Exercise sheet 1. Week 4. Chapters 1-4.

Q1. (1) Describe the Zariski topology of k.
(2) Show that the Zariski topology of k2 is not the product topology of k x k = k2.

Solution. (1) The non empty closed sets of k are the vanishing sets of polynomials in one variable, so the
non empty closed sets are precisely the finite subsets of k.

(2) Let W C k? the vanishing set of the polynomial P(x,y) := xy — 1. We will show that if U and V are
open sets in k, then U x V N'W # (). This shows that the open subset k?\W is not a union of open subsets
of the type U x V, and so the Zariski topology on k? is not the product topology. By (1), we have U = k\ A4,
where A is finite (resp. V = k\ B, where B is finite). We need to show that zy — 1 vanishes at some point of
U x V. For any a # 0, we have P(a,1/a) = 0. As a runs through U\{0}, the function 1/a takes infinitely
many values (since U is infinite), so for some ag € U we have 1/ag € V. We then have (ag,1/ag) € W and
(ap,1/ag) € U x V. Hence W NU x V # (.

Q2. Let V' C k™ be an algebraic set. Show that V' is the disjoint union of two non empty algebraic sets in k™
iff there are two non-zero finitely generated reduced k-algebras T7 and T, and an isomorphism of k-algebras

Solution. Suppose that V is the disjoint union of two non empty algebraic sets V3 and Vo in k™. Let
I :=Z(V1) CC(V) and let I := Z(V;) C C(V) be the radical ideals in C(V') corresponding to V; and V5.
The intersection 11 N I3 consists of the regular functions on V' which vanish on both Vi and V5 and thus on
all of V. Thus I NIs = 0. On the other hand, if f : V — k is a regular function, then the function f;
which is 0 on V5 and equal to f on Vj is a regular function by Proposition 4.5. Similarly, the function f,
which is 0 on V4 and equal to f on V5 is a regular function. By construction, we have f; € Is, fo € I; and
fi+ fo = f. We conclude that I; + I = C(V). We might now apply the Chinese remainder theorem to
conclude that C(V) ~C(V) /I & C(V)/ L.

Conversely, suppose that C(V') ~ Ry @ R, where R; and Rs are finitely generated reduced k-algebras. Let
I :={(a,0)|a € Ry} and I := {(0,a) |a € Re}. We clearly have Iy NI =0 and I} + I, =C(V). Also, I
and I, are easily seen to be radical. Hence V is the disjoint union of Z(I;) and Z(I2) by Lemma 2.8 and

the following discussion.

Q3. Let V C k2 be the set
Vo= {(t,t*, )|t € k}.

Show that V' is an algebraic set and that it is isomorphic to k as an algebraic set. Provide generators for
(V).

Solution. We have V = Z((z2— 22,23 —3) so V is an algebraic set. If we let A : k — k3 be the polynomial
map such that A(t) := (¢,t%,#3) and B : k> — k be the polynomial map such that B(zy, 2, 73) = 21, then
A(k) CV, BlyoA=1dg, Ao Bly =1Idy so A and B|y are regular maps from k to V and from V to k
respectively, which are inverse to each other. So they gives an isomorphism between V' and k. We still have to
provide generators for Z(V). For this, consider the map of k-algebras ¢ : k[x] — k[z1, x2, v3]/(v2—2%, 23—123)
sending x — x1 (resp. the map of k-algebras ¢ : k[x1, z2, 23]/ (72 — 22, 23 — 23) — k[z] sending 1 to z, x5
to 22, 23 to #®). By construction, these maps are inverse to each other and thus the ideal (x5 — 2%, 23 — 23)

is prime and in particular radical. So Z(V) = (xg — 2%, 13 — 23).

Q4. (1) Let V C k? be the set of solutions of the equation y = 2. Show that V is isomorphic to k as an
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algebraic set.

(2) Let V' C k2 be the set of solutions of the equation #y = 1. Show that V is not isomorphic to k as an

algebraic set.

(3) [difficult] (optional) Let P(x,y) € k[z,y] be an irreducible quadratic polynomial and let V' C k? be the
set of zeroes of P(z,y). Show that V is isomorphic to one of the algebraic sets defined in (1) and (2).

Solution. (1) This is similar to Q3, with {(¢,¢?) |t € k} instead of V.

(2) If V is isomorphic to k then k[z,y]/(xy — 1) ~ k[t] by Theorem 3.7. Now note that z is a unit in
k[x,y]/(xy — 1) by construction and that z is not in the image of k in k[z, y]/(xy — 1). Since the only units
of k[t] lie in the image of k, there is thus no isomorphism k[z,y]/(zy — 1) =~ k[t].

(3) See

math.stackexchange.com/questions/3577406/affine-conics-over-an-algebraically-closed-field-of-char-2

Q5. Let V C k™ and W C k! be two algebraic sets. Let 1 : V — W be a regular map.
(1) Show that 9 (V) is dense in W iff the map of rings ¢* : C(W) — C(V) is injective.

(2) Show that ¥* is surjective iff (V') is closed and the induced map V' — (V) is an isomorphism of

algebraic sets.

Solution. (1) By definition of the closure of a set, 1(V') is dense in W iff any closed subset of W containing
(V) is W. In view of Lemma 2.8 (and the following discussion) and Lemma 3.4, we thus see that (V)
is dense in W iff T is any radical ideal of C(WW) contained in ¢*(m) for all m € Spm(C(V)) then I is the 0
ideal. Since Nnespm(c(vy)¥*(m) is a radical ideal by construction, we thus see that ¢(V') is dense in W iff
Nmespm(c(v))¥* (m) = 0. Now we have

Nmespm(c(v) ¥ (M) = " (Nmespm(cvyym) = ¥*(0) = ker(y*)
where the equality before last holds because C(V) is a reduced Jacobson ring. The equivalence follows.

(2) Suppose that ¥* is surjective. Then ¢* induces an isomorphism C(W)/ker(1)*) ~ C(V) and thus the
map Spm(¢*) is injective and its image is the set of maximal ideals of C(W') which contain ker(¢*). This
proves that ¢ (V) is closed and that the induced map V — (V) is bijective. Furthermore, its shows that
Z(p(V)) = ker(1p*) (note that ker(¢)*) is radical since C(V) is reduced). To summarise, the maps of algebraic
sets (V) — V and V — W give a diagram of surjective maps of k-algebras

cw) —— )

|

Cly((V))
where the kernels of the two maps are equal. Hence C(¢(V)) is isomorphic to C(V') as a C(W)-algebra.
In particular there is an isomorphism of k-algebras C(¢(V)) — C(V) making the diagram commutative.
Using Theorem 3.7, this gives an isomorphism V' = 1(V') which is compatible with the maps V' — W and
(V) = W.

Now suppose that (V) is closed and that the induced map V' — ¢ (V') is an isomorphism of algebraic sets.
Let I := Z(x(V)) C C(W). By Theorem 3.7 the map 1* factors through C(W)/I and the induced map
C(W)/I — C(V) is an isomorphism. In particular ¢* is surjective.
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Q6. Let V C k3 be the algebraic set described by the ideal (22 —yz, zz—x). Show that V has three irreducible
components. Find generators for the radical (actually prime) ideals associated with these components.

Solution. Treat z,v, z as variable elements of k. If 2 # 0, then z = 1 and y = 2. Also we have (0,0,1) € V
and hence Z((2? — yz,2z — x)) 2 {(z,22,1) |z € k}. We have {(x,22,1) |z € k} = Z((y — 2%,z — 1)) and
the first projection gives an isomorphism between this algebraic set and k. Hence {(z,2% 1) |z € k} is an
irreducible algebraic set in k3, which is contained in V. If x = 0, then the simultaneous solutions of the
equation z? = yz and 2z = x are precisely the solutions of the equation yz = 0. The simultaneous solutions
of yz = 0 and = = 0 consist of the union of the z-axis and the y-axis. So V is the union of the z-axis, the
y-axis and {(x,2% 1) |z € k}, which are all three irreducible. One easily checks that none of these three

sets are contained in the union of the two others, so they are the irreducible components of V.

Q7. Let V C k™ and W C k* be algebraic subsets. Let Vo C V and Wy C W be open subsets. View V and
W, as open subvarieties of V' and W respectively. For i € {1,...,t} let m; : k* — k be the projection on
the i-coordinate. Let ¢ : Vj — Wy be a map. Show that i is a morphism of varieties iff m; 0 ¢ is a regular
function on Vp for all i € {1,...,t}.

Solution. The direction = of the stated equivalence is clear, since compositions of regular maps are regular
and the projections m; are polynomial maps (and regular functions are regular maps with target k). For
the direction < of the stated equivalence, recall that by Proposition 4.5 a function is regular on Vj iff it
is regular when restricted to any member of an open covering of V. Now choose an open covering of V}
by open subsets of the form V\Z(f), where f € C(V) (this exists by Lemma 4.1). The set V\Z(f) is the
image of a regular injective map of algebraic sets T — V, such that a function on V\Z(f) is regular iff its
composition with the map 7" — V is regular (by Lemma 4.3). Hence we may suppose wrog that Vo = V
(effectively replacing Vo by T). If Vo = V and 7; o4 is a regular function on V for all i € {1,...,t}, then
the induced map V — W is by definition the restriction of a polynomial map k™ — k' and is thus a regular

map. Since Wy C W is open, the map 1 is thus automatically regular.
Q8. (optional) Show that the open subvariety k?\{0} of k? is not affine.

Solution. Let f : k*\{0} — k be a regular function. Then the restriction of f to the complement of
the z-axis is of the form P(xz,y)/z™ by Corollary 4.4. Similarly, the restriction to the complement of the
y-axis is of the form Q(z,y)/y™. Dividing by powers of = (resp. y), we may assume that P is not divisible
by x (resp. @ is not divisible by y). Now we have P(z,y)/z" = Q(z,y)/y™ for all z,y # 0 and thus
Q(z,y)z™ = P(z,y)y™ (as polynomials) since k is infinite. Since k[z,y] is a UFD, we deduce that m = 0
and that n = 0 and hence that @ = P. Thus f(a,b) = P(a,b) for all a,b. In other words, the regular maps
k*\{0} — k are all restrictions of polynomial maps k? — k. Now suppose for contradiction that k\0 is
affine. We have just seen that the natural map C(k?) — C(k*\{0}) is surjective and so k*\{0} is closed in
k% by Q5 (2). But this is a contradiction, so £%\{0} is not affine.
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