Problem Sheet 1

Problem 1. Define $\phi: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
\phi(x)= \begin{cases}\mathrm{e}^{-\frac{1}{x}} & \text { if } x>0 \\ 0 & \text { if } x \leq 0\end{cases}
$$

Show that ϕ is C^{∞}, and deduce that

$$
\psi(x)=\phi(2(1-x)) \phi(2(1+x))
$$

belongs to $\mathscr{D}(\mathbb{R})$. Does the restriction to $(-1,1),\left.\psi\right|_{(-1,1)}$, belong to $\mathscr{D}(-1,1)$?
Calculate the Taylor series for ϕ about 0 (note: not for ψ). Does the series converge, and if so, then what is its sum?

Problem 2. In this question all functions are real-valued.
(a) Let K be a compact proper subset of the open interval (a, b). Show carefully that there exists $\rho \in \mathscr{D}(a, b)$ such that $0 \leq \rho \leq 1$ and $\rho=1$ on K.
(b) Give an example of $\varphi, \psi \in \mathscr{D}(\mathbb{R})$ such that $\max (\varphi, \psi), \min (\varphi, \psi)$ are not smooth compactly supported test functions. Here we define $\max (\varphi, \psi)(x)=\max \{\varphi(x), \psi(x)\}$ for each x and similarly for $\min (\varphi, \psi)$.

Next, let $u \in \mathscr{D}(a, b)$. Show that there exist $u_{1}, u_{2} \in \mathscr{D}(a, b)$ with $u_{1} \geq 0, u_{2} \geq 0$ and $u=u_{1}-u_{2}$.
(c) Generalize the last statement to n dimensions as follows. Let Ω be a nonempty open subset of \mathbb{R}^{n} and $u \in \mathscr{D}(\Omega)$. Show that there exist $u_{1}, u_{2} \in \mathscr{D}(\Omega)$ with $u_{1} \geq 0$ and $u_{2} \geq 0$ such that $u=u_{1}-u_{2}$.

Problem 3. Let Ω be a nonempty and open subset of $\mathbb{R}^{n}, 1 \leq p<\infty$ and $f \in \mathrm{~L}^{p}(\Omega)$. Show that for each $\varepsilon>0$ there exists $g \in \mathscr{D}(\Omega)$ such that $\|f-g\|_{p}<\varepsilon$.
(Hint: One approach is to do it in two steps. First choose an appropriate open subset $O \subset \Omega$ so that $h=f \mathbf{1}_{O}$ is a good L^{p} approximation of f. Then use a result from lectures.)

Problem 4. Let $p, q \in[1, \infty]$ with $\frac{1}{p}+\frac{1}{q}=1$. Show that if $f \in \mathrm{~L}^{p}(\mathbb{R}), g \in \mathrm{~L}^{q}(\mathbb{R})$, then $f * g \in \mathrm{C}(\mathbb{R})$. Next, show that if $p \in(1, \infty)$, then $f * g \in \mathrm{C}_{0}(\mathbb{R})$, that is, $f * g$ is continuous and $(f * g)(x) \rightarrow 0$ as $|x| \rightarrow \infty$. What happens when $p=1$ and $q=\infty$?

Problem 5. In each of the following 3 cases decide whether or not u_{j} is a distribution:

$$
\left\langle u_{1}, \varphi\right\rangle=\sum_{j=1}^{\infty} 2^{-j} \varphi^{(j)}(0), \quad\left\langle u_{2}, \varphi\right\rangle=\sum_{j=1}^{\infty} 2^{j} \varphi^{(j)}(j), \quad\left\langle u_{3}, \varphi\right\rangle=\varphi(0)^{2},
$$

where $\varphi \in \mathscr{D}(\mathbb{R})$ is so that the expression makes sense.
Problem 6. (Optional and harder)
(i) Construct $g \in \mathscr{D}(\mathbb{R})$ supported in $[-1,1]$ such that $g(0)=1$ and $g^{(j)}(0)=0$ for all $j \in \mathbb{N}$. (Hint: First find $\varphi \in \mathscr{D}(\mathbb{R})$ supported in $[0,1]$ with $\int_{\mathbb{R}} \varphi=1$. Then consider the solution to $y^{\prime}(x)=\varphi(-x)-\varphi(x)$ with support in $[-1,1]$.)
(ii) Let $\left(a_{n}\right)_{n=0}^{\infty}$ be an arbitrary sequence of real numbers. Define for $n \in \mathbb{N}_{0}$ and positive numbers $\varepsilon_{n}>0$ the functions

$$
g_{n}(x)=g\left(\frac{x}{\varepsilon_{n}}\right) \frac{a_{n} x^{n}}{n!}, \quad x \in \mathbb{R} .
$$

Check that g_{n} is C^{∞} with support contained in $\left[-\varepsilon_{n}, \varepsilon_{n}\right]$ and $g_{n}^{(k)}(0)=a_{n} \delta_{n, k}$, where $\delta_{n, k}$ is the Kronecker delta.

Show that for each $n \in \mathbb{N}_{0}$ it is possible to choose $\varepsilon_{n}>0$ so small that

$$
\begin{equation*}
\left|g_{n}^{(k)}(x)\right| \leq 2^{-n} \tag{1}
\end{equation*}
$$

holds for all $x \in \mathbb{R}$ and each $0 \leq k<n$.
(iii) We now fix each ε_{n} so that (1) holds. With these choices we define

$$
f(x)=\sum_{n=0}^{\infty} g_{n}(x), \quad x \in \mathbb{R}
$$

Check that $f \in \mathscr{D}(\mathbb{R})$ with support contained in $[-1,1]$ and that $f^{(n)}(0)=a_{n}$ for all $n \in \mathbb{N}_{0}$. (This is a particular case of a result due to Emile Borel.)

Problem 7. (Optional and harder)
This problem gives an alternative construction of a smooth compactly supported test function. We start with a rough convolution kernel $h=\mathbf{1}_{(0,1)}$ and put as usual for each $r>0$,

$$
h_{r}(x)=\frac{1}{r} h\left(\frac{x}{r}\right)=\frac{1}{r} \mathbf{1}_{(0, r)}(x), \quad x \in \mathbb{R} .
$$

(i) Let $0<r \leq s$. Show that $h_{r} * h_{s}$ is continuous, $\operatorname{spt}\left(h_{r} * h_{s}\right)=[0, r+s]$ and $0 \leq h_{r} * h_{s} \leq \frac{1}{s}$.
(ii) Let $k \in \mathbb{N}_{0}$ and assume $u \in \mathrm{C}_{c}^{k}(\mathbb{R})$ with $\operatorname{spt}(u) \subseteq[a, b]$. Prove that $h_{r} * u \in \mathrm{C}_{c}^{k+1}(\mathbb{R})$ with $\operatorname{spt}\left(h_{r} * u\right) \subseteq[a, b+r]$ and

$$
\left(h_{r} * u\right)^{(k+1)}(x)=\frac{u^{(k)}(x)-u^{(k)}(x-r)}{r} .
$$

(iii) Let $\left(r_{j}\right)_{j=0}^{\infty}$ be a decreasing sequence of positive numbers and put

$$
R_{n}=\sum_{j=0}^{n} r_{j}
$$

Define $u_{n}=h_{r_{0}} * h_{r_{1}} * \cdots * h_{r_{n}}$ for each $n \in \mathbb{N}$.
Show that $u_{n} \in \mathrm{C}_{c}^{n-1}(\mathbb{R})$ with $\operatorname{spt}\left(u_{n}\right) \subseteq\left[0, R_{n}\right]$ and

$$
\left|u_{n}^{(k)}(x)\right| \leq \frac{2^{k}}{r_{0} r_{1} \cdots r_{k}}
$$

for all $x \in \mathbb{R}$ and $0 \leq k<n$. (Hint: Proceed by induction on n and write $u_{n}=h_{r_{0}} * v_{n}$ for some suitable v_{n}.)
(iv) Assume that

$$
R=\sum_{j=0}^{\infty} r_{j}<\infty
$$

Show that $\left(u_{n}\right)$ is a uniform Cauchy sequence. By suitable iteration of this, deduce that the limit function

$$
u(x)=\lim _{n \rightarrow \infty} u_{n}(x), \quad x \in \mathbb{R}
$$

belongs to $\mathscr{D}(\mathbb{R})$ with $\operatorname{spt}(u) \subseteq[0, R]$ and

$$
\left|u^{(k)}(x)\right| \leq \frac{2^{k}}{r_{0} r_{1} \cdots r_{k}}
$$

for all $x \in \mathbb{R}$ and $k \in \mathbb{N}_{0}$. In particular, $u \in \mathscr{D}(\mathbb{R}), 0 \leq u \leq \frac{1}{r_{0}}$ and $\int_{\mathbb{R}} u=1$.

