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In Analysis II (previewed in Analysis I) one encounters the following proof of

exp(x+ y) = exp(x) exp(y), (1)

where exp(x) is defined by

exp(x) :=
∞∑
n=0

xn

n!
. (2)

Proof. First we show that (2) has infinite radius of convergence (by, e.g., the Ratio Test).
Then apply the Differentiation Theorem for power series to differentiate term by term:

d

dx
exp(x) =

∞∑
n=0

d

dx

xn

n!
=

∞∑
n=1

xn−1

(n− 1)!
=

∞∑
n=0

xn

n!
= exp(x).

Now differentiate F (x) := exp(x) exp(c − x) with respect to x using the Product Rule
and Chain Rule to get

d

dx
F (x) = exp′(x) exp(c− x) + exp(x) exp′(c− x)(−1)

= exp(x) exp(c− x)− exp(x) exp(c− x) = 0.

Now use the Constancy Theorem to deduce that the function F (x) is constant on R:
exp(x) exp(c − x) = F (x) = F (0) = exp(c). Substituting c = x + y now gives the
result (1).

There are a couple of things that are rather unsatisfactory about this proof.

1. It uses a lot of machinery from Analysis II to prove something that is very simple,
and certainly should be accessible using just the methods of Analysis I.

2. It only works for real x and y. To generalise to complex numbers needs significant
extra effort.

To be fair, the conclusion of the Constancy Theorem also applies to complex functions,
and indeed much more will be proved in the Part A course Metric Spaces and Complex
Analysis. But in some sense that makes the 1st point above even worse — one needs to
wait until the 2nd year to see a complete proof of this basic identity.
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Here we present two proofs of (1) that rely only on results from Analysis I and also work
for complex numbers. The first is in some sense more natural and elementary1, but uses
a different definition of the exponential. The second uses (2), but is slightly more opaque.
We then show the two definitions give the same function.

For the first proof we try to use the following definition.2

exp(x) = lim
n→∞

(
1 + x

n

)n
.

The hard part is showing that this converges. For real x it is not too difficult. A slight
generalisation of question 4 on problem sheet 1 of Analysis I shows that the sequence
is increasing in n for n > |x| and bounded above. It is a bit more tricky for complex
x however. To make life a little easier, we will just show convergence along a certain
subsequence. This will be enough and makes the algebra a bit simpler. Hence we will
define (using a different notation for exp as we haven’t shown it matches (2) yet)

e(x) := lim
n→∞

en(x), where en(x) :=
(
1 + x

2n

)2n
. (3)

We first observe that en(x) satisfies the following easy identity:

en+1(x) =
(
1 +

x/2

2n

)2n·2
= en

(
x
2

)2
. (4)

The following lemma shows that en(x) ≈ 1+ x for x small with an explicit error bound.

Lemma 1. For |x| ≤ 1
2
and any n ≥ 0, |en(x)− (1 + x)| ≤ |x|2.

Proof. We use induction on n, n = 0 is trivial as e0(x) = 1 + x. Now for |x| ≤ 1
2
and

n ≥ 0 write en(
x
2
) = 1 + x

2
+ η where, by induction, |η| ≤ |x

2
|2 = |x|2

4
. Then∣∣en+1(x)− (1 + x)

∣∣ = ∣∣en(x2 )2 − (1 + x)
∣∣ from (4)

=
∣∣(1 + x

2
+ η)2 − (1 + x)

∣∣ en(
x
2
) = 1 + x

2
+ η

=
∣∣x2

4
+ 2(1 + x

2
)η + η2

∣∣ expand and simplify

≤ |x|2
4

+ |η|(2 + |x|+ |η|) triangle inequality

≤ |x|2
4

+ |x|2
4
(2 + |x|+ |x|2

4
) |η| ≤ |x|2

4

≤ |x|2(1
4
+ 1

4
(2 + 1

2
+ 1

16
)) |x| ≤ 1

2

≤ |x|2.

The next step is the crucial bit: showing en(x) converges.

1‘Elementary’ is a technical term here. It means the proof does not use advanced concepts and
theorems, but instead uses more basic techniques. It does not however mean the proof is simple or easy!

2Think ‘compound interest’.
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Lemma 2. For any fixed x ∈ C, en(x) converges as n → ∞.

Proof. We first note that for any n ≥ 0 and |x| ≤ 1
2
, |en(x)| ≤ 1 + |x| + |x|2 ≤ 7

4

by Lemma 1 and the triangle inequality. Now assume |x| ≤ 1
2
. We show that for all

n > m ≥ 0,
|en(x)− em(x)| ≤

(
7
8

)m|x|2 (5)

by induction on m (simultaneously for all n > m). Lemma 1 is just the case m = 0 and,
assuming the result for m,

|en+1(x)− em+1(x)| =
∣∣en(x2 )2 − em(

x
2
)2
∣∣

=
∣∣en(x2 ) + em(

x
2
)
∣∣∣∣en(x2 )− em(

x
2
)
∣∣

≤
(
7
4
+ 7

4

)
· (7

8
)m

∣∣x
2

∣∣2 = (7
8
)m+1|x|2

for all n+ 1 > m+ 1. Hence (5) holds for all n > m ≥ 0.

Now (7
8
)m|x|2 → 0 as m → ∞, so (en(x)) is a Cauchy sequence. Thus by the Cauchy

Convergence Criterion, (en(x)) converges as n → ∞ for any x with |x| ≤ 1
2
.

For larger |x| we note that if en(x) converges as n → ∞ for any |x| < K then en(x) =
en−1(

x
2
)2 converges for any |x| < 2K by AOL. Hence we can inductively show (en(x))

converges as n → ∞ for |x| < 2t for any t ≥ −1. Thus (en(x)) converges as n → ∞ for
all x ∈ C and so definition (3) of e(x) makes sense.

Having shown e(x) is well defined, the main result is relatively straightforward.

Theorem 3. For all x, y ∈ C, e(x+ y) = e(x)e(y).

Proof. We observe that

en(x)en(y)
en(x+y)

=
( (1+2−nx)(1+2−ny)

1+2−n(x+y)

)2n
=

(
1 + 4−nxy

1+2−n(x+y)

)2n
=

(
1 + zn

2n

)2n
= en(zn), (6)

where zn = 2−nxy
1+2−n(x+y)

(and the denominator in (6) is nonzero for sufficiently large n by

definition of en(x)). But zn → 0 as n → ∞ by the fact that 2−n → 0 and AOL so, for
sufficiently large n, |zn| ≤ 1

2
. But then |en(zn) − (1 + zn)| ≤ |zn|2 by Lemma 1. But

zn → 0, so en(zn) → 1 by sandwiching.

Now take (6) in the form en(x+ y)en(zn) = en(x)en(y) and apply AOL and Lemma 2 to
obtain e(x+ y) = e(x)e(y).

We remark that this proof uses the Cauchy Convergence Criterion, which was pretty
much inevitable as we wanted to show a sequence of complex numbers converged to
something we could not previously describe. (In the other proofs it is hidden away in
the various results that are used.) Other than that it just uses AOL, sandwiching, and
simple bounding techniques (triangle inequality and standard algebra).
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We also remark that once differentiation is introduced, Lemma 1 tells us precisely that
e′(0) = 1. Then e′(x) = e(x) can be deduced from the Chain Rule and Theorem 3:
e′(x+ c) = e′(x+ c) d

dx
(x+ c) = d

dx
e(x+ c) = d

dx
e(c)e(x) = e(c)e′(x), and set x = 0.

We now come to the second proof of (1). This uses more properties of series from
Analysis I. We start with a general result that could have been proved in Analysis I and
is of independent interest (and was question 3 on the 2013 Prelims MII exam!).

Lemma 4 (Multiplication of absolutely convergent series). If
∑

ak and
∑

bk converge
absolutely and we define ck := a0bk + a1bk−1 + · · · + akb0 =

∑k
j=0 ajbk−j, then

∑
ck

converges absolutely and
∞∑
k=0

ck =
∞∑
k=0

ak

∞∑
k=0

bk.

We remark that this is basically a theorem about rearranging terms in a series, summing
them up in a different order. As a result it should not come as much of a surprise that
the condition of absolute convergence is needed. The lemma would be false in general if
the sequences converged, but not absolutely.

Proof. By absolute convergence of
∑

ak and
∑

bk we can define A :=
∑∞

k=0 |ak| and
B :=

∑∞
k=0 |bk|. Now fix ε > 0. By convergence of the sums defining A and B, there

exists an N such that
∑∞

k=N+1 |ak| <
ε

A+B
and

∑∞
k=N+1 |bk| <

ε
A+B

. Now3

n∑
i=0

ai

n∑
j=0

bj −
n∑

k=0

ck =
n∑

i=0

n∑
j=0

aibj −
n∑

k=0

∑
i+j=k

aibj

=
n∑

i=0

n∑
j=0

aibj −
n∑

i=0

n∑
j=0

i+j=k≤n

aibj =
n∑

i=0

n∑
j=0

i+j>n

aibj.

We fix n > 2N . Then if i+ j > n either i > N or j > N . Thus by the triangle inequality∣∣∣ n∑
i=0

ai

n∑
j=0

bj −
n∑

k=0

ck

∣∣∣ ≤ n∑
i=0

n∑
j=0

i+j>n

|aibj| ≤
n∑

i=N+1

n∑
j=0

|aibj|+
n∑

i=0

n∑
j=N+1

|aibj|

=
n∑

i=N+1

|ai|
n∑

j=0

|bj|+
n∑

i=0

|ai|
n∑

j=N+1

|bj|

< ε
A+B

·B + A · ε
A+B

= ε.

Hence |
∑n

k=0 ak
∑n

k=0 bk −
∑n

k=0 ck| → 0 as n → ∞. By AOL and sandwiching,
∑

ck
converges and

∑∞
k=0 ck =

∑∞
k=0 ak

∑∞
k=0 bk.

For absolute convergence, replace ak and bk by a′k := |ak| and b′k := |bk| and note that∑
c′k converges where c′k :=

∑
|ajbk−j| ≥ |ck|. Now

∑
|ck| converges by the Comparison

Test.
3It might help here to arrange the terms aibj in a grid and think about which regions of the grid are

included in each double sum.
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Theorem 5. For all x, y ∈ C, exp(x+ y) = exp(x) exp(y).

Proof. For any x, y ∈ C the power series for exp(x) and exp(y) converge absolutely as
the series has infinite radius of convergence (by e.g., the Ratio Test). Hence by Lemma 4

exp(x) exp(y) =
∞∑
n=0

xn

n!

∞∑
n=0

yn

n!
=

∞∑
n=0

n∑
j=0

xj

j!
· yn−j

(n− j)!

=
∞∑
n=0

1

n!

n∑
j=0

(
n

j

)
xjyn−j =

∞∑
n=0

(x+ y)n

n!
= exp(x+ y),

where in the second line we have used the definition
(
n
j

)
= n!

j!(n−j)!
and the Binomial

Theorem.

Theorem 6. For all x ∈ C, e(x) = exp(x).

Direct proof without assuming Theorems 3 and 5. Set N = 2m and use the Binomial
Theorem

em(x) =
(
1 +

x

N

)N

= 1 +

(
N

1

)( x

N

)
+

(
N

2

)( x

N

)2

+ · · ·+
(
N

N

)( x

N

)N

.

We note that for each fixed k(
N

k

)( x

N

)k

=
N(N − 1) · · · (N − k + 1)

Nk · k!
xk =

xk

k!

k−1∏
j=0

(
1− j

N

)
→ xk

k!
,

as m → ∞ (and hence N → ∞) by AOL. We also note that |
(
N
k

)
( x
N
)k| ≤ |xk

k!
| so each

term in em(x) is no larger than the corresponding term in exp(x). So fix ε > 0 and

pick n large enough such that
∑∞

k=n+1 |
xk

k!
| < ε

4
. We can do this as the series for exp(x)

converges absolutely. Now pick m0 large enough so that for each k = 2, . . . , n and each
N ≥ 2m0 ∣∣∣(N

k

)( x

N

)k

− xk

k!

∣∣∣ < ε

2n
.

We can do this for each k = 2, . . . , n and just take the largest m0 that is needed (n here
is fixed, so there are only finitely many ks). Then for m ≥ m0,

| exp(x)− em(x)| ≤
n∑

k=2

∣∣∣(N
k

)( x

N

)k

− xk

k!

∣∣∣+ N∑
k=n+1

(
N

k

)∣∣∣ x
N

∣∣∣k + ∞∑
k=n+1

∣∣∣xk

k!

∣∣∣
≤

n∑
k=2

∣∣∣(N
k

)( x

N

)k

− xk

k!

∣∣∣+ N∑
k=n+1

∣∣∣xk

k!

∣∣∣+ ∞∑
k=n+1

∣∣∣xk

k!

∣∣∣
≤

n∑
k=2

ε

2n
+

ε

4
+

ε

4
< ε.

As ε was arbitrary, em(x) → exp(x) as m → ∞ and so e(x) = exp(x).
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Note that we could have used this as an alternative proof of Lemma 2. However it uses
results on convergence of power series and the Binomial Theorem, whereas the proof of
Lemma 2 did not.

Once we have (1) for all complex x and y, it is easy to quickly deduce standard results
about both exp and the trigonometric functions.

For example, we can use the power series definitions of cosx and sinx to prove for all
complex x,

eix = cosx+ i sinx,

e−ix = cosx− i sinx,

or equivalently define (for any complex x)

cosx =
eix + e−ix

2
sinx =

eix − e−ix

2i
.

Addition formulae follow immediately:

cos(x+ y) + i sin(x+ y) = ei(x+y) = eixeiy = (cosx+ i sinx)(cos y + i sin y)

= (cosx cos y − sinx sin y) + i(cosx sin y + sinx cos y),

cos(x+ y)− i sin(x+ y) = e−i(x+y) = e−ixe−iy = (cosx− i sinx)(cos y − i sin y)

= (cosx cos y − sinx sin y)− i(cosx sin y + sinx cos y).

Solving these simultaneous equations (add and subtract) then gives that for all x, y ∈ C

cos(x+ y) = cos x cos y − sinx sin y,

sin(x+ y) = cos x sin y + sinx cos y.

Other trigonometric formulae can be derived in a similar manner, valid for all complex
numbers.
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