
Exercise sheet 2. Week 6. Chapters 1-8.

Q1. Let i 2 {0, . . . , n} and let ui : kn ! Pn(k) be the standard map (with image the coordinate chart Ui).

Let C ✓ kn be a closed subvariety of kn (ie an algebraic set in kn). For any P 2 k[x0, . . . , xi�1, qxi, xi+1, . . . , xn]

let

�i(P ) := xdeg(P )
i P (

x0

xi
, . . . ,

xi�1

xi
,

|xi

xi
,
xi+1

xi
, . . . ,

xn

xi
) 2 k[x0, . . . , xn].

(1) Let C̄ be the closure of ui(C) in Pn(k). Show that (�i(I(C))) = I(C̄) (where (�i(I(C))) is the ideal of

k[x0, . . . , xn] generated by all the elements of �i(I(Z))).

(2) Suppose that I(C) = (J) (ie I(C) is a principal ideal with generator J). Show that (�i(J)) = I(C̄).

(3) Suppose that n = 3 and that C is the variety considered in Q3 of Sheet 1. Describe the closure of u0(C)

in P3(k). Find homogenous polynomials (H1, . . . , Hh) such that Z(H1, . . . , Hh) is the closure of u0(C) in

P3(k).

Solution. (1) By construction we have u�1
i (Z(�i(P ))) = Z(P ) for any P as above so the closed set

Z((�i(I(C)))) contains the closure of ui(C) in Pn(k). In particular (�i(I(C))) ✓ I(C̄). So we only have

to show the opposite inclusion, ie we have to show that if Q is a homogenous polynomial which vanishes

on ui(C) then Q 2 (�i(I(C))). So suppose that Q = Q(x0, . . . , xn) vanishes on ui(C). Write Q = x�
iQ0,

where Q0 is not divisible by x0. By construction, Q0 is also homogenous and also vanishes on ui(C). In

particular, Q0(x0, . . . , xi�1, 1, xi+1, . . . , xn) vanishes on C (by the definition of the map ui). But

�i(Q0(x0, . . . , xi�1, 1, xi+1, . . . , xn)) = Q0(x0, . . . , xn)

because deg(Q0(x0, . . . , xi�1, 1, xi+1, . . . , xn) = deg(Q0(x0, . . . , xn)). So Q0 2 (�i(I(C))) and hence Q 2

(�i(I(C))).

(2) Notice that �i is multiplicative. Hence (�i(I(C))) = (�i(J)).

(3) First note the following. Let T be a topological space and {Ti} be an open covering og T . Let S ✓ T

be a subset. Write cl(S, T ) for the closure of S in T . Then we have cl(S, T ) = [icl(S \ Ti, Ti). Indeed,

from the definitions, we have cl(S, T ) ◆ cl(S \ Ti, Ti) for all i and hence cl(S, T ) ◆ [icl(S \ Ti, Ti). We

prove the opposite inclusion. So suppose that t 2 cl(S, T ). Note that this is equivalent to saying that every

open neighbourhood of t meets S. For all the indices i such that t 2 Ti, we then have t 2 cl(S \ Ti, Ti).

Indeed if V is an open neighbourhood of t in Ti, then V is also open in T (since Ti is open) and thus

V meets S. Since V is contained in Ti, V thus meets S \ Ti. Since V was arbitrary, we thus see that

t 2 cl(S \ Ti, Ti). Since t is contained in at least one Ti, we conclude that cl(S, T ) ✓ [icl(S \ Ti, Ti) and

thus that cl(S, T ) = [icl(S \ Ti, Ti).

Using this statement, we see that cl(u0(C),P3(k)) = [
3
i=0ui(cl(u

�1
i (u0(C)), k3)).

Now the variety u�1
1 (u0(C)) is {(1/t, t, t2) | t 2 k\{0}} in the coordinates x0, x2, x3. This is precisely the

zero set of (x2x0 � 1, x3 � x2
2) in k3 and is thus closed in k3.

The variety u�1
2 (u0(C)) is {(1/t2, 1/t, t) | t 2 k\{0}} in the coordinates x0, x1, x3. This is precisely the zero

set of (x3x1 � 1, x2
1 � x0) in k3 and is thus closed in k2.

The variety u�1
3 (u0(C)) is {(1/t3, 1/t2, 1/t) | t 2 k\{0}} in the coordinates x0, x1, x2. This is precisely the

zero set of (x2
2 � x1, x3

2 � x0) in k3\{0}. On the other hand, the zero set of (x2
2 � x1, x3

2 � x0) in k3 contains

0 and it is precisely the set {(u3, u2, u) |u 2 k}. By the reasoning of Q3 of Sheet 1, this set is isomorphic
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to k via the third projection. Hence u�1
3 (u0(C)) is an open set of a closed irreducible algebraic set (namely

Z(x2
2 � x1, x3

2 � x0)) in k3 and its closure is thus Z(x2
2 � x1, x3

2 � x0).

As u3(h0, 0, 0i) = [0, 0, 0, 1], we conclude that cl(u0(C),P3(k) = u0(C)[ {[0, 0, 0, 1]}. Now C is described by

the equation x2
1 � x2 and x3

1 � x3 in k3 and thus

cl(u0(C),P3(k)) ✓ Z(�0(x
2
1 � x2),�0(x

3
1 � x3)) = Z(x2

1 � x2x0, x
3
1 � x3x

2
0)

If x0 = 0 then the equations x2
1 � x2x0 and x3

1 � x3x2
0 are equivalent to the equation x1 = 0. So we need

a third equation which vanishes on u0(C) and which forces the equation x2 = 0 if x0 = x1 = 0. Consider

x3
2 � x2

3x0 = �0(x3
2 � x2

3) = 0. By inspection, we see that x3
2 � x2

3x0 vanishes on u0(C). On the other hand,

if x0 = 0 and x3
2 � x2

3x0 = 0 then x2 = 0.

We thus see that

cl(u0(C),P3(k)) = Z(x2
1 � x2x0, x

3
1 � x3x

2
0, x

3
2 � x2

3x0).

Q2. Let V (resp. W ) be a closed subvariety of Pn(k) (resp. Pt(k)). Let V0 ✓ V (resp. W0 ✓ W ) be

an open subset of V (resp. and open subset of W ). View V0 (resp. W0) as an open subvariety of V

(resp. W ). Let Q0, . . . , Qt 2 k[x0, . . . , xn] be homogenous polynomials of the same degree. Suppose that

V0 \ Z((Q0, . . . , Qt)) = ;. Let f : V0 ! Pt(k) be the map given by the formula f(v̄) := [Q0(v̄), . . . , Qt(v̄)].

Suppose finally that f(V0) ✓ W0. Show that the induced map V0 ! W0 is a morphism of varieties.

Solution. By Lemma 5.3, we may and do assume that W0 = Pt(k). Furthermore, we may and do assume

that V0 = Pn(k)\Z((Q0, . . . , Qt)) (since f arises as a restriction of a map defined on Pn(k)\Z((Q0, . . . , Qt))).

Now note that for any j 2 {0, . . . , t}, the image of f |V0\Z(Qj) lies in the coordinate chart U t
j of Pt(k). Since

a map is a morphism i↵ it is a morphism everywhere locally, we thus only have to check that the map

f |(V0\Z(Qj))\Un
i
: (V0\Z((Qj))) \ Un

i ! U t
j is a morphism for any i 2 {0, . . . , n} and j 2 {0, . . . , t}. In the

coordinates of Un
i and U t

j , the map has the form

f(X0, . . . , |Xi, . . . , Xn) =

(
Q0(X0, . . . , Xi�1, 1, Xi+1, . . . , Xn)

Qj(X0, . . . , Xi�1, 1, Xi+1, . . . , Xn)
, . . . ,

�Qj(X0, . . . , Xi�1, 1, Xi+1, . . . , Xn)

Qj(X0, . . . , Xi�1, 1, Xi+1, . . . , Xn)
, . . . ,

Qt(X0, . . . , Xi�1, 1, Xi+1, . . . , Xn)

Qj(X0, . . . , Xi�1, 1, Xi+1, . . . , Xn)
)

and thus by Proposition 4.5 and Q7 of Sheet 1, the map f |(V0\Z((Qj))\Un
i
: (V0\Z((Qj)) \ Un

i ! U t
j is a

morphism.

Q3. Prove Lemma 7.1.

Solution. Recall the statement. Let I ✓ k[x0, . . . xn] be an ideal.

(1) I is homogenous i↵ for all P 2 I and all i > 0, we have P[i] 2 I.

(2) If I is homogenous then its radical r(I) is also homogenous.

We prove (1). The ( direction is clear so we only have to establish the ) direction of the equivalence.

Suppose that I = (H1, . . . , Hl) where the Hj are homogenous. If P 2 I then P = Q1H1 + · · · + QlHl for

some polynomials Qi and we compute

P[i] =
X

j

Qj,[i�deg(Hj)]Hj

so that P[i] 2 I.
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(2) Let t 2 K\{0} and let ⇢t : k[x0, . . . , xn] ! k[x0, . . . , xn] be the map of k-algebras sending xi to txi.

Since ⇢1/t � ⇢t = Id, the map ⇢t is a bijection. Note that since I is homogenous, we have ⇢t(I) = I. Now

⇢t(r(I)) = ⇢t(\p2Spec(k[x0,...,xn]), p◆I p) = \p2Spec(k[x0,...,xn]), p◆I ⇢t(p) = \p2Spec(k[x0,...,xn]), p◆I p = r(I)

In particular, if P 2 r(I) then

⇢t(P ) =

deg(P )X

i=0

tiP[i] 2 r(I)

for all t 2 K\{0}. If we let t run through deg(P )+1 di↵erent values, we obtain a system of linear equations

with maximal rank (a Vandermonde matrix), with a unique solution. Hence P[i] 2 r(I) for all i > 0.

Q4. Let T be a topological space.

(1) Let S ✓ T be a subset. Suppose that S is irreducible. Show that the closure of S in T is also irreducible.

(2) Suppose that T is noetherian. Show that T is Hausdor↵ i↵ T is finite and discrete.

(3) Let V be a variety. Show that V is irreducible i↵ the ring OV (U) is an integral domain for all open

subsets U ✓ V .

(4) Suppose T is noetherian. Show that T is quasi-compact.

Solution. (1) S is dense in its closure S̄ by construction. Hence any open subset U of S̄ (for the induced

topology) meets S. By assumption U \ S is dense in S and hence U is also dense in S̄.

(2) By Lemma 8.1 (= Q5 below), we may suppose wrog that T is irreducible (recall that any subset of a

noetherian space is noetherian in the induced topology). In that case, T is Hausdor↵ i↵ T is one point.

Indeed if U1 and U2 are neighbourhoods of two distinct points then they must meet (by irreducibility), so

that T is not Hausdor↵ if it has more than one point.

(3) Suppose first that V is reducible. Then there are two disjoint non empty open subsets O1, O2 ✓ V .

Possibly choosing smaller open sets O1 and O2, we may assume that O1 and O2 are a�ne. We have

OV (O1 [ O2) = OV (O1) ⇥OV (O2) by the sheaf property and neither of the rings OV (O1) and OV (O2) is

the 0-ring because O1 and O2 are a�ne and non-empty (use Theorem 3.7). Hence OV (O1 [ O2) is not an

integral domain. Conversely, suppose that there is an open subset O, such that OV (O) is not integral. Let

f1, f2 2 OV (O) be such that f1f2 = 0 and f1, f2 6= 0. Then there is by the sheaf property an open a�ne

subset O0
✓ O such that f |O0 6= 0. If O0 arises from an algebraic set V 0

✓ kn then f will vanish nowhere on

V 0
\Z(f |O0), so there exists an open subset O00

✓ V such that f |O00 vanishes nowhere. Similarly there exists

an open subset U 00 such that f2|U 00 vanishes nowhere. Since f1f2 = 0, the sets O00 and U 00 are disjoint, so

V is reducible.

(4) Let {Ui}2I be an open covering of T . Let J be the set of all finite subcoverings of {Ui} (so that J can be

identified with the set of finite subsets of the indexing set I). If A 2 J then write Un(A) for the union of all

the open sets which appear in A. Suppose for contradiction that T is not quasi-compact so that Un(A) 6= T

for all A 2 J . Construct a sequence A1, A2, · · · 2 J in the following way. Let A1 2 J be arbitrary. Since

Un(A1) 6= T and [iUi = T , there is A2 so that Un(A2) ) Un(A1). Proceed in the same way for A2, A3 etc.

The sequence will be infinite for otherwise {Ui}2I has a finite subcovering. Hence

T\A1 ) T\A2 ) . . .

is an infinite descending sequence of closed sets, contradicting noetherianity. Hence T is quasi-compact.
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Q5. Prove Lemma 8.1.

Solution. We recall the statement. Suppose T is noetherian and non empty. Then there is a unique finite

collection {Ti} of irreducible closed subsets of T such that

(a) T = [iTi.

(b) Ti 6✓ [j 6=iTj for all i.

We first prove that T is the union of a finite collection of irreducible closed subsets. Denote this statement

by S(T ). To prove S(T ), we first make the assumption (*) that for any proper closed subset C of T (ie such

that C 6= T ) we have S(C). Now if T is irreducible then S(T ) holds tautologically. If T is not irreducible,

then T has a non dense open subset and so T contains two disjoint non empty open subsets U1 and U2, so

that T = (T\U1)[ (T\U2), where (T\U1) and (T\U2) are not contained in each other. Since we know that

S(T\U1) and S(T\U2) hold, we obtain a presentation of T as a union of finitely many irreducible closed

subsets.

So the claim is proven under assumption (*). Now suppose for contradiction that (*) does not hold. Then

T has a proper closed subset C1 so that S(C1) does not hold. Hence C1 is in particular not irreducible

and thus can be written as union of two proper closed subsets C 0 and C 00. We know that either S(C 0) or

S(C 00) does not hold (otherwise S(C1) would hold), so suppose that S(C 0) does not hold. Write C2 := C 0.

Repeating the same process for C2 in place of C1 and continuing in the same way, we obtain a sequence

C1 ) C2 ) C3 ) . . .

contradiction the fact that C1 is noetherian. So we conclude that (*) holds and in particular we have

established S(T ).

So T is a union of finitely many irreducible closed subsets. Since this set of irreducible closed subsets is

finite, it has maximal elements for the relation of inclusion and also any element of it is contained in a

maximal element. Let {Ti} be the set of maximal elements. Then we have T = [iTi (since any element is

contained in a maximal element) and we have Ti 6✓ [j 6=iTj for all i, because if Ti ✓ [j 6=iTj for some index

i, then Ti is contained in Tj for some j 6= i (because Ti is irreducible), which contradicts maximality. So we

have established the existence of a collection {Ti} with properties (a) and (b).

We now prove uniqueness. So suppose that we have a collection {Ti} with properties (a) and (b). We note

that the Ti are precisely the closed irreducible subsets of T , which are maximal among all irreducible closed

subsets of T for the relation of inclusion. Indeed, let C ✓ T be an irreducible closed subset and suppose

that C ◆ Ti for some i. Since C ✓ Tj for some j (because C ✓ [iTi and C is irreducible), we have Ti ✓ Tj .

This implies that Ti = Tj by property (b). Hence C = Ti. So the Ti are maximal among all irreducible

closed subsets of T for the relation of inclusion. On the other hand, suppose that C is a closed irreducible

subset of T , which is maximal for the relation of inclusion. Then C ✓ Ti for some i (again just because

C is irreducible) and thus C = Ti by maximality. Hence he Ti are precisely the closed irreducible subsets

of T , which are maximal among all irreducible closed subsets of T for the relation of inclusion. But this

determines the Ti uniquely.

Q6. Let T be a topological space. Let {Vi} be an open covering of T. Let C ✓ T be an irreducible closed

subset (hence non empty).

(1) Show that C \ Vi is irreducible if C \ Vi 6= ; and that supi,C\Vi 6=; cod(C \ Vi, Vi) = cod(C, T ) and

supi dim(Vi) = dim(T ).
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(2) Prove Proposition 8.6. Give an example of a noetherian topological space of infinite dimension.

Solution. (1) First part. We first show that C \ Vi is irreducible if C \ Vi is not empty. If U ✓ C \ Vi is

open (for the induced topology) and non empty it is also open in C, and hence it is dense in C, and hence

dense in C \ Vi. So C \ Vi is also irreducible. To show that supi,C\Vi 6=; cod(C \ Vi, Vi) = cod(C, T ), note

first that from the definitions, we have cod(C \ Vi, Vi)  cod(C, T ) for all i such that C \ Vi 6= ;. So we

only have to prove that there is an i0 := i0(C) such that cod(C \ Vi0 , Vi0) > cod(C, T ). So let

C ( C1 ( C2 ( · · · ( Ccod(C,T )

be an ascending sequence of closed irreducible subsets. Let i0 be an index such that C \ Vi0 6= ;. We then

have Cj \ Vi0 6= ; for all j > 1 and moreover Cj is the closure of Cj \ Vi0 in T since Cj is irreducible and

closed in T . Hence we also have

C \ Vi0 ( C1 \ Vi0 ( C2 \ Vi0 ( · · · ( Ccod(C,T ) \ Vi0

So we have cod(C \ Vi0 , Vi0) > cod(C, T ) as required.

Second part. Using the first part, we have

dim(T ) = sup
C irreducible closed in T

cod(C, T ) = sup
C irreducible closed in T

sup
i,C\Vi 6=;

cod(C \ Vi, Vi)

= sup
i

sup
C irreducible closed in T ,C\Vi 6=;

cod(C \ Vi, Vi) = sup
i

sup
eC irreducible closed in Vi

cod( eC, Vi) = sup
i

dim(Vi)

where we have used Q4 (1) in the equality before last. So the second part follows from the first part.

(2) First part. This follows from (1) and the fact that the dimension of a polynomial ring is finite (Theorem

8.4). Indeed an a�ne variety is topologically a closed subset of kn for some n > 0 and thus all its closed

subsets have finite dimension and codimension because kn has finite dimension. The general case then

follows from (1) and the fact that a variety has a finite covering by a�ne open subvarieties.

Second part. Consider the natural numbers N with the topology in which the closed subsets are the subsets

Cn := {1, 2, 3, . . . , n}

(n > 0) (where we set C0 = ;). In this topology, the sets Cn are irreducible. Indeed, if Cn = Cm [ Ct,

then either Cm ✓ Ct or Ct ✓ Cm. So Cn cannot be written as the union of two proper closed subsets not

contained in each other, ie Cn is irreducible. Also, this topology on N is noetherian. Indeed, since all the

closed subsets are finite, any descending sequence of closed subsets must stabilise for reasons of cardinality.

Finally, we have

C1 ( C2 ( C3 ( . . .

so that N has infinite dimension.

Q7. (1) Show that any element of GLn+1(k) (= group of (n + 1) ⇥ (n + 1)-matrices with entries in k and

with non zero determinant) defines an automorphism of Pn(k).

(2) Show that if V is a projective variety, then for any two points v1, v2 2 V , there is an open a�ne

subvariety V0 ✓ V such that v1, v2 2 V0.

Solution. (1) Let M 2 GLn+1(k). Define a map �M : Pn(k) ! Pn(k) by the formula

�M ([v̄]) = [M · v̄] = [
X

j

M0jvj ,
X

j

M1jvj , . . . ,
X

j

Mnjvj ]
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By Q2, this is a morphism from Pn(k) to Pn(k). Its inverse is by construction given by �M�1 . This

construction in fact gives a homomorphism of groups GLn+1(k) ! Aut(Pn(k)).

(2) It is su�cient to prove this for V = Pn(k).

Indeed, suppose that V is a closed subvariety of Pn(k). Suppose that U ✓ Pn(k) is an open a�ne subvariety

such that v1, v2 2 U . Note that C \ U is a closed subset of U and an open subset of C. By construction,

the sheaf of functions that C \ U inherits from C as an open subvariety of C is the same as the sheaf of

functions it inherits from U as closed subvariety of U (this follows from the definitions). On the other hand,

if one endows C \U with the sheaf of functions it inherits from U as a closed subvariety, then the resulting

Topskf is a�ne by Lemma 5.4. Hence C \U is an a�ne open subvariety of C. Furthermore, C \U contains

both v1 and v2.

So we prove the statement for Pn(k). Suppose that v1 = [v̄1] and v2 = [v̄2], where v̄1, v̄2 2 kn+1
\{0}. We

may suppose that v1 6= v2 (otherwise take V0 to be any open subvariety containing v1) and so v̄1 and v̄2
are not multiples of each other. In particular, v̄1 and v̄2 are linearly independent. Now let i 2 {0, . . . , n}

be such that v1 2 Ui, where Ui is one of the standard coordinate charts. Let w̄ 2 kn+1
\{0} be such that

[w̄] 2 Ui\{v1}. Choose M 2 GLn+1(k) such that M(v̄1) = v̄1 and M(v̄2) = w̄. So in particular, �M (v1) = v1
and �M (v2) 2 Ui. Then we have v1, v2 2 ��1

M (Ui) = �M�1(Ui). Now �M�1(Ui) is an open a�ne subvariety

of Pn(k) because Ui is a�ne and �M�1 is an automorphism of varieties.

Q8. (optional) (1) Let P (x0, . . . , xn) be a homogenous polynomial. Show that all the irreducible factors of

P are also homogenous.

(2) Let D ✓ Pn(k) be a closed subvariety. Suppose that D is irreducible and that cod(D,Pn(k)) = 1. Show

that there is a homogenous irreducible polynomial P 2 k[x0, . . . , xn] such that D = Z(P ).

Solution. (1) Let Q be an irreducible factor of P . Since P is homogenous, the polynomial Q(tx0, . . . , txn)

is also an irreducible factor of P (up to a constant) for all t 2 k\{0}. Since there are only finitely many

irreducible factors, we thus see that for infinitely many t 2 k, we have Q(tx0, . . . , txn)/Q0 2 k for some

(irreducible) polynomial Q0. In other words, for infinitely many t 2 k, we have

Q(tx0, . . . , txn) =
X

i>0

tiQ[i](x0, . . . , xn) = c(t)Q0

for some c(t) 2 k . By the same Vandermonde argument used in Q3, we conclude that each Q[i] is a multiple

of Q0 by a constant. In particular, each non zero Q[i] has the same degree so that only one Q[i] can be non

zero. In particular, Q is homogenous.

(2) Let Di := D \ Ui, where Ui a coordinate chart such that D \ Ui 6= ;. By Q6 (1), we may suppose that

cod(D\Ui, Ui) = 1. Then u�1
i (Di) corresponds to a prime ideal p of height one in k[x0, . . . , qxi, . . . , xn] (use

Lemma 2.5 and the fact that Di \ Ui is irreducible).

We claim that p is principal. To see this, let P 2 p. Since k[x0, . . . , qxi, . . . , xn] is a UFD, we can write

P =
Q

j Pj , where Pj is irreducible. Since p is prime we have p ◆ (Pj0) for some j0. However, since Pj0 is

irreducible, the ideal (Pj0) is prime. Since p has height one (and because the 0 ideal is prime), we thus have

p = (Pj0), proving the claim.

Now write Q := Pj0 . Note that since D is irreducible, the closure of D \ Ui in Pn(k) is D. On the other

hand, by Q1 (2) the closure of D \ Ui in Pn(k) is

Z(xdeg(Q)
i Q(x0/xi, . . . , xi�1/xi, ~xi/xi, xi+1/xi, . . . , xn/xi)) =: Z(�i(Q))
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(see Q1 for the notation). We contend that �i(Q) is also irreducible. To see this, suppose for contradiction

that �i(Q) is not irreducible. Then �i(Q) = S1S2, where S1 and S2 are non constant. By (1) we may

assume that S1 and S2 are homogenous. Also �i(Q) is by construction not divisible by xi and so neither

are S1 and S2. We then have

Q = �i(Q)(x0, . . . , xi�1, 1, xi+1, . . . , xn) = S1(x0, . . . , xi�1, 1, xi+1, . . . , xn)S2(x0, . . . , xi�1, 1, xi+1, . . . , xn)

so that either S1(x0, . . . , xi�1, 1, xi+1, . . . , xn) or S2(x0, . . . , xi�1, 1, xi+1, . . . , xn) is constant (since Q is

irreducible). Say S1(x0, . . . , xi�1, 1, xi+1, . . . , xn) is constant. Since we have

�i(S1(x0, . . . , xi�1, 1, xi+1, . . . , xn)) = S1

(because S1 is homogenous and not divisible by xi) we conclude that S1 is a constant, which is a contradic-

tion. So �i(Q) is irreducible.

So we have D = Z(�i(Q)), where �i(Q) is irreducible, which is what we wanted to prove.
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