity and
surface tension. If the left hand margin is x = xs(t), we put x = xs +X, so that in
the (X, t) coordinates,

ht � ẋshX =
⇥
1
3h

3(hX � hXXX)
⇤
X
; (1.66)

however, finding a local expansion is not so easy. Trying various choices, it seems
that retreat (ẋs > 0) can be described by

h ⇠ aX(� lnX)1/3, ẋs ⇠
1
9a

3, (1.67)

but no such simple (!) behaviour describes advance. However, a balance is possible
when there is a non-zero flux at the front qs, and then

h ⇠ aX3/4, qs =
5
64a

4. (1.68)
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Figure 1.5: Schematic of a falling film e.g. rain flowing down a windshield.

But both these behaviours provide an infinite gradient at the margin, which is in-
consistent with the prescription of a finite slope contact angle, and also with the
lubrication theory linearisation of the curvature term, and for both these reasons, the
model becomes suspect if the margins are allowed to move.

1.2.6 Falling films

In this section we consider a class of flows called falling films, for which there is a
predominant background flow which plays an important role on the film dynamics.
Examples of such flows include rain falling down a windshield, or industrial coating
problems. As we will see, despite having a long-thin aspect ratio, inertia may still
play an important role in such flows.

We consider a thin two-dimensional falling film on a tilted plane with angle ↵
to the horizontal. We use rotated coordinates x, z, as illustrated in figure 1.5, such
that the the impermeable base is located at z = 0. The dimensional Navier-Stokes
equations in the tilted coordinates are given by

r.u = 0,

⇢[ut + (u.r)u] = �rp+ µr2u� ⇢g, (1.69)

where g = (� sin↵, cos↵). We impose no slip conditions u = w = 0 on z = 0. In the
case where the upper surface is at constant level z = h0, the stress conditions become
p = pa and uz = 0 at z = h0. There is an exact solution for this scenario, which is
given by

ū =
⇢g sin↵

2µ
(2h0z � z2),

w̄ = 0,

p̄ = pa � ⇢g cos↵(z � h0), (1.70)

where we use bar notation to indicate that this is the base state.
We consider long-wave perturbations to this flow, with aspect ratio " = h0/l ⌧ 1.

Dimensional scalings are chosen as

x ⇠ l, z ⇠ "l, ū ⇠ U =
⇢g sin↵h2

0

2µ
, w̄ ⇠ "U, p̄� pa ⇠ ⇢gh0 sin↵. (1.71)
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We consider perturbations to the base state of the form

u = ū+ û,

w = ŵ,

p = p̄+ p̂, (1.72)

and we consider a variable profile for the thin film z = h(x, t). Hence, the governing
equations become

ûx + ŵz = 0,

Re " [ût + (ū+ û)ûx + ŵ(ūz + ûz)] = �2"p̂x + ûzz + "2ûxx,

Re "2 [ŵt + (ū+ û)ŵx + ŵŵz] = �2p̂z + "(ŵzz + "2ŵxx), (1.73)

where Re= ⇢Uh0/µ. The no-slip boundary conditions at z = 0 become

û = ŵ = 0, (1.74)

whereas the kinematic and stress conditions at z = h(x, t) become

ŵ = ht + (ū+ û)hx,

p̄+ p̂ = �
�

⇢gl2 sin↵
hxx +O("2),

ūz + ûz = O("2). (1.75)

It is assumed that S = �/(⇢gl2 sin↵) is an order O(1) constant. Conservation of mass
can be written as

ht +
@

@x

Z
h

0

(ū+ û) dz

�
= 0, (1.76)

which holds true at all orders. In the limit of " ! 0, the above system has solution

û0 = 2z(h� 1),

ŵ0 = �z2hx,

p̂0 = (h� 1) cot↵� Shxx. (1.77)

Likewise, (1.76) indicates that

ht + 2h2hx = 0, (1.78)

which is a nonlinear advection equation that has stable solutions. Next, we consider
an asymptotic expansion solution of the form

û = û0 + "û1 + . . . ,

ŵ = ŵ0 + "ŵ1 + . . . ,

p̂ = p̂0 + "p̂1 + . . . . (1.79)

15



Inserting this into the x momentum equation (1.73) gives us

Re
⇥
�4 zh2hx + 2 z2hhx

⇤
= �2

@

@x
[(h� 1) cot↵� Shxx] + û1zz , (1.80)

at first order. Likewise, the boundary conditions at first order indicate that

û1z = 0 : z = h,

û1 = 0 : z = 0. (1.81)

Hence, the first order velocity correction is given by

û1 = [hx cot↵� Shxxx] (z
2
� 2zh) +

1

6
Rehhx(z

4
� 4z3h+ 8h3z). (1.82)

Inserting this into (1.76) gives the thin film equation

ht + 2h2hx + "
@

@x


h3(�

2

3
hx cot↵ + Shxxx) +

8

15
Reh6hx

�
= 0. (1.83)

This is sometimes referred to as the ‘Benney equation’ after a paper published by
D.J. Benney in 1966. The second term represents the base flow, the third term is
gravity-driven di↵usion, the fourth term is surface-tension-driven di↵usion, and the
fifth term is a non-linear inertial term.

This example of lubrication theory is di↵erent to the previous examples because
inertia plays an important role despite the fact that the flow is long and thin. The
inertial term can cause waves to bunch up and grow. This can be seen by considering
a small perturbation

h = 1 + ⌘, (1.84)

where ⌘(x, t) ⌧ 1. Inserting this into the Benney equation and linearising yields

⌘t + 2⌘x + "


�
2

3
⌘xx cot↵ + S⌘xxxx +

8

15
Re ⌘xx

�
= 0. (1.85)

Switching to the moving frame ⇠ = x + 2t and imposing a wave-like perturbation of
the form ⌘ = exp(�t+ ik⇠) results in the dispersion relation

� = "k2


�
2

3
cot↵ +

8

15
Re� Sk2

�
. (1.86)

Hence, we can see that we require a base flow which is faster than Re > (5/4) cot↵
for an instability to form.
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Figure 1.6: An elongational film flow.

1.3 Elongational flows

A di↵erent application of lubrication theory occurs in a falling sheet of fluid, such
as occurs when a tap is switched on. At low velocities, the flow is continuous and
laminar (though at very low flow rates it breaks up into droplets), and is also thin, but
is distinguished from surface droplets or bearing flows by the fact that both surfaces
of the fluid have zero stress acting on them.

To be specific, we consider the situation shown in figure 1.6. We consider flow
from an orifice, and we take the flow to be two-dimensional, with the x direction in
the direction of flow and z transverse to it. To begin with we ignore gravity and
suppose that the flow is driven by an applied tension T (force per unit width in the y
direction out of the page) at 1; this is like drawing honey out of a jar with a spoon.

The basic equations are those as scaled in (1.3), and can be written in the form

ux + wz = 0,

Re u̇ = �px + ⌧1x + ⌧3z,

Re ẇ = �pz + ⌧3x � ⌧1z, (1.87)

where
⌧1 = 2ux, ⌧3 = uz + wx. (1.88)

If the two free surfaces are z = s and z = b, then the boundary conditions on both
surfaces are �nn = �nt = 0 (we subtract o↵ the ambient pressure), or in other words
�ni = �ijnj = 0, and for z = s, this gives

(p� ⌧1)sx + ⌧3 = 0,

�⌧3sx � p� ⌧1 = 0. (1.89)
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(These are actually equivalent to (1.19).)
Now we rescale the variables to account for the large aspect ratio. The di↵erence

with the earlier approach is that shear stresses are uniformly small, and so we also
rescale ⌧3 to be small. Thus we rescale the variables as

z ⇠ ", w ⇠ ", ⌧3 ⇠ ", (1.90)

and this leads to the rescaled equations

ux + wz = 0,

Re u̇ = �px + ⌧1x + ⌧3z,

"2Re ẇ = �pz + "2⌧3x � ⌧1z, (1.91)

where
⌧1 = 2ux, "2⌧3 = uz + "2wx, (1.92)

and on the free surfaces (e. g., z = s)

(p� ⌧1)sx + ⌧3 = 0,

�"2⌧3sx � p� ⌧1 = 0. (1.93)

At leading order, we have u = u(x, t), p+ ⌧1 = 0, p = �2ux, whence we find

⌧3z = Re u̇� 4uxx, (1.94)

with
⌧3 = 4uxsx on z = s, ⌧3 = 4uxbx on z = b,

and from these we deduce

Reh(ut + uux) = 4(hux)x,

ht + (hu)x = 0, (1.95)

where the second equation is derived as usual to represent conservation of mass. Note
in this derivation that the inertial terms are not necessarily small; nevertheless the
asymptotic procedure works in the usual way.

1.3.1 Steady flow

For a long filament such as that shown in figure 1.6, it is appropriate to prescribe
inlet conditions, and these can be taken to be

h = u = 1 at x = 0, (1.96)

by appropriate choice of U and d. In addition, we prescribe the force (per unit width
in the third dimension) to be T , and this leads to

hux ! 1 as x ! 1, (1.97)
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Figure 1.7: Characteristics for (1.95). The dividing characteristic from the origin is
shown in red.

where the constant is set to one by choice of the length scale as

l =
2µdU

T
; (1.98)

thus the aspect ratio is small (d ⌧ l) if T ⌧ µU .
If we consider a slow, steady flow in which the inertial terms can be ignored

(Re ! 0), it is easy to solve the equations. We have hu = 1 and hux = 1, and thus

u = ex, h = e�x. (1.99)

As a matter of curiosity, one can actually solve the time-dependent problem (1.95),
at least when Re = 0. We write the equations in the form

ht + uhx = �1,

hux = 1, (1.100)

with the boundary and initial conditions as shown in figure 1.7. The characteristic
form of the first equation is

xt = u[x(⇠, t), t], ht = �1, (1.101)

where the partial derivatives are holding ⇠ fixed, i. e., we consider x = x(⇠, t), h =
h(⇠, t). The dividing characteristic from the origin (which we define to be t = td(x))
divides the quadrant into two regions, in which the initial data is parameterised
di↵erently. For the lower region t < td(x), we have

h = h0(⇠)� t. (1.102)
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We take the first equation in (1.101), and di↵erentiate with respect to ⇠. Using the
definition of ux from (1.100), we find

x⇠t =
x⇠

h0(⇠)� t
. (1.103)

We can integrate this with respect to t, holding ⇠ constant, that is, the integral with
respect to t is along a characteristic. It follows that

x⇠ =
h0(⇠)

h0(⇠)� t
, (1.104)

in which we have applied the initial condition x⇠ = 1 at t = 0.
Next we integrate with respect to ⇠ holding t constant; since (1.104) only holds

for t < td(x), we integrate back to this, but note that this corresponds to the value
⇠ = 0; we then have

x = xd(t) +

Z
⇠

0

h0(s) ds

h0(s)� t
, (1.105)

where xd is the inverse of td(x): to calculate this we need to solve for the upper region
t > td.

To do this, we can proceed as above, but it is quicker to note that since the
boundary conditions on x = 0 are constant, the solution is just the steady state
solution (1.99). In particular, the characteristics are e�x = 1 � (t � ⌧), and the
dividing characteristic is that with ⌧ = 0, thus

td = 1� e�x, xd = � ln(1� t). (1.106)

The solution in t < td is thus

x = � ln(1� t) +

Z
⇠

0

h0(s) ds

h0(s)� t
, (1.107)

but the transient is of little interest since it disappears after finite time, t = 1. As a
check, notice that if h0 = e�⇠, the steady state solution is regained everywhere.

The steady solution can be extended to positive Reynolds number. In steady flow
we then find

ux = Ku+ 1
4Reu2 (1.108)

for some constant K, and we see that there is no solution in which the filament can
be drawn to 1, as pinch-o↵ always occurs. This is in keeping with experience.

1.3.2 Capillary e↵ects

As for the shear-driven droplet flows, one can add gravity to the model, and this is
done in question 1.4. In this section we consider the modification to the equations
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which occurs when capillary e↵ects are included. The normal stress conditions are
modified to

��nn = �
�sxx

(1 + s2
x
)3/2

on z = s,

�nn = �
�bxx

(1 + b2
x
)3/2

on z = b. (1.109)

The definition of �nn is in (1.19), and with the basic scaling (all lengths scaled with
l, etc.) this leads to

�p�
2⌧3sx
1 + s2

x

�
⌧1(1� s2

x
)

1 + s2
x

=
1

Ca

�sxx
(1 + s2

x
)3/2

on z = s, (1.110)

where

Ca =
µU

�
(1.111)

is the capillary number; a similar expression applies on z = b, with the opposite sign
on the right hand side. When the equations are re-scaled (z ⇠ ", etc.), then these
take the approximate form

p+ ⌧1 ⇡ �
1

C
sxx on z = s,

p+ ⌧1 ⇡
1

C
bxx on z = b, (1.112)

where we write
Ca = "C. (1.113)

Now the normal stress is constant across the filament, thus

p+ ⌧1 ⇡ �
1

C
sxx (1.114)

everywhere, and this forces symmetry of the filament, sxx = �bxx. The rest of the
derivation proceeds as before, except that (1.94) gains an extra term �sxxx/C on the
right hand side; integrating this and applying the boundary conditions leads to the
modification of (1.95) as (bearing in mind that h = s� b and thus hxx = 2sxx)

ht + (hu)x = 0,

Re h(ut + uux) =
1

2C
hhxxx + 4(hux)x. (1.115)

Steady flow

The extra derivatives for h require, apparently, two extra boundary conditions. If we
suppose the pressure becomes atmospheric at 1, then we might apply

hxx ! 0 as x ! 1. (1.116)
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Since this also implies hx ! 0, it may be su�cient. On the other hand, if h ! 0 at
1, the multiplication of the third derivative term by h may render an extra boundary
condition unnecessary.

Again we can consider the steady state. Then hu = 1, and (1.115) has a first
integral

K +
Re

h
=

1

2C

⇥
hhxx �

1
2h

2
x

⇤
�

4hx

h
, (1.117)

where K is constant. Evidently there is no solution if Re > 0, as pinch-o↵ must again
occur. For the case of slow flow, taking Re = 0, we have K = 4 due to the far field
stress condition, and

h2hxx �
1
2hh

2
x
� 8C(hx + h) = 0. (1.118)

We seek a solution of this with h(0) = 1 and h(1) = 0. Phase plane analysis shows
that there is a unique such solution: see question 1.8.

Gravity

While we chose to model a thin filament pulled downwards by a tension, equally we
might consider a filament descending under its own weight. In this case, the model
can be derived much as before, but now the tension at infinity can be taken to be
zero, and the length scale is then chosen to normalise the gravity term to equal one.
The modification of (1.95) is then

ht + (hu)x = 0,

h[Re (ut + uux)� 1] = 4(hux)x. (1.119)

In this case, steady solutions extending to infinity exist, even if Re > 0, but if any
non-zero tension is applied at infinity, the solution breaks down as before and pinch-
out occurs. See also question 1.4.

Exercises

1.1 A thin incompressible liquid film flows in two dimensions (x, z) between a solid
base z = 0 where the horizontal (x) component of the velocity is U(t), and may
depend on time, and a stationary upper solid surface z = h(x), where a no slip
condition applies. The upper surface is of horizontal length l, and is open to the
atmosphere at the ends. Write down the equations and boundary conditions
describing the flow, and non-dimensionalise them assuming that U(t) ⇠ U0.
(You may neglect gravity.)

Assuming " = d/l is su�ciently small, where d is a measure of the gap width,
rescale the variables suitably, and derive an approximate equation for the pres-
sure p. Hence derive a formal solution if the block is of finite length l, and
the pressure is atmospheric at each end, and obtain an expression involving
integrals of powers of h for the horizontal fluid flux, q(t) =

R
h

0 u dz.
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1.2 A two-dimensional incompressible fluid flow is contained between two surfaces
z = b(x, t) and z = s(x, t), on which kinematic conditions hold:

w = st + usx at z = s,

w = bt + ubx at z = b.

By integrating the equation of conservation of mass, show that the fluid thick-
ness h = s� b satisfies the conservation law

@h

@t
+

@

@x

Z
s

b

u dx = 0.

Extend the result to three dimensions to show that

ht +rH .

Z
s

b

uH dz

�
= 0,

where uH = (u, v) is the horizontal velocity, and rH =

✓
@

@x
,
@

@y

◆
is the hori-

zontal gradient operator.

1.3 A two-dimensional droplet has thickness h(x, t) and satisfies the dimensionless
equation

ht =
⇥
1
3h

3(hx � hxxx)
⇤
x
,

with conditions that |hx| = S when h = 0. Show that for a steady solution
h0(x),

h0 =
S(cosh�� cosh x)

sinh�
,

where � is an arbitrary (positive) parameter. If the (dimensionless) ‘volume’
of the drop V is prescribed, show that � is uniquely determined, and that it
increases monotonically with V . Find approximate expressions for � as V ! 0
and V ! 1.

By writing h = h0 + h1, linearising, and then putting h1 = H(x)e�t, derive a
linear equation for H, and give the boundary conditions for H, assuming the
margins of the drop do not move. By writing � as a functional [H] in terms of
integrals of H and its derivatives, show that � < 0 for any solution of this, and
thus that the drop is stable.

Suppose that H is a solution of its governing di↵erential equation with cor-
responding eigenvalue �[H]. By considering variations �H to H such thatZ

�

��

(H2 +H2
x
) dx remains constant, show that the first variation �[H + �H] �

�[H] is zero.

Now let X = x + � so that h0 ⇡ SX. By considering limiting forms of the
resulting approximate equation for H, show that either H / X2 + cX3 + . . . or
H / 1 + bX lnX + . . ., and find the values of b and c.
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1.4 An incompressible two-dimensional flow from a slit of width d falls vertically
under gravity. Define vertical and horizontal coordinates x and z, with cor-
responding velocity components u and w. The stream is symmetric with free
interfaces at z = ±s, on which no stress conditions apply. Write down the
equations and boundary conditions in terms of the deviatoric stress compo-
nents ⌧1 = ⌧11 = �⌧33 and ⌧3 = ⌧13 = ⌧31, and by scaling lengths with l,
velocities with the inlet velocity U , and choosing suitable scales for time t and
the pressure and stresses, show that the equations take the form

ux + wz = 0,

Re u̇ = �px + ⌧1x + ⌧3z + 1,

Re ẇ = �pz + ⌧3x � ⌧1z,

where you should define u̇, the Reynolds number Re, and write down expressions
for ⌧1 and ⌧3.

Now define " =
d

l
, and assume it is small. Find a suitable rescaling of the equa-

tions, and show that the vertical momentum equation takes the approximate
form

h[Re u̇� 1] = 4(hux)x,

where u = u(x, t) and h is the stream width.

Show also that
ht + (hu)x = 0.

Explain why suitable boundary conditions are

h = u = 1 at x = 0, hux ! 0 as x ! 1.

Write down a single second order equation for u in steady flow. If Re = 0, find
the solution.

If Re > 0, find a pair of first order equations for v = ln u and w = vx. (Note:
w here is no longer the horizontal velocity.) Show that (1, 0) is a saddle point,
and that a unique solution satisfying the boundary conditions exists. If Re � 1
(but still "2Re ⌧ 1), show (by rescaling w = W/Re and x = ReX) that the
required trajectory hugs the W–nullcline, and thus show that in this case

u ⇡

✓
1 +

2x

Re

◆1/2

.

1.5 A (two-dimensional) droplet rests on a rough surface z = b and is subject
to gravity g and surface tension �. Write down the equations and boundary
conditions which govern its motion, non-dimensionalise them, and assuming the
depth at the summit d is much less than the half-width l, derive an approximate
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equation for the evolution in time of the depth h. Show that the horizontal
velocity scale is

U =
⇢gd3

µl
,

and derive an approximate set of equations assuming

" =
d

l
⌧ 1, F =

U
p
gd

⌧ 1.

Hence show that

ht =
@

@x


1
3h

3

✓
sx �

1

B
sxxx

◆�
,

where you should define the Bond number B.

Find a steady state solution of this equation for the case of a flat base, assum-
ing that the droplet area A and a contact angle ✓ = "� are prescribed, with
� ⇠ O(1), and show that it is unique. Explain how the solution chooses the
unknowns d and l.

1.6 A droplet of thickness h satisfies the equation

ht =
@

@x

⇥
1
3h

3hx

⇤
.

Find a similarity solution of this equation which describes the spread of a drop
of area one which is initially concentrated at the origin (i. e., h(x, 0) = �(x)).

1.7 A three-dimensional droplet , subject to gravity and resting on a flat horizontal
surface z = 0, has surface z = h(x, y, t), on which the pressure is given by
p = �r.n, where n is the unit upward normal to the surface. Show that this
condition can be written in the form

p = ��r.


rh

{1 + |rh|2}1/2

�
,

where now (and below) r is the horizontal gradient

✓
@

@x
,
@

@y

◆
.

Use the assumptions of lubrication theory to derive the dimensionless droplet
equation

ht =
1
3r.


h3r

⇢
h�

1

Bo
r

2h

��
,

and define the Bond number Bo.

Suppose that Bo = 1 (what does this mean in terms of the surface tension?),
and that a concentrated dollop of fluid of dimensionless volume 2⇡ is released
at r = 0 at t = 0. By seeking a similarity solution of the form

h =
1

t↵
f(⌘), ⌘ =

r

t�
,
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derive and solve an equation for f , and hence show that the droplet is bounded
by a moving front at

r ⇡ 1.55 t1/8.

[Hint:

✓
8192

343

◆1/8
⇡ 1.55.]

Now suppose that Bo < 1. Explain why we may take Bo = 1. Assuming this,
and a boundary condition that hr = �S where h = 0, show that the steady
solution satisfies

hrr +
1

r
hr � h = �K,

where K is constant, and deduce that

h =
S[I0(�)� I0(r)]

I 00(�)
,

where I0(r) is the modified Bessel function of the first kind, and r = � is the
drop margin.

Suppose that the dimensionless volume V of the drop is prescribed, so that
Z

�

0

rh(r) dr =
V

2⇡
.

We want to show that this determines � uniquely. By consideration of the
equation for h, show that

L(�) ⌘ �


�I0(�)

2I 00(�)
� 1

�
=

V

2⇡S
;

� will thus be unique if L(�) is monotonically increasing.

Define

⌘(�) =
I 00(�)

I0(�)
,

and show that
⌘0 = 1�

⌘

�
� ⌘2.

Assuming that I0(�) ⇠ 1+ 1
4�

2+ 1
64�

4+ . . . as � ! 0, find the limiting behaviour
of ⌘ as � ! 0, and by consideration of trajectory directions in the semi-phase
plane (�, ⌘), show that ⌘(�) is a monotonically increasing function of �, with
⌘(1) = 1. Derive a di↵erential equation for g(�) = 2⌘/�, and by the same
device (but now using the (�, g) semi-phase plane), show that g is a monoton-
ically decreasing function of �. Hence show that L(�) is a strictly increasing
function, as required.

Denoting this steady state as h0(r), perturb h as h = h0 + h1, and linearise
the equation. Now put h1 = H(x, y)e�t (do not assume that H is cylindrically
symmetric) and write down the resulting eigenvalue problem for �. Assuming
that the drop margin is not perturbed, show that � is real and negative for any
solution of this eigenvalue problem, and hence that the drop is stable.
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1.8 A film of fluid is drawn downwards under the action of a tensile force. A model
for the dimensionless thickness h and dimensionless downwards velocity u of
the film is

ht + (hu)x = 0,

Re h(ut + uux) =
1

2C
hhxxx + 4(hux)x,

with
h = u = 1 on x = 0, hux ! 1 as x ! 1.

Show that a steady state solution in which h ! 0 as x ! 1 can only occur if
Re = 0. In that case, determine a second order di↵erential equation satisfied
by h, and by writing h = 1

2U
2 and V = U 0 = Ux, write the equation as a pair

of first order equations for U and V . Show that the origin is a (degenerate)
saddle, and therefore show that a solution exists which satisfies the boundary
conditions.

27


