B01 History of Mathematics Lecture III

Analytic geometry and the beginnings of calculus, part 1

MT22 Week 2

Summary

- Brief overview of the 17th century
- A cautionary tale
- Development of notation
- Use of algebra in geometry
- The beginnings of calculus

The 17th century

The main mathematical innovations of the 17th century:

- symbolic notation
- analytic (algebraic) geometry
- calculus
- infinite series [to be treated in later lectures]
- mathematics of the physical world [to be treated in later lectures]

Symbolic notation

Symbolic notation makes mathematics easier

- to read
- to write
- to communicate (though perhaps not orally)
- to think about - and thus stimulates mathematical advances?
- BUT it took a long time to develop
- why did it develop when it did?

Early European notation (abbreviation)

barjuà 2xbiereft) viro> 5 mixus. Fluns folcoufưr Golsab foblaben allweeg fuit ainlegel 24 tb . Snd 0 asiff 13 mal 24. vnomadet 312 th Darjůadoicroas Dasift >5 th vis werDen 387. Dycfinga trabier pon 4539. Dno Bleyben 4152 tb. 7 Iunfptich 100 to 0 asiff ein 3 entner pio 4 fol $\frac{1}{8}$ wie thunien $41<2$ to von fume l $>$ iff 5 自4bellers Dinififechegmadit Wfeffer

\%

The Arte

as their \{wokes doe ertende) to difinate ft onely into tivoo partes. שed lieteof the firte is, when one nomber is equalle vato one otber. Find the feconos is, wben one noms ber is compared as equalle vnto, 2,otber nombers.
glwates willing pou to remeder, that pou rebuce pour nombers, to their leafte denominations, ano malleffe fomes, befoze you procede ant fartber.
and again, if your equation be rothe, that the greae tefte denomination Cosike, be toined to any parte of a compounde nomber, pou fhall tourne it \oint_{0}, that the nomber of the greatefte figne alone, mate flande as equalle to the refte.
and thts is all that neadeth to be taugbte, concers neng this woozite.

790 wubrit, fo2 zafic alteration of equations. 3 will p2o, pounde a fecwe erabples, bicaule the extradton of their rootes, maie the moze aptip bee woughte. ano to at uoioe the tedioure repetition of there woozoes: is e, qualle ts : 3 will rette as 3 voe often in foogze ore, a paire of paralleles, 02 © ©emofoe liness of one lengthe, thus:= , bicaufe noe. 2 , thenges, can be moare equalle. ano noim marke there nombers.
1.
2.
3.

Johannes Widman, Behende und hüpsche Rechenung auff allen Kauffmanschafft (1489)

The communication of mathematics

Initially entirely verbal－but usually using a set form of words
Scribal abbreviations often used
－e．g．，later editors of Diophantus（3rd－century Egypt）used ζ as an abbreviation for an unknown quantity
－e．g．，Bhāskara II（12th－century India）used the initial letters of yāvattāvat（unknown）and rūpa（unit）as shorthand： ＇yā 1 rū 1＇denoted＇$x+1$＇
But these were not symbols that could be manipulated algebraically
Arrangement of signs on the page could carry information
－e．g．，tiān yuán shù 天元術（13th－century China）：

$$
\begin{aligned}
& \quad \text { II } \\
\equiv & -\frac{\pi}{\text { II }}
\end{aligned}
$$

Algebraic symbolism of the form that we use came later

A cautionary tale: Levi Ben Gerson and sums of integers

Levi Ben Gerson (Gersonides), Ma'aseh Hoshev (The Work of the Calculator), 1321 [picture is of a version printed in Venice in 1716]

A cautionary tale：Levi Ben Gerson and sums of integers

Nצד א
 －勺ッバ

路 －

积

的 בחו的

[^0]

 －

 בת בעו
放

 （＂）
אנ

药
לy

 TV אש x ר和 2 ב $\because \mathrm{xvy} \rightarrow$ i
${ }^{4}$ In IV．II am Rand mabies， 54 ）in 31 I fehit ron b_{2} ，bis 2,50 in
 4，II fobilt bis tex，on）in M．I ruer resen atm，

A cautionary tale: Levi Ben Gerson and sums of integers

Book I, Proposition 26:
If we add all consecutive numbers from one to any given number and the given number is even, then the addition equals the product of half the number of numbers that are added up times the number that follows the given even number.
Book I, Proposition 27:
If we add all consecutive numbers from one to any given number and the given number is odd, then the addition equals the product of the number at half way times the last number that is added.
(Translations from Hebrew by Leo Corry.)

A cautionary tale: Levi Ben Gerson and sums of integers

Converting these into modern notation, we get:

Book I, Proposition 26:
If n is an even number, then $1+2+3+\cdots+n=\frac{n}{2}(n+1)$.
Book I, Proposition 27:
If n is an odd number, then $1+2+3+\cdots+n=\frac{n+1}{2} n$.

The formulae are clearly the same, so why are these treated as separate propositions? The answer lies in the proofs, which, like the results themselves, are entirely verbal.

A cautionary tale: Levi Ben Gerson and sums of integers

A fundamental problem here lies in the difficulty of expressing the notion of 'any given number' (our ' n ').

A commonly adopted solution was to outline the proof for a specific example, on the understanding that the reader should then be able to adapt the method to any other instance.

Ben Gerson's proof of Proposition 26 takes this approach, and is based on the idea of forming pairs of numbers with equal sums.*
*You might have heard a story about the young Gauss doing the same thing.

A cautionary tale: Levi Ben Gerson and sums of integers

Proof of Proposition 26:

Take the example of 6 . If we add 1 and 6 , we get 7 ('the number that follows the given even number'). Notice that 2 is obtained from 1 by adding 1 , and that 5 is obtained from 6 by subtracting 1 , so 2 added to 5 is the same as 1 added to 6 , namely 7 . The only remaining pair is 3 and 4 , which also add to give 7 . The number of pairs is half the given even number, hence the total sum is half the number of numbers that are added up times the number that follows the given even number.

This proof is clearly not valid when the given number is odd, since Ben Gerson would have been required to halve it - but he was working only with (positive) integers

A cautionary tale: Levi Ben Gerson and sums of integers

Proposition 27 therefore needs a separate proof, which similarly does not apply when the given number is even (see Leo Corry, A brief history of numbers, OUP, 2015, p. 119)

As Corry notes:
For Gersonides, the two cases were really different, and there was no way he could realize that the two situations
... were one and the same as they are for us.

Moral: take care when converting historical mathematics into modern terms!

Notation: compare Cardano (Ars magna, 1545)...

Having raised a third part of the number of things to a cube, to which you add the square of half the number in the equation and take the root of the total, consider the square [root], which you will take twice; and to one of them you add half of the same, and you will have the binome with its apotome, whence taking the cube root of the apotome from the cube root of its binome, the difference that comes from this, is the value of the thing.
(Mathematics emerging, p. 327)

François Viète (Francisci Vieta) Opera mathematica 1646, p. 130

130
DE EMENDATIONE
II.

Si A quad. - Bin A 2 , æquetur Z plano. $A-B$ efto E. Igitur E quad, zquabitur Zplano + B quad.

- Confectarium.

Itaque $\sqrt{ } \frac{}{z_{\text {plami }}+\mathrm{Bquax}}+\mathrm{B}$ fit A , de qua primum quarebatur.

III.

Ci D_{2} in $A-A$ quad., rquetur Z plano. $D-E, v e l D+E$ efto A. Sqquad., xquabiturDquad. $-\mathbf{Z}$ plano.

> Confectarium

Itaque, D minus, plufive $\sqrt{\overline{\mathrm{Dquad}-z p l a n} \text { fit } A}$, dequa primum quarebatur.
 De reductione cuborum /impliciter adfectorum fub quadrato, ad cubos fimpliciter adfectos fub latere.

Formule tres.

I.

Si A cubus $+B_{3}$ in A quad., requetur Z folido. $A+B$ efto E. Ecubus -B quad. 3 in E, x quabitur Z folido $-B$ cubo 2.

Ad Arithmetica nori incongrue an $\mu \tilde{i ́ o v}$ aliquod fuperimponitur notisalteratæ radicis, ad differentiam notarum ejus, de qua primum quarebatur.

II.

 - B quad. 3 in E , xquabitur Z folido +B cubo 2 .

III.
$S_{1} B_{3}$ in A quad. - A cubo, xquetur Z folido. $A-B$ eftoE. B quad. 3 $\mathrm{S}_{\text {in }} \mathrm{E}$. - E cubo, x quabitur Z folido - B cubo 2. Vel B-A efto E .
B quad. 3 in $\mathrm{E} .-\mathrm{E}$ cubo, xquabitur B cubo 2-Zfolido.

De reductione cuborum adfectorum tam fub quadrato quam latere, ad cubos adfectos impliciter fub latere.

Formule feptem.

I.

$S_{1} A$ cubus $+B_{3}$ in A quad. $-D$ planoin $A, x q u e t u r ~ Z$ folido. $A+B$ efto E. Ecubus +D plano $-\boldsymbol{B}$ quad; in Erequabitur Z folido +D plano in B-B cubo 2.

De Emendatione
II.

Si A quad. - Bin A 2, xquetur Z plano. A-B efto E. Igitur E quad, xquabitur Z plano +B quad.

Confectarium.
Itaque $\sqrt{2 \text { ppai } \rightarrow \text { Bquad }}+B$ fit A, de qua primum quarebatur.
 III.
$\mathrm{Si}^{\mathrm{D}} \mathrm{D}_{2}$ in $\mathrm{A}-\mathrm{A}$ quad., x quetur Z plano. $\mathrm{D}-\mathrm{E}, \operatorname{vel} \mathrm{D}+\mathrm{E}$ efto A . Equad., xquabiturDquad. - Z plano.

Confectarium.
Itaque, D minus, plufve $\sqrt{\text { Dquad-zplanofit } A, ~ d e q u a ~ p r i m u m ~ q u a r e b a t u r . ~}$

British Library
Add MS 6784 f. 323
available at
Thomas Harriot Online

... and with Harriot (c. 1600)

$$
\text { Applica: } b a+c a+d a
$$

$$
\left.\frac{c a+c a+b a}{c+c+v} 口 \right\rvert\,
$$

cota. $l+c+J$ mamifosh par pricos = nitá gunsia=

$$
\frac{l b+2 b+a a}{l+a} \text { II } l+a \quad \frac{l v-a a}{l-a} \text { In } q+4
$$ 4onte.

$$
\frac{b i b+c c c}{t+c}=1 \text { t-a }-i c+c c . \quad \frac{b l-c c c}{t-c}=b b+t c+c c .
$$

Elsewhere in the world

Seki Takakazu，Hatsubi Sanpō 発微算法（1674），concerning the solution of equations in several variables：

Equations written using the technique of bōshohō 傍書法 （＇side－writing＇；a．k．a．tenzan jutsu 点竄術）

Notation: Viète (Tours, c. 1590)

François Viète (1540-1603, France):
A, E, ... (i.e., vowels) for unknowns
B, C, D, \ldots (i.e., consonants) for known or given quantities
symbols,+-
but otherwise verbal descriptions and connections: quadratum (squared), cubus (cubed), aequatur (be equal), ...

Notation: Harriot (London, c. 1600)

Thomas Harriot (1560-1621, England):
a, e, ... for unknowns
$\mathrm{b}, \mathrm{c}, \mathrm{d}, \ldots$ for known or given quantities
$+,-$
$a b$, aa, aaa
and many symbols: $=,>, \ldots$
(For another example of Harriot's use of notation, see Mathematics emerging, §2.2.1.)

Harriot papers online: http://echo.mpiwgberlin.mpg.de/content/scientific_revolution/harriot

Notation: Descartes (Netherlands, 1637)

René Descartes (1596-1650, France and Holland):
x, y, \ldots for unknowns
a, b, c, \ldots for known or given quantities
$+,-$
$x x, x^{3}, x^{4}, \ldots$
Descartes' notation was widely adopted, although his ' ∞ ' for equality eventually gave way to ' $=$ ', and his ' $\sqrt{ }{ }^{\prime}$ ' to $\sqrt[3]{ }$ '.

Descartes' notation

302
La Geometrie.
tirer decete fcience. Auffy que ie ny remarque fien de fi difficile, que ceux quiferont vn peu verfés en la Geometrie commune, \&x en l'Algebre, \& qui prendront garde a toutt ce quieft ence traité, ne puiffent troutuer.

Ceft pourquoy ie me contenteray icy de vous auertir, que pourví quen demeflant ces Equations on ne manquepoint a feferuir de toutes les diuifions, qui feront poffibles, on aura infalliblement les plus frmples termes, aufquels la queftion puiffe eftre reduite.

Et que fielle peut eftre refolue par la Geometrie ordinaire, c'eft a dire, en ne fe feruant que de lignes droites \& circulaires tracées fur vnefuperficie plate, lorfque la derniere Equationaura efté entierement démeflée, iln'y reftera tout auplus qu'vn quarré inconnu, efgal a ce qui feproduift de l'Addition, ou fouftraction de fa racine multipliée par quelque quantitéconnue, \& de quelque autre quantité aufly connue.
Etlors cete racine, ouligne inconnue fe troune ayfement. Car fi iay par exemple

$$
z 00 a z+b 6
$$

ie fais le triangle rectangle N LM, dont le cottéLM eft efgal à b racine quarrée de la quantité connue $b b$, \&\& l'an$\operatorname{trc} \mathrm{L}$ Neft $\frac{1}{2} a$, la moitié de l'autre quantité connue, qui eftoit multiplicé par zque ie fuppofe eftre la ligne inconnue. puis prolongeant M N la baze de ce triangle,

Ifvre Premier.

303
angle, iofquesa O , en fortequ' O (oitefgale a NL , la toute OM eft z laligue cherchée. Et elle s'exprime en ceteforte
Z $00 \frac{1}{2} a+\sqrt{\frac{1}{4} a a+b b}$.
Quefi iay y y $x^{4}-a y+b b$, \&zquy foit la quantité qu'il faut trouner, ie fais le mefme triangle rectangle NL M, \& de fa baze MN iofte N P efgale a NL, \&le refte P M eft y la racine cherchée. De façon que iay y $50-\frac{1}{2} a+\sqrt{\frac{1}{4} a a+b b}$. Ettout de mefme fir $i^{2} a-$ uois $x^{4} 00-a x^{2}+b$. P M feroit x^{2}. \& iaurois x. $0 \quad \sqrt{-\frac{1}{2} a+\sqrt{\frac{1}{4} a} a+b b}: \&$ aiufi des autres.

Enfin fi i'ay

$$
z=0 a z-b b:
$$

ie fais NL efgale a $\frac{1}{2} a, \& L \mathrm{M}$ efgale a b cóme deuãt, puis, au lieu deioindre les poins $M N$, ie tire MQR parallelea LN, \& du cen. tre N parL ayant defcrit vn cercle qui la couppe aux poins $Q \&$ R, la ligne cherchée zeft $M Q_{i}$ oubiê MR, car en ce cas elle s'exprime en deux façons, a fçauoir $₹ 5 \frac{1}{2} a+\sqrt{\frac{1}{4} a a-b b}$ $\& \approx 20 \frac{1}{2} a-\sqrt{\frac{1}{4} a a-b b}$.

Et file cercle, qui ayant fon centre at point N, paffe par le point L, be couppe ny ne touche la ligne droite $M Q R$, il n'y a aucune racine en l'Equation, de façon qu'on pent affurer que la conftraction du problefme propofé eft impoflible.

Symbolism established in algebra

Frontispiece to: Johannes Faulhaber, Ingenieurs-Schul, Anderer Theil, Ulm, 1633 (on fortification)

See: Volker Remmert, 'Antiquity, nobility, and utility: picturing the Early Modern mathematical sciences', in The Oxford handbook of the history of mathematics (Eleanor Robson \& Jacqueline Stedall, eds.), OUP, 2009, pp. 537-563

'Analysis' vs 'synthesis'

Viète (and others) sought to 'restore' ancient Greek mathematical ideas - in particular, those found in the recently rediscovered Collection (or Synagoge: Euvarcroń) of Pappus of Alexandria (4th century AD) [published in Latin by Federico Commandino in 1588]

Book VII of Pappus's Collection outlines the methods of analysis and synthesis:

Synthesis: starting from what is known, we make a sequence of deductions until we arrive at what is sought (constructive method, as, e.g., in Euclid's Elements)

Analysis: starting from what is sought, as if it has already been established, we work backwards until we arrive at what is known (method of discovery or problem-solving, preliminary to synthesis)
"Analysis was thus the working tool of the geometer, but it was with synthesis that one could demonstrate things in an indisputable way." (Niccolò Guicciardini, 'Analysis and synthesis in Newton's mathematical work', The Cambridge Companion to Newton (ed. I. Bernard Cohen and George E. Smith), CUP, 2002, pp. 308-328 at p. 308)

Analytic (algebraic) geometry

La géométrie (1637)
Solution of geometric problems by algebraic methods

Appendix to Discours de la méthode

"by commencing with objects the simplest and easiest to know, I might ascend by little and little"

Descartes' analytic geometry

We may label lines (line segments) with letters a, b, c, \ldots
Then $a+b, a-b, a b, a / b, \sqrt{a}$ may be constructed by ruler and compass.

Descartes' method

- represent all lines by letters
- use the conditions of the problem to form equations
- reduce the equations to a single equation
- solve
- construct the solution geometrically

For examples, see Katz (3rd ed.), §14.2

Algebraic methods in geometry: some objections

Pierre de Fermat (1656, France):
I do not know why he has preferred this method with algebraic notation to the older way which is both more convincing and more elegant ...

Thomas Hobbes (1656, England):
... a scab of symbols ...

The beginnings of calculus: tangent methods

Calculus:

- finding tangents;
- finding areas.

Descartes' method for finding tangents (1637)

- based on finding a circle that touches the curve at the given point - a tangent to the circle is then a tangent to the curve
- used his algebraic approach geometry to find double roots to equation of intersection
- was in principle a general method - but laborious

Fermat's method for finding tangents

Pierre de Fermat (1601-1665):

- steeped in classical mathematics
- like Descartes, investigated problems of Pappus
- devised a tangent method (1629) quite different from that of Descartes

Fermat's tangent method (1629)

Sit data, verbi gratià, Parabole B D N, cujus vertex D, diameter D C, \& punctumic ca datum B, ad quod ducenda eft recta B E, tangens parabolen, \& in puncto E, cum diametro concurrens, ergo fumendo guodlibet punctum OI, in reat B E, \& abo ducendo ordinatam O1, à punto autem B, ordinatam B C major crit propont CD , ad D I, quàm quadrati B C, ad quadratum O I, quia punctum O, cf cxir parabolen, fed propter fimilitudinem triangulorum, ut BC, quad, ad O I, quad. if CE, quad. ad IE, quad. Major igitur crit proportio CD ad DI, quàm quadrat C E ad quad. 1 E , Cum autem punctum B dentr, datur applicata B C, crgo punctur C datur etiam C D , Sit igitur C D, xqualis D , datre. Ponatur C E , effe A , ponator CI effe E, crgo D, aut D $-E$ habebit majorem rationem, quàm A^{3} ad $A^{2}+E^{2}=A$ in E . Et ducendo inter fe medias \& extremas D in $\mathrm{A}^{3}-\mathrm{D}$ in $\mathrm{E}^{2}-\mathrm{D}$ in A in E majus crit quàm D, in $\mathrm{A}^{3}-\mathrm{A}^{1}$ in E , Adæquentur igitur juxta fuperiorens methe dum, dempris itaque communibus D , in $\mathrm{E}^{2}-\mathrm{D}$, in A in E adaquabitur $-\mathrm{A}^{2}$ in E , aut quodidem cft, D in $\mathrm{E}^{2}, 4 \mathrm{~A}^{2}$ in E , adaquabitur D in A in \mathbf{E}, Ommir dividantur per E , ergo D in $\mathrm{E}+\mathrm{A}^{3}$ adxquabitur D in A , clidatur D in E , crgo A^{2} xquabitur D in A^{2}, ideoque A xquabitur D , ergo $\mathrm{C} E$, probavimus dr plam iplius CD, quos quidem ita fe habet.
Nec unquam' fallit methodus, imò ad plerafque quartiones pulcherrimas porat er. tendi, ejus enim beneficio centrà gravitatis in figuris lineis curvis \& rectis comprohenfis, \&in folidis invenimus, \& multa alia , de quibus fortaffe aliàs, fi otium fappera. Dequadraturis fpatiorum fablineis curvis \& rectis contentorum, imò \& de proportio né folidorum ab cis ortorum ad conos cjufdem bafis \& altitudinis, fusè cum Donu: nodee Roberval egimus.

> Worked out c. 1629, but only published posthumously in Varia opera mathematica, 1679.

See Mathematics emerging, §3.1.1.

Fermat's tangent method (1629)

Choose an arbitrary point B on the parabola.

Suppose that the tangent at B exists, and that it crosses the axis of the parabola at E.

Choose any point O on the line $B E$.
Draw horizontals $O I$ and $B C$.
Since O is outside the parabola, we have

$$
\frac{C D}{D I}>\frac{(B C)^{2}}{(O I)^{2}}
$$

Fermat's tangent method (1629)

Since O is outside the parabola, we have

$$
\frac{C D}{D I}>\frac{(B C)^{2}}{(O I)^{2}} .
$$

By similarity of triangles,

$$
\frac{(B C)^{2}}{(O I)^{2}}=\frac{(C E)^{2}}{(I E)^{2}} .
$$

Therefore

$$
\frac{C D}{D I}>\frac{(C E)^{2}}{(I E)^{2}}
$$

Fermat's tangent method (1629)

Therefore

$$
\frac{C D}{D I}>\frac{(C E)^{2}}{(I E)^{2}}
$$

Put $C D=d, C E=a, C I=e$, so that

$$
\frac{d}{d-e}>\frac{a^{2}}{(a-e)^{2}}
$$

Now (Fermat says), we obtain equality as e decreases (as $O I$ becomes $B C$):

$$
\frac{d}{d-e}=\frac{a^{2}}{(a-e)^{2}}
$$

Fermat's tangent method (1629)

We solve the equality

$$
\frac{d}{d-e}=\frac{a^{2}}{(a-e)^{2}}
$$

Rearranging gives $\quad d e^{2}+a^{2} e=2 a d e$.
Cancel e: $\quad d e+a^{2}=2 a d$.
Now e will be small, so we can neglect it, leaving us with $\quad a^{2}=2 a d$.

Hence $\quad a=2 d$.
Or $C E=2 \times C D$.

[^0]: Rand zes，es，in M，I fehlt von was bis 7wn．

