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This is a non-examinable, but fun, application of Theorem 7.2 (uniform limit of continuous
functions is continuous) from the lecture notes. It should be read after one has completed
the section of the course on uniform convergence (Section 7 of the notes).

We define a curve in R2 as a continuous function γ : [a, b] → R2. If we write γ(t) =
(x(t), y(t)) then continuity of γ is in fact equivalent to each coordinate x(t) and y(t)
being a continuous function [a, b] → R.

Lemma. γ(t) = (x(t), y(t)) : [a, b] → R2 is continuous iff both coordinate functions
x(t), y(t) : [a, b] → R are continuous.

Proof. =⇒: Suppose γ(t) is continuous. Then for any t0 ∈ [a, b] and ε > 0 there is a
δ > 0 such that

|t− t0| < δ =⇒ |γ(t)− γ(t0)| :=
√
(x(t)− x(t0))2 + (y(t)− y(t0))2 < ε

But then |x(t)−x(t0)|, |y(t)−y(t0)| ≤ |γ(t)−γ(t0)| < ε and so x(t) and y(t) are continuous.

⇐=: Suppose that both x(t) and y(t) are continuous. Then for any t0 ∈ [a, b] and ε > 0
there exists δ1, δ2 > 0 such that

|t− t0| < δ1 =⇒ |x(t)− x(t0)| < ε
2

and |t− t0| < δ2 =⇒ |y(t)− y(t0)| < ε
2
.

But then for δ := min{δ1, δ2} > 0 we have

|t− t0| < δ =⇒ |γ(t)− γ(t0)| ≤ |x(t)− x(t0)|+ |y(t)− y(t0)| < ε

by the triangle inequality for distances in the plane. Hence γ(t) is continuous.

We naturally think of the curve in terms of its image {γ(t) : t ∈ [a, b]} ⊆ R2 and expect
a curve to be some sort of ‘1-dimensional’ shape sitting in the plane. But things can get
weird!

Theorem. There exists a space filling curve, i.e., a curve whose image has positive area
in the plane.

More specifically, we will define a continuous function γ : [0, 1] → R2 whose image fills
the square [0, 1]2.
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Define the function γ0 : [0, 1] → R2 by

γ0(t) = (x0(t), y0(t)) := (t, 0).

Then for n ≥ 0 inductively define

γn+1(t) = (xn+1(t), yn+1(t)) :=


(1
2
yn(4t),

1
2
xn(4t)), t ∈ [0, 1

4
];

(1
2
xn(4t− 1), 1

2
+ 1

2
yn(4t− 1)), t ∈ [1

4
, 1
2
];

(1
2
+ 1

2
xn(4t− 2), 1

2
+ 1

2
yn(4t− 2)), t ∈ [1

2
, 3
4
];

(1− 1
2
yn(4t− 3), 1

2
− 1

2
xn(4t− 3)), t ∈ [3

4
, 1].

The images of the first few cases are drawn below.

γ0 γ1 γ2 γ3 γ4 γ5

Lemma. γn is a well-defined continuous function from [0, 1] to [0, 1]2.

Proof. It is easy to see by induction that γn(0) = (0, 0) and γn(1) = (1, 0). Thus the
above definitions are consistent at the points t = 1

4
, 1
2
, 3
4
, and so give a well defined

function [0, 1] → R2.

Clearly γ0 is continuous, and assuming γn is continuous on [0, 1], it is easy to see from
the definitions that both coordinate functions xn+1(t) and yn+1(t) (and hence γn+1(t))
are continuous on each of the intervals [0, 1

4
), (1

4
, 1
2
), (1

2
, 3
4
) and (3

4
, 1] separately. But

at each of the points t0 ∈ {1
4
, 1
2
, 3
4
}, limt→t−0

xn+1(t) = xn+1(t0) = limt→t+0
xn+1(t) and

limt→t−0
yn+1(t) = yn+1(t0) = limt→t+0

yn+1(t), so xn+1(t), yn+1(t) are also continuous at

these points (see Example 3.14 from the notes). Thus γn+1 is continuous on [0, 1] and so
by induction all γn are continuous

The image of γ0 clearly lies in [0, 1]2, so inductively assume the image of γn lies in [0, 1]2.
Then γn+1(t) lies in [0, 1

2
]× [0, 1

2
], [0, 1

2
]× [1

2
, 1], [1

2
, 1]× [1

2
, 1] and [1

2
, 1]× [0, 1

2
] for t ∈ [0, 1

4
],

[1
4
, 1
2
], [1

2
, 3
4
] and [3

4
, 1] respectively. In all cases the image is in [0, 1]2, so by induction the

image of γn lies in [0, 1]2 for all n.

Lemma. For all n ≥ 1 and t ∈ [0, 1], |γn(t)− γn−1(t)| ≤ 22−n.

Proof. As γ0(t) and γ1(t) both lie in [0, 1]2, |γ1(t) − γ0(t)| ≤
√
2 < 2 for all t ∈ [0, 1], so

the result holds for n = 1. Now assume |γn(t) − γn−1(t)| ≤ 22−n for all t ∈ [0, 1]. Then
applying the above definition for γn+1 and γn in terms of γn and γn−1 respectively, we
have |γn+1(t) − γn(t)| = 1

2
|γn(t′) − γn−1(t

′)| ≤ 22−(n+1) where t′ = 4t − ⌊4t⌋. Thus by
induction |γn(t)− γn−1(t)| ≤ 22−n for all n ≥ 1 and all t ∈ [0, 1].
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Corollary. The sequence of functionc γn(t) converges uniformly to a continuous function
γ : [0, 1] → [0, 1]2 which satisfies

γ(t) = (x(t), y(t)) :=


(1
2
y(4t), 1

2
x(4t)), t ∈ [0, 1

4
];

(1
2
x(4t− 1), 1

2
+ 1

2
y(4t− 1)), t ∈ [1

4
, 1
2
];

(1
2
+ 1

2
x(4t− 2), 1

2
+ 1

2
y(4t− 2)), t ∈ [1

2
, 3
4
];

(1− 1
2
y(4t− 3), 1

2
− 1

2
x(4t− 3)), t ∈ [3

4
, 1].

Proof. From the previous lemma we see that for any n > m and any t ∈ [0, 1],

|γn(t)− γm(t)| ≤
n∑

k=m+1

|γk(t)− γk−1(t)| ≤
n∑

k=m+1

22−k < 22−m.

So (γn(t)), and thus both coordinate sequences (xn(t)) and (yn(t)), are uniformly Cauchy.
Hence, by the Cauchy Criterion for uniformly convergence sequences (Theorem 7.9 of
the notes), xn(t) and yn(t) converge uniformly to functions x(t) and y(t), which must
be continuous by Theorem 7.2 of the notes (uniform limit of continuous functions is
continuous). Hence γ(t) := (x(t), y(t)) is continuous. As xn(t), yn(t) ∈ [0, 1] for all n and
[0, 1] is closed, we have γ(t) = (x(t), y(t)) ∈ [0, 1]2. The given equation follows by taking
limits as n → ∞ in the definition of γn+1 and applying AOL.

We now claim that the image is in fact the whole of [0, 1]2, finishing the proof of the
Theorem.

Lemma. The image of γ is [0, 1]2.

Proof. Note that for any point x ∈ [0, 1]2 there is a t0, say t0 = 0, such that |γ(t0)−x| < 2,
say. Now assume that for every x ∈ [0, 1]2 we can find a tn with |γ(tn)− x| < 21−n. Fix
x ∈ [0, 1]2. Then x lies in one of the squares [0, 1

2
] × [0, 1

2
], [0, 1

2
] × [1

2
, 1], [1

2
, 1] × [1

2
, 1]

or [1
2
, 1] × [0, 1

2
]. Thus we can write x = (x, y) in one of the forms (y

′

2
, x

′

2
), (x

′

2
, 1
2
+ y′

2
),

(1
2
+ x′

2
, 1
2
+ y′

2
) or (1− y′

2
, 1
2
− x′

2
) for some x′ = (x′, y′) ∈ [0, 1]2. By induction we can find

a t′n ∈ [0, 1] with |γ(t′n)− x′| < 21−n. Thus we can find a tn+1 =
1
4
(t′n + i) for i = 0, 1, 2

or 3, respectively, for which |γ(tn+1)− x| = 1
2
|γ(t′n)− x′| < 21−(n+1) as required.

Now by the Bolzano–Weierstrass Theorem, there is a subsequence (tsn) that converges to
t ∈ [0, 1] say. But then by continuity of γ,

γ(t) = lim
n→∞

γ(tsn) = x.

As x was arbitrary, the image of γ is the whole of [0, 1]2.

Note that the t obtained above is not in general unique. In fact it can be proved that
no space filling curve can be injective (even if we adjust each γn slightly to be injective).
To see this however needs results from the Part A Metric Spaces and Complex Analysis
course.
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