BO1 History of Mathematics
 Lecture IV

The beginnings of calculus, part 2: quadrature

MT 2022 Week 2

Summary

- Enri: a non-Western prelude
- Quadrature (finding areas)
- Indivisibles
- Infinitesimals
- The contributions of Newton \& Leibniz

Seki and enri

The development of calculus is a largely Western story, but similar ideas did appear elsewhere

For example, in the late 17th century, Seki Takakazu and his school developed enri 円理 ('circle principles'), which concerned the calculation of arc lengths, areas, and volumes

One result of enri was the determination of the volume of a sphere via ‘slicing'

But enri was much narrower in scope than calculus

Translated into Latin as Dimensio circoli by Jacobus Cremonensis, c. 1450-1460

Illustrated by Piero della Francesca

Available online with other texts by Archimedes

Archimedes: Kúк入ou $\mu \varepsilon ́ t \rho \eta \sigma \iota \varsigma ~(M e a s u r e m e n t ~ o f ~ a ~ c i r c l e) ~(~) ~$

Edition by John Wallis, Oxford, 1676

A circle is equal to a right-angled triangle with height equal to the circumference of the circle and base equal to the radius.

Proof by exhaustion and double contradiction

Later: the ratio of the circumference to the diameter is greater than $3 \frac{10}{71}$ and less than $3 \frac{1}{7}$.
(Archimedis opera, edited by
Commandino, 1558) - see
Mathematics emerging, §1.2.3

Fermat's quadrature of a hyperbola (c. 1636)

Itmi quadrata, cubos, quadratoquadrata, \&cc. quarum exp Aio itaque omnes in infinifot ctiam latera fimplicia, quorum exponens eft unitas, Aio itaque onmes in , fício proportionis geometrica uniformi $\mathbb{\&}$ perpetua mechodo quadrari poffc.
Expocitur, fi placet, hyperbola, cuius ea fit proprictas, ut fit femper ut quadiatum reaz HA , ad quadratum recta AG , ita reta GE , ad rectam $\mathrm{HI}, \&$ ut quadratum

OA , ad quadratum AH , ita recha H I, ad rectam ON, \&cc. Aio fpatium infinitum, cujus bafis G E, \& curva E S. ex uno latere, ex alio vero afymptotos infinita G O R, zquari fopatio rechilinco dato. Fingantur termini progreflionis geometricr in infinitum extendendi, quorum primus fit $A \mathrm{G}$, fecundus $\mathrm{A} H$, tertius $A \mathrm{O}$, \&cc. in inत̄nitum, \& ad fe fe per approximationem tantum accedant quantum Gatis fir nt juxta Methodum
Archimedramp, paralilelogrammum rectilineum fub GE , in GH , quadrilineo mixto Archimedram, parailelogrammum rectilineum fub GE, in GH , quadrilinco mixto
GHE , adxquecur, ut loguiur Diophantus, aut fere x qquetur.

GE, in G H.

Itent ut prioraex intervallis rectis proportionalium $\mathrm{GH}, \mathrm{HO}, \mathrm{OM}$, \& fimilia
 inftriptionss Archimedra demonftrandi ratio inflitui poffir, quod femel monuilke liuti-
Eiat, ne artificium quibufibet geometris jam fatis notum inculcare fapius \&e iterare cogamur. His politis, cumf fit ut $\mathrm{A} G$, ad AH , ita AH, AO, \&irs $\mathrm{A} O$ ad $\mathrm{A} M$, erit pariter nt $A \mathrm{G}$, ad $\mathrm{A} H$ it ita intervallum GH , ad HO O , \&c ita intervallum HO , ad O M , skc. Parailc cogrammum aurem fub E HO , ut parallelogrammum fub HI , in HO , ad parallelogramumim fub NO , in
OM , cumenim ratio parallelogralemi fib GE , in GH , ad parallogranmum fib HI , in HO , componatur ex ratione reçx GE , ad rectam HI , \&ex ratione recta GH , ad reflam H O : fit autem ur GH , ad H O , ita A G , ad A H, ut pramonuimus. Ergo ratio parallelogrammi fub $\mathrm{E} \mathrm{G}, \& \mathrm{GH}$, ad parailcegrammum fub HI , in HO , componiturex ratione GE , ad H1, \&e ex rationc $\mathrm{A} G$, ad A H , fed ut GE, ad H 1 , ita ex conitructione HA , quadratum, ad quadratum GA , five propter proportionales: it.a refta AO, ad rectam GA. Ergo ratio parallelogrammi fub E G, in G H, ad parallciogramunum fub H 1 , in HO O componitur er rationc $\mathrm{A} O$, ad $\mathrm{AG}, \& \mathrm{AG}$, ad AH , id ratio A O ad AH, componitur ex illis daubus. Ergo parallclogrammum fub GE in GH , ef ad parallelogrammum fub HI , in HO , ur O A , as HA ; five ut HA , ad A G. fub ON , in OM , us $\mathrm{A} O$, ad H A , fod tres reetar quar conflituapr parallelogrammum fab $\mathrm{ON}, \mathrm{in} \mathrm{OM}$, at $\mathrm{AO}, a d \mathrm{HA}$, fed tres reetx qux confituant rationes paralle-
logrammorum, reftx nempe $\mathrm{AO}, \mathrm{HA} . \mathrm{GA}$, funt proportionales ex contructione.

Worked out c. 1636, but only published posthumously in Varia opera mathematica, 1679.

In modern terms, this is the curve described by $y=\frac{1}{x^{2}}$.

See Mathematics emerging, §3.2.1.

The rectangular (or 'Apollonian') hyperbola

In modern notation, $y=\frac{1}{x}$

- Quadrature evaded Fermat
- Partial results obtained by Grégoire de Saint Vincent, c. 1625, published in Opus geometricum, 1647
- Empirical observation that if $A(x)$ is the area under the hyperbola from 1 to x, then $A(\alpha \beta)=A(\alpha)+A(\beta)$ (cf. logarithms)
- Problem solved in early 1650s by William Brouncker; published in 1668 in volume 3 of Philosophical Transactions of the Royal Society

Brouncker's quadrature of the hyperbola (1668)

To put this into modern terms, take A as the origin, and $A B, A E$ as the x - and y-axes, respectively. Then the diagram represents the area under $\frac{1}{1+x}$ from $x=0$ to $x=1$.
(See Mathematics emerging, §3.2.2.)

Brouncker's article of 1668

(645)

Numb.34:

PHILOSOPHICAL

 TRANSACTIONS.Monday, April 13.1668

The Contents.

The Squaring of the Hyperbola by an infinite feries of Rational Numbers, together with its Demonffration, by the Right Honowrable the Lord Vijcount Brouncker. An Extract of a Letter fent from Danzick, towching Some Cbymical, Medicinal and Anatomical panticulars. Two Letters, wyitten by Dr. John Wallis to the Publifher; One, concerning the Fariety of the Annual High-Tides in refpect to feveral places: the other, concerning fome Miftakes of a Book entitaled SPECIMINA MATHEMATICA Francifci Dulaurens, efpecially touching a certain Probleme, affrm'd to have been propofed by Dr. Wallis to the $\mathrm{Ma}-$ thematicians of all Europe, for a folution. An Acconst of fome obfervations concerning the true Time of the Tydes, by Mr . Hen. Philips. An Account of threc Books: I. W.SENGWERDIUS PH.D.de Tarantula. II.REGNERI de GRAEF M.D. Epiftola de nonnullis circa Partes Genitales Inventis Novis. III. FOHANNIS van HORNE M.D. Obfervationum fuaum circa Partes Genitales in utroque fexu, PRODROMUS.

The Sqwaring of the Hyperbol, by an ixfinite feries of Rational Numbers, tegether with its Demanfration, by that Eminant Mathematician, the Kight Honowrable the Lord Vifcount Brouncker.

WHat the Acute Dr. Fohn Wallis had intimated, fome years fince, in the Dedication of his Anfwer to M. Meibomius de proportionibus, vid. That the World one day would leam from the Noble Lord Brownker, the 2uadrature of the Hyperbole; the Ingenious Reader may fee performed in the fubjoyned operation, which its Excellent Author ws now pleafed to communicate, as followeth in his own worcie:

$$
\mathrm{Zzz}
$$

My
(646)

My Method for Squaring the Hyperbola is this:

1Et AB be one A/ymptote of the Hyperbola EdC ; and let AE and BC be parallel to thother: Letalfo AE be to BC as 2 to 1 ; and let the Parallelogrum ABDE equal r. See Fig. 1. And note, that the Letcr x every where fands for Multiplication.
 are in an Harmonic feries, or a ferics reciproca primanornm fou arithmetice properionalizm (otherwife he is referr'd for fatisfaction to the $87,88,89,90,91,92,93$, 94, 95, prop. Arithm. Infinitor. Wallifj:)

$$
\begin{aligned}
& \text { I fay } \mathrm{ABCdEA}=\frac{1}{1 \times 2}+\frac{1}{3 \times 4}-\frac{1}{5 \times 6}-\frac{1}{7 \times 8}+\frac{1}{9 \times 10} \text { \&c. } \\
& \begin{array}{l}
\mathrm{EdCDE}=\frac{1}{2 \times 3}+\frac{1}{4 \times 5}+\frac{1}{6 \times 7}+\frac{1}{8 \times 9}-\frac{1}{10 \times 11} 8 \mathrm{xc} \text {, ininfininm. } \\
\mathrm{EdCyE}=\frac{1}{2 \times 3 \times 4}+\frac{1}{4 \times 5 \times 6}+\frac{1}{6 \times 7 \times 8}+\frac{1}{8 \times 9 \times 10} \text { \&c. }
\end{array} \\
& \text { For(in Fig. } 2 \text { (io } 3 \text {) the parallog. And (in Fig.4) the Trisngt. }
\end{aligned}
$$

New methods: indivisibles and infinitesimals

Indivisibles: geometric objects making up a higher-dimensional object (e.g., points \rightarrow line, lines \rightarrow plane)

Infinitesimal: arbitrarily small but nonzero quantity

But distinction often blurred

During the 17th century, both concepts saw much use - despite the fact that they appeared to contradict Euclidean principles

Indivisibles

Early treatments by de Saint Vincent in c. 1623 (but not published until 1647) and Roberval in c. 1628-34 (but not published until 1693).

First published treatment by Bonaventura Cavalieri (1598-1647) in Geometria indivisibilibus continuorum nova quadam ratione promota [Geometry advanced in a new way by the indivisibles of the continua] (1635).

Used by Evangelista Torricelli (1608-1647) in 1644 to calculate the volume of an infinite hyperboloid of revolution.

Developed by John Wallis (1616-1703) and others.

Cavalieri's Geometria

Torricelli's hyperbolic solid (Opera geometrica, 1644)

Probleme Secundume

C
Vinfounque cylindri ghil intra folidum acuruwdeforip

 fine femilatus verfum ipf fus hyperbols. Hoce enim in ipfopregrefuprecedentis lemmatis deminffratum eft.

Theorema.

Olidum acutum hyperbolicum infinitè longum,fectum planoad axem erecto, vnà cum cy lindro fux bafis, xquale eft cylindro cuidarimretto, cuius bafis diameter fit latus verfum, fiue axis hyperbolx, altitudo verò fit xqualis femidiametro bae fisipfius acuti folidi.17. Efto hyperbola cuius afymptoci $a b, a c$ angulum rectumcontineant; fumptoq ; in hyperbola quolibet punAo d, ducatur $d e$ xquidiftans ipfi $a b, \& d p$ xquidiftans $\& c$. Tūconuertatur vniuerfa figuracirca axé ab. itì ve fiat folidum acutum byperbolicùm ebd, vnacumeylindrofux bafis fed c. Poducatur $b a$ in b. itavt whag qualis fit integro axi, fiue lateri
 verfo hyperbolx.Et circa diametrum Δb intelligaturcirculus ecectus ad a/ymptoton $\& 5$: \& fuper bafi a h concipiatur cylindrus rect is $a \in g h$, cuius altitudo fit ac, nempe femidiameter bafis acuni folidi. Dico folidum vniuerfum $f c b d c$, quanquam fine fine longum, xquale tamen effe cylindro $\begin{gathered}\text { acg } \\ \text { b }\end{gathered}$

- Accipiatur in recta as quodlibet punaum $i, \&$ per i intelligutur ducta fuperficies cylindrica on/i in folido acuto

P 2
com-
(See Mathematics emerging, §3.3.1.)

John Wallis (1616-1703)

Studied at Emmanuel College,
Cambridge (BA 1637, MA 1640)
1643-1649: scribe for Westminster Assembly

1644-1645: Fellow of Queens'
College, Cambridge
1643-1689: cryptographer to Parliament, then to the Crown

1649-1703: Savilian Professor of Geometry in Oxford

Arithmetica infinitorum

$\begin{gathered} \mathrm{GE} \\ \mathrm{~A} \end{gathered}$

SIVE
Nova Methodus Inquirendi in Curvilineorum Quadraturam, aliaq; difficiliora

Mathefeos Problemata.

OXONII,
Typit LEON: LICHFIELD Academix Typographi, Impenfis THO. RUBINSON. Amp 1696.

John Wallis,
Arithmetica infinitorum
(The arithmetic of infinitesimals)
Oxford, 1656
Translation by
Jacqueline A. Stedall
Springer, 2004

Arithmetica infinitorum

- Arithmetical methods rather than geometrical, but repeatedly appealed to geometry for justification
- Investigation of sums of sequences of powers (or ratios of these to a known fixed quantity) - usually decreasing
- Fixed an endpoint, dividing interval into infinite number of arbitrarily small subintervals - these are the 'infinitesimals' of Wallis' title

Wallis and indivisibles

PROP. II. Theorema,

SI fumatur feries quantitatum Arithmeticè proportionalium (five juxta naturalem numerorum confecutionem) continuè crefcentium, 2 puncto vel o inchoatarum, \& numero quidem ael finitarum velcinfinitarum (nulla enim difcriminis caufa erit,'; erit illa ad feriem totidem maximæ æqualium, ut 1 ad 2.

Nempe, fi primus terminas fit o, fecundus I , (n nam fifecus, moderatio adhibenda erit,) \& ultimus l erit fumma $\frac{l+\pi}{3} l$. (erit enim, eocafu, numerus terminorum $l \dagger_{1}$) vel, (pofito namero terminorum a, quanturcunq; fit terminus fecundus):

PROP. III. Corollariam:

FRgo, Triangulum ad Parallelogrammwn (Super a-quali bafe, equè altum, eft ut 1 ad 2 .

For the triangle ... consists of an infinite number of parallel lines in arithmetic proportion ...
(See Mathematics emerging, §2.4.2.)

Wallis and indivisibles?

Prop. 14. Arithmetica Infinitoram.

ralis initium. Quamvis enim Sectorum illorum numero infinitorum aggregatum, ipfi figurx lineis recta \& Spirali terminate, (juxta methodum Indiviibilium) xquale ponatur; non tamen illud de omniom Arcubus cum ipfa Spirali (propriè djAa) comparatis obtinebit. Tantundem enim effet, acfi quis, dum infinita numero parallelogramma triangulo infcripta (aut etiam circumfripta)toti triangulo VBS aqualia videat, inde

concluderet eorum omnium latera rettx VS adjacentia (re, Ax VB parallela) ipfi VS fimul xqualia effe, vel qux recte VB adjacent (ipfi VS paraltela) xqualia fimul effe coti VB. (Quod fiquando verum effe contingat, puta in triangulo ifofceli, non tamenid univerfaliter concludendum erit.) Atq; hocquidem eo potius admonendum duxi, quod viderim etiam viros doetos nonnunquam fpeciofa ejufmodi verifimilitudine in Iapfum proclives effe. Cur autem omiffa Spiraligenuina, fpuriam hanc peripheriz comparaverim; caufa eft, quod huic poffim , non autem illi, x qualem peripheriam affgnare.

PROP. XIV. Gorolatiam.

ET propterea etiam fegnonta Spiralis, a principio Spiralis exor \int a, funt ad rellas conterminas, ficut Parabole Diametri intercepte, ad ordinatim-applicates.

D d 2
Nempe

For it amounts to the same thing as if, when an infinite number of parallelograms are inscribed in (or circumscribed about) a triangle, it seems that they equal to complete triangle ...
(See Mathematics emerging, §2.4.2.)

Sums of powers

Wallis' method depended upon the summation rule

$$
\sum_{a=0}^{A} a^{n} \approx \frac{A^{n+1}}{n+1}
$$

A version of this was developed by Ibn al-Haytham (Alhazen) in 11th-century Egypt, and it was certainly known to Fermat, Roberval, and Cavalieri in the 1630s for positive integers n, but in the 1650s Wallis extended it to negative and fractional n.

See: Victor J. Katz, Ideas of calculus in Islam and India, Mathematics Magazine 68(3) (1995), 163-174

Simple 'integrals'

Using the summation rule we can 'integrate'

$$
x^{2}, \quad x^{3}, \quad \ldots, \quad x^{1 / 3}, \quad \ldots, \quad x^{-4}, \quad \ldots
$$

and

$$
(1+x)^{3} \text { or }\left(1+x^{2}\right)^{5} \text { or }
$$

but what about

$$
\left(1-x^{2}\right)^{1 / 2} \quad[\text { for a circle }]
$$

or

$$
(1+x)^{-1} \quad[\text { for a hyperbola }] ?
$$

Wallis and the quadrature of a parabola

Wallis sought the area under the parabola $y=x^{2}$ between $x=0$ and $x=x_{0}$

He used the language of ratio, hence sought to calculate the ratio of the area A under the curve to that of the corresponding rectangle ($x_{0} y_{0}$), which we may think of as the fraction $\frac{A}{x_{0} y_{0}}$

Wallis and the quadrature of a parabola

Wallis considered an area to be the sum of the lengths of the lines contained within it (makes sense?), so

- A is the sum of the values of x^{2} as x ranges from 0 to x_{0}
- $x_{0} y_{0}$ is the sum of as many copies of x_{0}^{2} (?)

Wallis and the quadrature of a parabola

Break ($0, x_{0}$) into n subintervals, suppose that x only takes the values at the endpoints of these,
 and consider the ratio

$$
R=\frac{0^{2}+1^{2}+2^{2}+\cdots+n^{2}}{n^{2}+n^{2}+n^{2}+\cdots+n^{2}}
$$

As we make n larger, this ratio will become a closer approximation to $\frac{A}{x_{0} y_{0}}$
[Note that we are deliberately avoiding the terminology of limits, and that some $x_{0}^{2} s$ have been cancelled, thanks to the use of ratios]

Wallis and the quadrature of a parabola

Wallis investigated the cases of small n

For $n=1$ (one red line),

$$
R=\frac{0^{2}+1^{2}}{1^{2}+1^{2}}=\frac{1}{2}=\frac{1}{3}+\frac{1}{6}
$$

Wallis and the quadrature of a parabola

For $n=2$ (two red lines),

$$
R=\frac{0^{2}+1^{2}+2^{2}}{2^{2}+2^{2}+2^{2}}=\frac{5}{12}=\frac{1}{3}+\frac{1}{12}
$$

Wallis and the quadrature of a parabola

For $n=3$ (three red lines),

$$
\begin{aligned}
R & =\frac{0^{2}+1^{2}+2^{2}+3^{2}}{3^{2}+3^{2}+3^{2}+3^{2}} \\
& =\frac{14}{36}=\frac{1}{3}+\frac{1}{18}
\end{aligned}
$$

Wallis and the quadrature of a parabola

So as n increases $\frac{A}{x_{0} y_{0}}$ approaches $\frac{1}{3}$, hence $A=\frac{1}{3} x_{0}^{3}$, as we'd expect

Wallis called this method of spotting and extending a pattern 'induction' - it was criticised at the time (for example, by Pascal)

Enter Newton...

In his own words:
In the winter between the years 1664 and 1665 upon reading Dr Wallis's Arithmetica infinitorum and trying to interpole his progressions for squaring the circle, I found out first an infinite series for squaring the circle and then another infinite series for squaring the Hyperbola ...

Newton extended Wallis' method of interpolation...

Newton's integration of $(1+x)^{-1}$

	$(1+x)^{-1}$	$(1+x)^{0}$	$(1+x)^{1}$	$(1+x)^{2}$	$(1+x)^{3}$	$(1+x)^{4}$. .
x	?	1	1	1	1	1	\cdots
$\frac{x^{2}}{2}$?	0	1	2	3	4	. .
$\frac{x^{3}}{3}$?	0	0	1	3	6	. .
$\frac{x^{4}}{4}$?	0	0	0	1	4	. .
$\frac{x^{5}}{5}$?	0	0	0	0	1	. .
$:$:	:	:	$:$:	:	\ddots

The entry in the row labelled $\frac{x^{m}}{m}$ and the column labelled $(1+x)^{n}$ is the coefficient of $\frac{x^{m}}{m}$ in $\int(1+x)^{n} d x$. (NB. Newton did not use the notation $\int(1+x)^{n} d x$.)

Newton's integration of $(1+x)^{-1}$

	$(1+x)^{-1}$	$(1+x)^{0}$	$(1+x)^{1}$	$(1+x)^{2}$	$(1+x)^{3}$	$(1+x)^{4}$	\ldots
x	1	1	1	1	1	1	\ldots
$\frac{x^{2}}{2}$	-1	0	1	2	3	4	\ldots
$\frac{x^{3}}{3}$	1	0	0	1	3	6	\ldots
$\frac{x^{4}}{4}$	-1	0	0	0	1	4	
$\frac{x^{5}}{5}$	1	0	0				

The entry in the row labelled $\frac{x^{m}}{m}$ and the column labelled $(1+x)^{n}$ is the coefficient of $\frac{x^{m}}{m}$ in $\int(1+x)^{n} d x$. (NB. Newton did not use the notation $\int(1+x)^{n} d x$.)

The general binomial theorem

CUL Add. MS 3958.3, f. 72

See Mathematics emerging, §8.1.1

Newton's calculus: 1664-5

- rules for quadrature (influenced by Wallis's ideas of interpolation)
- rules for tangents (influenced by Descartes' double root method)
- recognition that these are inverse processes

Newton's vocabulary and notation

Newton's calculus 1664-5:

- fluents x, y, \ldots (quantities that vary with time t)
- fluxions \dot{x}, \dot{y}, \ldots (rate of change of those quantities)
- moments o (infinitesimal time in which x increases by $\dot{x} o$)

Newton's calculus in action (The method of fluxions, 1736)

24

The Metbod of Fiuxions,

12. Ex. 5. As if the Equation $z z+a x z-y^{4}=0$ were propos'd to exprefs the Relation between x and y, as alio $\sqrt{a x-x x}$ $\xlongequal{=} B D$, for determining a Curve, which therefore will be a Circle. The Equation $z z+a x z-y=0$, as before, will give $2 z z+$ $a z x+a x z-4 y y^{\prime}=0$, for the Relation of the Celerities \dot{x}, \dot{y}, and z. And therefore fince it is $z=x \times \mathrm{BD}$ or $=x \sqrt{a x-x x}$, fubftitute this Value inftead of it, and there will arife the Equation $2 x z+a x x \sqrt{a x-x x}+a x z-4 y^{3}=0$, which determines the Relation of the Celerities \dot{x} and \dot{y}.

Demonstration of the Solution.
13. The Moments of flowing Quantities, (that is, their indefinitely fmall Parts, by the accertion of which, in indefinitely fmall portions of Time, they are continually increafed,) are as the Velocitics of their Flowing or Increafing.
14. Wherefore if the Moment of any one, as x, be reprefented by the Product of its Celerity x into an indefinitely fimall quantity \circ (that is, by $\dot{x}, 0^{\prime}$) the Moments of the others v, y, z, will be reprefented by iv, $j 0, z o$; becaufe $2 v, x a, y o$, and $z o$, are to each other as v, x, j, and z.
15. Now fince the Moments, as x_{0} and $j 0$, are the indefinitely

Wu the Anabie des little acceffions of the flowing Quantitics x and y, by which thofe Quantities are increafed through the feveral indefinitely little intecvals of Time; it follows, that thofe Quantitics x and y, after any indefinitely fimall interval of Time, become $x+\dot{x}$ and $y+j 0$. any indefinitely imall interval of 1 ime, become $x+$ and and $y+$ yo.
And thercfore the Equation, which at all times indifferently exprefies And thercfore the Equation, which at all times indifferently exprefies
the Relation of the fiowing Quantities, will as well cxprefs the the Relation of the flowing Quantities, will as well exprefs the
Relation between $x+\dot{x} 0$ and $y+y 0$, as between x and $y:$ So that $x+x_{0}$ and $y+y_{0}$ may be fubftimted in the fime Equation for thofe Quantities, inftead of x and y.
16. Therefore let any Equation $x^{-1}-a x^{2}+a x y-y^{3}=0$ be given, and fubftitute $x+x 0$ for x, and $y+y$ for y, and there will arife

$$
\left.\begin{array}{l}
x^{3}+3 x o x^{4}+3 x^{2} a 0 x+x^{3} 0^{3} \\
-a x^{2}-2 a x o x-a x^{3} 00 \\
+a x y+a x o y+a y o x+a x y 00 \\
-y^{2}-3 y y^{2}-3 y^{3} c o y-y^{3} c^{3}
\end{array}\right\}=0
$$

and Infinite Series.

17. Now by Suppofition $x^{2}-a x^{2}+a x y-y^{\prime}=0$, which therefore being expunged, and the remaining Terms being divided by a, there will remain $3 x x^{2}+3 x^{2} a x+x^{3} c o-2 a x x-a x^{2} 0+a x y+$ $a \neq x+a x y 0-3 y^{2}-3 y^{2} c y-y^{2} \infty=0$. But whereas o is fuppoited to be infinitely little, that it may reprefent the Moments of Quantities; the Terms that are multiply d by it will be nothing in relpect of the ref. Therefore I reject them, and there remains $3 x x^{2}$ $2 a x x+a x y+a y x-3 y y^{2}=0$, as above in Examp. I.
18. Here we may obferve, that the Termis that are not multiply'd by o will always vanifh, as alfo thofe Terms that are multiply d by o of more than one Dimenfion. And that the reft of the Terms being divided by 0 , will always acquire the form that they ought to have by the foregoing Rule: Which was the thing to be proved. 19. And this being now fhewn, the other things included in the Rule will cafily follow. As that in the propos'd Equation feveral Rule will calily follow, As that ine the propos the Tequation feveral flowing Qualtiply'd, not only by the Number of the Dineations of the flow-
met multiply C , not only by the Number of the Dimentions of the fow-
ing Quantitics, but alfo by any other Arithmetical Progrefions; fo ing Quantitics, but an by any othcr Arithmeticel Progreflions; 1o that in the Operation there may be the rame difference of the Terms
according to any of the flowing Quantities, and the Progrefion be according to any of the flowing Quantities, and the Progrefiion be
difpos'd according to the farme order of the Dimenfions of each of difpos'd according to the farse order of the Dimenfions of each of
them. And thele things being allow'd, what is taught befides in them. And thece things being allow'd, what is tau
Examp. 3,4 , and 5 , will be plain enough of itfelf.

PR O B. II.
An Equation being propofed, including the Fluxions of Quantities, to find the Relations of thofe शuantities to one anotber.

A Particular Solution.

1. As this Problem is the Converie of the foregoing, it mun be folved by procceding in a contrary manner. That is, the Tcrms multiply'd by \dot{x} being difpofed according to the Dimenfions of x; they muft be divided by $\frac{x}{x}$, and then by the number of thair Dimenfions, or perhaps by fome other Arithmetical Progreffion. Then the fame work mult be repeated with the Tcrms multiply'd by \dot{v}, \dot{y},

Newton's calculus in action (The method of fluxions, 1736)

12. Ex. 5. As if the Equation $z z+a x z-y^{4}=0$ were propos'd to exprefs the Relation between x and y, as alfo $\sqrt{a x-x x}$ $=\mathrm{BD}$, for determining a Curve, which therefore will be a Circle. The Equation $z z+a x z-y^{4}=0$, as before, will give $2 z z+$ $\dot{a} z x+a \dot{x} z-4 \dot{y} y^{\prime}=0$, for the Relation of the Celerities \dot{x}, \dot{y}, and z. And therefore fince it is $z=x \times \mathrm{BD}$ or $=x \sqrt{a x-x x}$, fubftitute this Value inftead of it, and there will arife the Equation $\overline{2 x z+a x x} \sqrt{a x-x x}+a x z-4 y y^{3}=0$, which determines the Relation of the Celerities \dot{x} and \dot{y}.

Demonstration of the Solution.

13. The Moments of flowing Quantities, (that is, their indefinitely finall Parts, by the acceffion of which, in indefinitely fmall portions of Time, they are continually increafed,) are as the Velocities of their Flowing or Increafing.
14. Wherefore if the Moment of any one, as x, be reprefented by the Product of its Celerity \boldsymbol{x} into an indefinitely fmall Quantity 0 (that is, by x_{0}) the Moments of the others v, y, z, will be reprefented by vo, $\dot{y} 0$, $\dot{z o}$; becaufe vo, $\dot{x} 0, y o$, and $z o$, are to each other as $\dot{v}, \dot{x}, \dot{y}$, and $\dot{\sim}$.
15. Now fince the Moments, as x_{0} and jo, are the indefinitely little acceffions of the flowing Quantities x and y, by which thofe Quantities are increafed through the feveral indefinitely little intervals of Time; it follows, that thofe Quantities x and y, after any indefinitely fmall interval of Time, become $x+x_{0}$ and $y+y_{0}$. And therefore the Equation, which at all times indifferently exprefles the Relation of the flowing Quantities, will as well exprefs the Relation between $x+x_{0}$ and $y+y_{0}$, as between x and y : So that $x+x_{0}$ and $y+y o$ may be fubftituted in the fame Equation for thofe Quantities, inftead of x and y.
16. Therefore let any Equation $x^{4}-a x^{4}+a x y-y^{3}=0$ be given, and fubftitute $x+x 0$ for x, and $y+j o$ for y, and there will arife

$$
\left.\begin{array}{r}
x^{3}+3 \times 0 x^{2}+3 x^{2} 00 x+\dot{x}^{3} 0^{3} \\
-a x^{2}-2 a x o x-a x^{2} 00 \\
+a x y+a x 0 y+a j 0 x+a x y 00 \\
-y^{3}-3 y^{3} y^{2}-3 j^{2} 00 y-y^{3} 0^{3}
\end{array}\right\}=0
$$

17. Now by Suppofition $x^{3}-a x^{4}+a x y-y^{3}=0$, which therefore being expunged, and the remaining Terms being divided by 0 , there will remain $3 x x^{2}+3 x^{2} 0 x+x^{3} c o-2 a x x-a x^{2} 0+a x y+$ $a j x+a x y 0-3 y y^{2}-3 y^{2} o y-y^{2} 00=0$. But whereas a is fuppofed to be infinitely little, that it may reprefent the Moments of Quantities; the Terms that are multiply'd by it will be nothing in relpect of the reft. Therefore I reject them, and there remains $3 x x^{2}$ $2 a \dot{x} x+a x y+a y x-3 y y^{2}=0$, as above in Examp. . .
18. Here we may obferve, that the Terms that are not multiply'd by o will always vanifh, as alfo thofe Terms that are multiply'd by o of more than one Dimenfion. And that the reft of the Terms being divided by 0 , will always acquire the form that they ought to have by the foregoing Rule: Which was the thing to be proved.
19. And this being now fhewn, the other things included in the Rule will eafily follow. As that in the propos'd Equation feveral flowing Quantitics may be involved; and that the Terms may be multiply'd, not only by the Number of the Dimenfions of the flowing Quantities, but alfo by any other Arithmetical Progreffions; fo that in the Operation there may be the fame difference of the Terms according to any of the flowing Quantities, and the Progreffion be difpos'd according to the fame order of the Dimenfions of each of them. And thefe things being allow'd, what is taught befides in Examp. 3, 4, and 5, will be plain enough of itfelf.

PR O B. II.

An Equation being propofed, including the Fluxions of Quantities, to find the Relations of thofe Quantities to one anotber.

A Particular Solution.

1. As this Problem is the Converfe of the foregoing, it muft be folved by proceeding in a contrary manner. That is, the Terms multiply'd by \dot{x} being difpofed according to the Dimenfions of x; they muft be divided by $\frac{x}{x}$, and then by the number of their Dimenfions, or perhaps by fome other Arithmetical Progreffion. Then the fame work muft be repeated with the Terms multiply'd by \dot{v}, \dot{y},

Leibniz's calculus

Independently, ten years later than Newton...
Leibniz's calculus, 1673-76:

- rules for quadrature - especially the transformation theorem (a.k.a. the transmutation theorem)
- rules for tangents - by characteristic (or differential) triangles
- recognition that these are inverse processes

Differentials: du, dv; integrals: omn. I, later between $S I$ and \int I

Leibniz's Transmutation Theorem

$$
O A B G=\sum R P Q S=\frac{1}{2} O G \cdot G B+\sum O P Q
$$

Leibniz's Transmutation Theorem

$$
\begin{aligned}
O A B G=\sum R P Q S & =\frac{1}{2} O G \cdot G B+\sum O P Q \\
& =\frac{1}{2} O G \cdot G B+\frac{1}{2} O L M G
\end{aligned}
$$

Supplementum Geometriae Dimensoriae ... (1693)

No. IX.
 A C T A
 ERUDITORUM

publicata Lipfre,
Calendis Septembris, Anno M DC XCIII.
G. G. L. SUPPLEMENTUM GEOME. tris Dimenforic, feu generalisfima omnium Tetragonifmorum effactio per motum: Similiterque multiplex comfrultio lines ex data tangentium conditione.

DImenfiones linearum, fuperficierum \& folidorum plerorumque, ut \& inventiones centrorum gravitatis, reducuntur ad tetragonifmos figurarum planarum; \& hine nafcitur Grometria Dimenforia, toto ut fie dicam genere diveffa a Determinatrice, quam rectarum tantum magnitudines ingrediuntur, atque hinc quxfita punda ex punctis datis determinantur. Et Geometria quidem determinatrix reduci poteft regulariter ad x quationes Algebraicas, in quibus feilicet incognita ad certum aflurgit gradum. Sed dimenforia fua natura ab Algebra, non pendet; ecfialiquando eveniat (in cafu filicet quadraturarum ordinariarum) ut ad Algebraicas quantitates revocetur; uti Geometria determinatrix ab Arithmetica non pendet; etf aliquando eveniat (in cafu feilicet commenfurabilitatis) ut ad numeros feu rationales quantitates revocatur. Unde tripfices habemens quantitates: rationales, Algebraicas, E tranfendentes. Eit autem fons irrationalium Algebraicarum, ambiguiuss problematis fou muthipticiuar; neque enim poffibile foret, plures valores eidem problemati fatisfacientes codem calculo exprimere, niff per quantitates radicales; ex vero non niff in cafibus fpecialibus ad rationalitates revocari polluns. Sed fons tranformdentium quantitatum eft infritudo. Ita ut Grometris tranjfendentiom (cujus pars dimenforia eft) refpondens Anslffis, fit ipfifima fiemtis infinitit. Porro quemadmodum ad conftrucedas quantitates Algebraicas, cettiadhibentur

$$
\mathrm{Ccc} \text { motus, }
$$

A Supplement to the Geometry of Measurements, or the Most General of all Quadratures to be Effected
by a Motion: and likewise the various constructions of a curve from a given condition of the tangent
(Acta eruditorum, 1693)

Supplementum Geometriae Dimensoriae ... (1693)

390 ACTAERUDITORUM.

occafione defungi tandem praftet, ne intercidant, \& fatis diuifta, ultra, Horatiani limitis duplum preffa, Lucinam expectarunt.

Oftendam autem problema generale Qenadraturasom reduci ad inventionem lines datans babentis legem dedivitatum, five in qua latera Trianguli characteriftici aflignabilis datam inter fe habeant relationem, deinde oftendam hanc lineam per motum a nobis excogitatum defcribi poffe. Nimirum in omni curva C (C) (figur, 2) intelligo triangulum charaflerificum duplex: alfigoabile TBC, \& inasfignabile GLC, fimilia inter fe. Et quidem imafignabile comprehenditur ipfis GL LC, elementis coordinatarum CB, CF, tanquam cruribus, \& GC, elemento arcus, tanquam bafi fcu hypotenufa. Sed A/jognabile TBC comprehenditur inter axem, ordinatam, \& cangentem, exprimitque adeo angulum, quem directio curva (feu cjus tangens) ad axem vel bafin facit, hoc eft curvxe declivitatem in propofito puncto C. Sit jam zona quadranda $F(H)$ comprehenfa inter curvam $\mathrm{H}(\mathrm{H})$, duas rectas parallelas FH \& (F)(H) \& axemF (F) in hoc Axe fumto puncto fixo A, per A ducatur ad $A F$ normalis $A B$ tanquam axis conjugatus, \& in quavis HF (producta prout opus) fumatur pun. Ctum C: ©cu fiat linea nova C (C) cujus hare fit natura, ut expuncto C ducta ad axem conjugatum $A B$ (fi opus productum) tam ordinata conjugata CB , (xquali: AF) quam tangente CT , fit portio hujus axis inter eas comprchenfa TB, ad BC, ut HF ad conftantem A, feu a in BT equetur rectangulo AFH (circumfcripto circa trilineum AFHA). His pofitis ajo rectangulum fub a \& fub $E(C)$ (diferimine inter FC \& (F)(C) ordinatas curve) aquari zonax $\mathrm{F}(\mathrm{H})$; adeoque fi linea $\mathrm{H}(\mathrm{H})$ productaincidat in A, trilincum AFHA figurx quadrand x, x quari rectangulo fub a conftante, \& FC ordinata figure quadratricis. Rem nofter calculus fatim oftendit, fitenim $\mathrm{AF} y ; \& \mathrm{FH}, z ;$ \& BT, t \& FC, x; crit t 二 $z y: a$, ex hypothefi: rurfus t 二 $y d x$: Ly ex natura tangentium noftro calculo exprefla. Ergo $a d x=z d y$, 2deoque $2 x=\int \approx d y=A F H A$. Linea igitur $C(\mathrm{C})$ eft quadratrix refpectulinex $\mathrm{H}(\mathrm{H})$, cum ipfius $\mathrm{C}(\mathrm{C})$ ordinata FC , ducta in a conftantem, faciat rectangulum zquale arex feu fummz ordinatarum ipfius $\mathrm{H}(\mathrm{H})$ ad abfciffas debitas AF applicatarum. Hinc cum BT fic ad AF ut FH ada (ex hypothefi) deturque relatio ipfius FH ad ΔF (naturam exhibens figurx quadrandx) dabitur ergo \& relatio BT
"I shall now show the general problem of quadratures to be reduced to the invention of a line having a given law of declivity"
> i.e., integration is reduced to the finding of a curve with a particular tangent - in modern terms, the antiderivative

For Latin-readers: full paper available online

See also: Niccolò Guicciardini, Newton's method and Leibniz's calculus, A history of analysis (ed. Hans Niels Jahnke), AMS/LMS, 2003, pp. 73-103

Newton's calculus and Leibniz's calculus compared

Newton (1664-65):
rules for quadrature rules for tangents 'fundamental theorem'
dot notation
physical intuition:
rates of change

PROBLEM:
vanishing quantities o

Leibniz (1673-76):
rules for quadrature rules for tangents 'fundamental theorem'
'modern' notation
algebraic intuition rules and procedures

PROBLEM:
vanishing quantities $\mathrm{du}, \mathrm{dv}, \ldots$

An elementary introduction to the development of calculus

