BO1 History of Mathematics
 Lecture II
 Dissemination and development
 (600 BC - AD 1600)

MT 2022 Week 1

Summary

- Influence of the ancient world
- The European Renaissance (15th and 16th centuries)
- Rediscovery and transmission of ancient texts
- The 16th century
- A case study: Napier's invention of logarithms 1614

Ancient influences on early modern European mathematics

(Early modern $=$ roughly 1400-1800)
The prior mathematical accomplishments of

- China
- India
- Mesopotamia
- Egypt
- and most other places
were largely unknown in Europe until the 19th century
The single greatest influence on early modern European mathematics was the mathematics of ancient Greece, with that of mediaeval Islam (a little later) coming a close second

Ancient origins of mathematics

On the ancient origins of
mathematics, see:
Victor J. Katz (ed.), The mathematics of Egypt, Mesopotamia, China, India, and Islam: a sourcebook, Princeton University Press, 2007

Ancient Greek mathematics

Earliest origins of Greek mathematics in 6th century BC
But what do we mean by 'Greek'?
500 BC - 300 BC Collection of city-states in Greece
300 BC - AD 500 Greek-speaking peoples around the Mediterranean, especially in Alexandria

Some major figures of 'Greek' mathematics

Pythagoras Samos (Greece)? c. 600 BC
Euclid Alexandria (Egypt)?
c. 300 (or 250?) BC
Archimedes Syracuse (Sicily) c. 250 BC
Apollonius Perga (Turkey) c. 180 BC
Diophantus Alexandria (Egypt) c. AD 200

Euclid's Elements

The 'elements of geometry' in 13 books, compiled around 300 (250?) BC from existing geometrical knowledge

Books I-VI plane geometry | points, lines, angles, |
| :--- |
| circles, .. |

Books VII-X properties of numbers odd, even, square, triangular, prime, perfect, ...
cube, tetrahedron, icosahedron, ...
Books XI-XIII solid geometry

David Joyce's Java version of Euclid's Elements
Oliver Byrne's colour version of the first six books

Euclid's Elements, book I

23 definitions: point, line, surface, angle, circle, ...
5 postulates: what one can do
e.g. a straight line may be drawn between any two points; a circle may be drawn with given centre and radius

5 'common notions': how one may reason
e.g. if equals are added to equals, then the wholes are equal

48 propositions: each built only on what has gone before

The influence of Euclid's Elements

HUGE influence on Western mathematics:

- hundreds of editions and translations from renaissance onwards
- basis of mathematics teaching in schools until c. 1960
- style: definitions-axioms-theorems-proofs
- status of 'Parallel Postulate' led to much investigation and, ultimately, non-Euclidean geometries
- problems of 'ruler and compass' construction inspired much investigation and many new discoveries
- wider cultural importance: http://readingeuclid.org/

Other Greek authors

Archimedes d. 212 BC : method of exhaustion and much else

Apollonius c. 180 BC : conic sections
Diophantus c. AD 250: Arithmetica in 13 books (number problems)

Also had HUGE influence on Western mathematics

Remnants of the collapse of the ancient world

in Greek: manuscripts preserved at Constantinople and in libraries or collections around the Mediterranean
in Latin: writings by Boethius (c. 480-524) on philosophy, arithmetic, geometry, music

The spread of Islam and Islamic learning

632-732: Islam spreads throughout Middle East, north Africa, and into Spain and Portugal
c. 820 :

Bayt al-Hikma, the House of Wisdom, founded in Baghdad under Caliph al-Ma'mūn; it became a centre for translation into Arabic from Greek, Persian, Sanskrit
c. 825: al-Khwārizmī active in Baghdad

9th century: texts on arithmetic, algebra, astronomy reach Spain
12th century: translations from Arabic to Latin

The mid-Renaissance (15th and 16th centuries)

Classical mathematical texts more widely available due to:

- rediscovery of manuscripts
- revival of knowledge of Greek
- transmission of otherwise lost texts via Arabic versions
- (Western) invention of printing (Gutenberg, c. 1436)

Euclid's Elements: transmission history

- commentaries written by Pappus (c. AD 320), Theon (c. AD 380), Proclus (c. AD 450)
- a few propositions in Boethius (c. AD 500)
- copies in Greek (earliest from Constantinople, AD 888)
- many translations or commentaries in Arabic (AD 750-1250)
- mediaeval translations from Arabic to Latin: Adelard of Bath (1130), Robert of Chester (1145), Gerard of Cremona (mid-12th century)
- printed editions in Latin or Greek from 1482 onwards

Euclid in Arabic

Translated from the Greek by Ishaq ibn Hunayn, AD 1466

Euclid I. 47 from Bodleian ms. dated 888

Whole manuscript is digitised:
http://www.claymath.org/library/historical/euclid/

Euclid I. 47 from Bodleian ms. dated 888

http://www.claymath.org/library/historical/euclid/files/elem.1.47.html

Treatises by Archimedes: transmission history

- quoted or explained by Pappus (c. 320 AD), Theon (c. 380 AD), Eutocius (c. 520 AD)
- 6th-century Byzantine 'collected works' (Isidore of Miletus)
- several translations of individual treatises into Arabic
- translations from Arabic into Latin
- a new find in the twentieth century: www.archimedespalimpsest.org/

Apollonius' Conics (c. 180 BC): transmission history

- Books I-IV survived in Greek
- Books V-VII survived only in Arabic
- Book VIII is lost, known only from commentaries
- early (Latin) printed edition, 1566
(See: Mathematics emerging, §1.2.4.)

16th century change

New forces at work in the 16th century:

- global exploration
- growth of international commerce
- new technology (in printing, shipping, military engineering, instrumentation, etc.)

A case study of a text from 1614

Napier's invention of logarithms:

- what did 17 th-century mathematics look like?
- how can we begin to read historical texts?

Napier's definition of a logarithm (of a sine)

The Logarithme therefore of any sine is a number very neerely expressing the line, which increased equally in the meane time, whiles the line of the whole sine decreased proportionally into that sine, both motions being equal-timed, and the beginning equally swift.

Context, content, significance

Context:

who? when? where? why?

Content:
what is it about? how is it written?

Significance:
why did/does it matter?

Historical Significance: what new insight does this text offer us?

Context — who?

John Napier (1550-1617), Merchiston, Scotland

Scottish landowner with interests in:

- mining
- calculating aids
- astrology/astronomy
- The Book of Revelation

See Oxford Dictionary of National Biography: http://www.oxforddnb.com/view/article/19758

Context - why?

From Napier's preface to the English translation of 1616:

Seeing there is nothing (right well-beloved Students of the Mathematics) that is so troublesome to mathematical practice, nor that doth more molest and hinder calculators, than the multiplications, divisions, square and cubical extractions of great numbers, which besides the tedious expense of time are for the most part subject to many slippery errors, I began therefore to consider in my mind by what certain and ready art I might remove those hindrances.

Context — why?

Inspired by the 16th-century technique of prosthaphaeresis:
the use of trigonometric identities such as

$$
\begin{aligned}
\cos x \cos y & =\frac{1}{2}[\cos (x+y)+\cos (x-y)] \\
\sin x \sin y & =\frac{1}{2}[\cos (x-y)-\cos (x+y)]
\end{aligned}
$$

to convert multiplication into addition.

Context - in what form, and in which language?

Original Latin text of 1614:
Mirifici logarithmorum canonis descriptio
translated into English by Edward Wright in 1616 as
A description of the admirable table of logarithms
Scanned text available via SOLO

Napier's 1616 title-page decoded

Inventor:
John Napier (1550-1617)
Translator:
Edward Wright (?1558-1615)
(interests: navigation, charts
and tables)
Additional material:
Henry Briggs (1561-1630)
Gresham Professor of Geometry,
later Savilian Professor of
Geometry at Oxford
(interests: navigation)
Printer:
Nicholas Okes
Readers:
Thomas Hulcher,
Thomas Panner

Napier's logarithms: content

Recall:
The Logarithme therefore of any sine is a number very neerely expressing the line, which increased equally in the meane time, whiles the line of the whole sine decreased proportionally into that sine, both motions being equal-timed, and the beginning equally swift.

Napier's logarithms

4 Thefirf Booke. Chap.x peare by the 19 Prof. 5. and II. Prop. 7, Euclid.

Surd quantities, or vacxplicable by number, are Said to be defined, or expreffed by numbers very meere, soben they are defined or exprefed by great numbers which differ not fo much as one while: from the true value of the Surd quantisics.

As for example. Let the femidiameter, or whole fine be the rational number! 10000000 the fine of 45 degrees fhall be the fquare root of $50,000,000,000,000$, which is furd, or irrationall and inexplicable by any number, $\&$ is included between the limits of 7071067 the leffe, and 7071068 the greater: therfore, it differeth not an vnite from either of thefe. Therefore that furd fine of 45 degrees, is faid to be defined and expreffed very neere, when it is expreffed by the whole numbers, 7071067, or 707 1068, not regarding the fraAtions. For in great numbers there arifeth no fenfible error, by neglecting the fragments, or parts of an vnite.
Equall-timed motions are thofe which are made togetber, and in the fame time.
As in the figures following, admit that B be moued from A to C, in the fame time, wherin b is moued from a to c the right lines $A C$ \& - 6 , fhall be fayd to be defcribed with an e-quall-timed motion.

Seeing that there may bee a flower and a swifter motion giuen then any motion, it fall neceffdrily follow, tbat thercimay bea motion given of equall/ wiffnef'e to any motion (wbich wee define zo be neillber /wiffer nor flower.)

The Logarithme the fote of any fine is a number verynecrely exprefsing the line, whbich increes-

Chap.2: The firft Booke.
fed equally in the meane time, whiles the line of the whole fine de creafed propertionally into that fine, botb motions being equal-timed, and the beginning equally spift.

As for example.Let the 2 figures going afore bec here repeated, and let Bbee moued alwayes, and cuery where with equall, or the fame fiviftneffe wherewith b beganne to bee moued in the beginning, when it was in a_{0}. Then in the firt moment let B proceed from: A to C , and in the fame time let b moue proportionally from a to c, the number defining or expreffing A C chal be the Logarithme of the line, or fine $c \mathbf{Z}$. Then in the fecond momentlet B bee moued forward from C to D. And in the fame moment or time les b bd moued: proportionally from c to d, the number definining $A D$, fhall bee the Loge. vithme of thic fine'd Z. So in the third moment let B go forward equally from D ro E, and in the fame moment let b be moued forward proportionally fromd to e, the number expreffing A E the Logarithme of the fine eZ. Alfo in the fourth moment, let B pro-

[^0]Napier's logarithms

Napier's logarithms

Napier's logarithms

Logarithms

Numbers

Napier's logarithms

Sine of angle at centre varies between 0 and ± 1 as the labelled radius sweeps around the circle

Sine of angle at centre varies between 0 and $\pm 10,000,000$ as the labelled radius sweeps around the circle

Napier's logarithms

Logarithms

Numbers

Napier's logarithms (1614)

In modern terms (i.e., not Napier's):

$$
\text { if } y=10^{7}\left(1-10^{-7}\right)^{x} \text {, then Nap log } y=x
$$

Nap log $10^{7}=0$, Nap log 0 is infinite, Naplog $1=161,180,956$
Naplog $\left(\frac{p \times q}{10^{7}}\right)=$ Nap log $p+$ Nap $\log q$
Nap log $(p \times q)=$ Nap $\log p+$ Nap log $q-$ Nap $\log 1$
Note that Nap log $x=10^{7} \ln \left(\frac{10^{7}}{x}\right)$
No notion of base, although Naplog 'nearly' has base $\frac{1}{e}$ - see: Robin Wilson, Euler's Pioneering Equation, OUP, 2019, p. 101

Modifications by Napier and Briggs (1617)

Definition revised to remove the need to subtract Naplog 1
'Briggsian' logarithms have base 10 and $\log 1=0$, so that

$$
\log (p \times q)=\log p+\log q
$$

Briggs produced Logarithmorum chilias prima (The first thousand logarithms) in 1617, followed by his Arithmetica logarithmica in 1624, which contained logarithms of 1 to 20,000 and 90,000 to 100,000, all to 14 decimal places (calculated by hand); the gap in the table was filled by Adriaan Vlacq in 1628

Napier's logarithms

One last time:
The Logarithme therefore of any sine is a number very neerely expressing the line, which increased equally in the meane time, whiles the line of the whole sine decreased proportionally into that sine, both motions being equal-timed, and the beginning equally swift.

Significance

Napier's logarithms:

- caught on very quickly

- a calculating aid (until the 1980s)
- logarithms rapidly came to have other interpretations (as you know, and as we shall see)

Significance as a historical source

- Roles of translation in mathematics
- Concept of authorship in the 16 th century
- Use of diagrams in mathematical texts
- Importance of informal/social communication, alongside published texts

[^0]: B 3
 ceed

