Exercise sheet 1. Week 4. Chapters 1-4.

Q1. (1) Describe the Zariski topology of k.
(2) Show that the Zariski topology of k^{2} is not the product topology of $k \times k=k^{2}$.

Q2. Let $V \subseteq k^{n}$ be an algebraic set. Show that V is the disjoint union of two non empty algebraic sets in k^{n} iff there are two non-zero finitely generated reduced k-algebras T_{1} and T_{2} and an isomorphism of k-algebras $T_{1} \oplus T_{2} \simeq \mathcal{C}(V)$.

Q3. Let $V \subseteq k^{3}$ be the set

$$
V:=\left\{\left(t, t^{2}, t^{3}\right) \mid t \in k\right\} .
$$

Show that V is an algebraic set and that it is isomorphic to k as an algebraic set. Provide generators for $\mathcal{I}(V)$.

Q4. (1) Let $V \subseteq k^{2}$ be the set of solutions of the equation $y=x^{2}$. Show that V is isomorphic to k as an algebraic set.
(2) Let $V \subseteq k^{2}$ be the set of solutions of the equation $x y=1$. Show that V is not isomorphic to k as an algebraic set.
(3) [difficult] (optional) Let $P(x, y) \in k[x, y]$ be an irreducible quadratic polynomial and let $V \subseteq k^{2}$ be the set of zeroes of $P(x, y)$. Show that V is isomorphic to one of the algebraic sets defined in (1) and (2).

Q5. Let $V \subseteq k^{n}$ and $W \subseteq k^{t}$ be two algebraic sets. Let $\psi: V \rightarrow W$ be a regular map.
(1) Show that $\psi(V)$ is dense in W iff the map of rings $\psi^{*}: \mathcal{C}(W) \rightarrow \mathcal{C}(V)$ is injective.
(2) Show that ψ^{*} is surjective iff $\psi(V)$ is closed and the induced map $V \rightarrow \psi(V)$ is an isomorphism of algebraic sets.

Q6. Let $V \subseteq k^{3}$ be the algebraic set described by the ideal $\left(x^{2}-y z, x z-x\right)$. Show that V has three irreducible components. Find generators for the radical (actually prime) ideals associated with these components.

Q7. Let $V \subseteq k^{n}$ and $W \subseteq k^{t}$ be algebraic subsets. Let $V_{0} \subseteq V$ and $W_{0} \subseteq W$ be open subsets. View V_{0} and W_{0} as open subvarieties of V and W respectively. For $i \in\{1, \ldots, t\}$ let $\pi_{i}: k^{t} \rightarrow k$ be the projection on the i-coordinate. Let $\psi: V_{0} \rightarrow W_{0}$ be a map. Show that ψ is a morphism of varieties iff $\pi_{i} \circ \psi$ is a regular function on V_{0} for all $i \in\{1, \ldots, t\}$.

Q8. (optional) Show that the open subvariety $k^{2} \backslash\{0\}$ of k^{2} is not affine.

