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The Problem

We wish to solve the first order initial value problem: find u(t)
such that

du

dt
= f(t, u) ,

for t > 0 with u(0) = u0.



The Problem
The study of vector-valued first order problems also allows us to
solve (scalar) higher order problems. For example, suppose we wish
to solve

u(n)(t) = f
(
t, u(t), u′(t), u′′(t), . . . , u(n−1)(t)

)
,

for t > 0 with u(0), u′(0), u′′(0), . . ., u(n−1)(0) all given.

We can then set u1(t) = u(t), and uk(t) = u(k−1)(t) for
k = 2, . . . , n. This gives u′k(t) = uk+1 so that we have a system:

u′1 = u2(t)

u′2 = u3(t)
...

u′n−1 = un(t)

u′n = f (t, u1(t), u2(t), . . . , un−1(t))

with u1(0), u2(0), . . . , un(0) all given.



Scalar Problem

We shall write everything in terms of the scalar problem: find u(t)
such that

du

dt
= f (t, u) ,

for t > 0 with u(0) = u0, but all methods are easily generalised to
the case where the solution is a vector.



Existence and Uniqueness of Solution to Scalar Problem
Theorem: Picard
Suppose that f (t, u) is a continuous function of t and u in a
region Ω = [0,T )× [u0 − α, u0 + α] of the (t, u) plane and that
there exists L > 0 such that

|f (t, u)− f (t, v)| ≤ L|u − v | , ∀(t, u), (t, v) ∈ Ω .

L is called a Lipschitz constant and this a Lipschitz condition.
Suppose also that

MT ≤ α ,

where M = maxΩ |f |. Then there exists a unique continuously
differentiable function u(t) defined on [0,T ) satisfying

du

dt
= f (t, u) , 0 < t < T ,

u(0) = u0 .



Numerical Methods

Suppose we want to solve

u′(t) = f (t, u) , t > 0 ,
u(0) = u0 .

(1)

In order to solve (1) numerically over the time interval [0,T ], we
define a set of time points at which we wish to approximate the
solution. We set tn = n∆t for n = 0, 1, . . . ,N where ∆t = T/N.

Then we can integrate (1) to get

u(tn+1) = u(tn) +

∫ tn+1

tn

f (t, u(t))dt . (2)

Using different approximations to the integral in (2) leads to
different numerical schemes.



Simplest Methods — Euler Methods
Perhaps the simplest numerical methods are the explicit and
implicit Euler methods (also known as forward and backward
Euler).

Here we let Un be the numerical approximation to u(tn).

For explicit (or forward) Euler we use∫ tn+1

tn

f (t, u(t))dt ≈ ∆tf (tn, u(tn)) .

(Recall tn+1 − tn = ∆t.)

This gives the numerical scheme

Un+1 = Un + ∆tf (tn,Un) ,

or equivalently

Un+1 − Un

∆t
= f (tn,Un)

for n = 0, 1, . . . ,N − 1 and with U0 = u0.



Simplest Methods — Euler Methods

For implicit Euler we use∫ tn+1

tn

f (t, u(t))dt ≈ ∆tf (tn+1, u(tn+1)) ,

This gives the numerical scheme

Un+1 = Un + ∆tf (tn+1,Un+1) ,

or equivalently

Un+1 − Un

∆t
= f (tn+1,Un+1)

for n = 0, 1, . . . ,N − 1 and with U0 = u0.



Simplest Methods — Euler Methods

Explicit Euler is particularly simple. Given U0 = u0 and the
function f we compute

Un+1 = Un + ∆tf (tn,Un)

for n = 0, 1, . . ..

Implicit Euler is more complex in the sense that if we are given
U0 = u0 and the function f we compute Un+1 as the solution to
the nonlinear equation

Un+1 = Un + ∆tf (tn+1,Un+1)

for n = 0, 1, . . .. The solution to this nonlinear equation can be
computed by (say) Newton’s method. At timestep n + 1, a good
starting guess for Newton’s method is Un.



Trapezium Rule/Crank Nicolson Scheme

Another option is to use the trapezium rule to approximate the
integral via∫ tn+1

tn

f (t, u(t))dt ≈ ∆t

2
(f (tn, u(tn)) + f (tn+1, u(tn+1))) ,

This gives rise to a numerical scheme known as the trapezium rule
or the Crank Nicolson scheme

Un+1 = Un +
∆t

2
(f (tn,Un) + f (tn+1,Un+1)) ,

or equivalently

Un+1 − Un

∆t
=

1

2
(f (tn,Un) + f (tn+1,Un+1))

for n = 0, 1, . . . ,N − 1 and with U0 = u0. We can think of this as
the average of explicit and implicit Euler.



Generalisation — θ-Methods

Both the explicit and implicit Euler methods, as well as the Crank
Nicolson method, are specific cases of the θ-method which is given
by

Un+1 − Un

∆t
= θf (tn+1,Un+1) + (1− θ)f (tn,Un) (3)

for n = 0, 1, . . . and with U0 = u0. Special cases are

I θ = 0 — explicit Euler

I θ = 1 — implicit Euler

I θ = 1/2 — Crank Nicolson method

For all non-zero values of θ, the method is implicit and a nonlinear
equation must be solved at each time-step.



Example 1
Consider the problem

u′(t) = λu , t > 0 ,

u(0) = 1 .

The numerical schemes for this are:

I Explicit Euler: Un+1 = Un + λ∆tUn = (1 + λ∆t)Un.

I Implicit Euler: Un+1 = Un + λ∆tUn+1, or equivalently

Un+1 =
Un

1− λ∆t
.

I θ-method: Un+1 = Un + λ∆t((1− θ)Un + θUn+1), or
equivalently

Un+1 =
1 + (1− θ)λ∆t

1− θλ∆t
Un .

All are for n = 0, 1, . . . ,N − 1 and with U0 = 1.
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Example 1 Results
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Example 2
Consider the system

u′(t) = −v , u(0) = 1

v ′(t) = u, v(0) = 0

which has exact solution u(t) = cos t and v(t) = sin t. The system
also has a conserved quantity u2 + v2 = 1.

Let (Un,Vn) denote the approximation to (u(tn), v(tn)), then the
θ-method takes the form

Un+1 − Un

∆t
= −θVn+1 − (1− θ)Vn ,

Vn+1 − Vn

∆t
= θUn+1 + (1− θ)Un ,

or equivalently, on re-arranging(
1 θ∆t

−θ∆t 1

)(
Un+1

Vn+1

)
=

(
1 −(1− θ)∆t

(1− θ)∆t 1

)(
Un

Vn

)
for n = 0, 1, . . . ,N − 1 and with U0 = 1 and V0 = 0.



Example 2 Results
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Example 2 Explanation

To explain the results, note that it can be shown that

U2
n+1 + V 2

n+1 =

(
1 +

(1− 2θ)∆t2

(1 + θ2∆t2)

)
(U2

n + V 2
n )

Thus if U0 = 1 and V0 = 0 we have

U2
n + V 2

n =

(
1 +

(1− 2θ)∆t2

(1 + θ2∆t2)

)n

and so

I U2
n + V 2

n > 1 for θ < 1/2,

I U2
n + V 2

n = 1 for θ = 1/2,

I U2
n + V 2

n < 1 for θ > 1/2.

(Symplectic integrators preserve conserved quantities for
Hamiltonian systems.)



Euler Derivations Using Taylor Series
The explicit and implicit Euler schemes can also be motivated
using Taylor series expansions. Consider expanding u(tn+1) about
the point tn. We have

u(tn+1) = u(tn) + ∆tu′(tn) +O(∆t2) .

We can rearrange this to get

u′(tn) =
u(tn+1)− u(tn)

∆t
+O(∆t) .

Substituting this expression into the differential Equation (1)
evaluated at tn, namely

u′(tn) = f (tn, u(tn)) ,

gives

u(tn+1)− u(tn)

∆t
+O(∆t) = f (tn, u(tn)) .



Euler Derivations Using Taylor Series

If we approximate u(tn) by Un and ignore the O(∆t) term in

u(tn+1)− u(tn)

∆t
+O(∆t) = f (tn, u(tn)) ,

we recover the explicit Euler scheme

Un+1 − Un

∆t
= f (tn,Un) .

Similarly, if we expand u(tn) about tn+1, rearrange, substitute into
Equation (1) evaluated at tn+1, and ignore the O(∆t) term, we
can recover the implicit Euler scheme.



Truncation Error

As we have just seen, the Euler methods can be derived by
truncating Taylor series and the truncation error measures the error
committed by doing this. The truncation error for the θ-method is
defined as

Tn =
un+1 − un

∆t
− θf (tn+1, un+1)− (1− θ)f (tn, un) , (4)

where un = u(tn) is the exact solution at the point tn. The
truncation error can be computed using Taylor series expansions
about an appropriately chosen time point.

For θ = 0 (i.e. explicit Euler), the expansions are usually performed
about t = tn, while for θ = 1 (i.e. implicit Euler), the expansions
are usually performed about t = tn+1. For general values of θ it is
standard to expand about tn+1/2 = (tn + tn+1)/2 = tn + ∆t/2.



Truncation Error — Explicit Euler Scheme

For the explicit Euler scheme we thus have

Tn =
un+1 − un

∆t
− f (tn, un) . (5)

We have

un+1 = u(tn+1) = u(tn + ∆t)

= u(tn) + ∆tu′(tn) +
1

2
∆t2u′′(τn) , (6)

for some τn ∈ [tn, tn+1].



Truncation Error — Explicit Euler Scheme

Substituting (6) in (5) gives

Tn =
u(tn) + ∆tu′(tn) + 1

2 ∆t2u′′(τn)− u(tn)

∆t
− f (tn, u(tn))

= u′(tn)− f (tn, u(tn)) +
1

2
∆tu′′(τn) .

Finally we recall the original ODE was u′(t) = f (t, u(t)) so the
O(1) terms cancel and we are left with

Tn =
1

2
∆tu′′(τn) ,

as the truncation error for the explicit Euler scheme.



Truncation Error — θ-Method
Note that since u′(tn) = f (tn, u(tn)), we may re-write the
expression for the truncation error

Tn =
un+1 − un

∆t
− θf (tn+1, un+1)− (1− θ)f (tn, un)

=
un+1 − un

∆t
− θu′(tn+1)− (1− θ)u′(tn) . (7)

We have

u(tn) = u(tn+1/2 −∆t/2)

= u(tn+1/2)− ∆t

2
u′(tn+1/2) +

1

2

(
∆t

2

)2

u′′(tn+1/2)

+O(∆t3) .

Similarly,

u(tn+1) = u(tn+1/2) +
∆t

2
u′(tn+1/2) +

1

2

(
∆t

2

)2

u′′(tn+1/2)

+O(∆t3) .



Truncation Error — θ-Method
We can also expand the first derivatives in Equation (7):

u′(tn) = u′(tn+1/2)− ∆t

2
u′′(tn+1/2) +O(∆t2) ,

u′(tn+1) = u′(tn+1/2) +
∆t

2
u′′(tn+1/2) +O(∆t2) .

Substituting these four expansions into (7) gives

Tn =
1

∆t

{(
u(tn+1/2) +

∆t

2
u′(tn+1/2) +

1

2

(
∆t

2

)2

u′′(tn+1/2)

)

−

(
u(tn+1/2)− ∆t

2
u′(tn+1/2) +

1

2

(
∆t

2

)2

u′′(tn+1/2)

)}

−θ
(
u′(tn+1/2) +

∆t

2
u′′(tn+1/2)

)
−(1− θ)

(
u′(tn+1/2)− ∆t

2
u′′(tn+1/2)

)
+O(∆t2) . (8)



Truncation Error — θ-Method

Many of the terms in (8) cancel so the truncation error simplifies to

Tn =
∆t

2
(1− 2θ)u′′(tn+1/2) +O(∆t2) .

It can be shown by writing out the O(∆t2) terms in full, that they
do not cancel for any value of θ.

Thus we have shown that for constant θ

Tn =

{
O(∆t) for θ 6= 1/2
O(∆t2) for θ = 1/2

so that the truncation error of the Crank Nicolson scheme
converges twice as fast as that of all other θ-methods.



Truncation Error — θ-Method

In fact, we can be more precise using the approach we used for the
truncation error of the explicit Euler scheme.

We can show that

Tn =


∆t
2 u′′(τ

(1)
n ) for θ = 0

−∆t2

12 u′′′(τ
(2)
n ) for θ = 1/2

−∆t
2 u′′(τ

(3)
n ) for θ = 1

where τ
(i)
n ∈ [tn, tn+1] for i = 1, 2, 3.



Order of a Method

The order of a method is defined to be p where p is the largest
integer such that Tn = O(∆tp). Alternatively we may call the
method pth order.

We have

I If θ 6= 1/2, the θ-method is 1st order.

I If θ = 1/2, the θ-method is 2nd order.



Pointwise Errors
Recall the definition of the θ-method (3) and the corresponding
truncation error (4):

Un+1 − Un

∆t
= θf (tn+1,Un+1) + (1− θ)f (tn,Un) ,

Tn =
un+1 − un

∆t
− θf (tn+1, un+1)− (1− θ)f (tn, un) .

We re-arrange both of these to get

Un+1 = Un + ∆t (θf (tn+1,Un+1) + (1− θ)f (tn,Un)) (9)

and

un+1 = un + ∆t (θf (tn+1, un+1) + (1− θ)f (tn, un)) + ∆tTn . (10)

Now consider subtracting (9) from (10), taking the modulus, and
applying the triangle inequality. This gives

|un+1 − Un+1| ≤ |un − Un|+ θ∆t|f (tn+1, un+1)− f (tn+1,Un+1)|
+(1− θ)∆t|f (tn, un)− f (tn,Un)|+ ∆t|Tn| . (11)



Pointwise Errors
Next suppose that the right-hand-side function f (t, u) satisfies a
Lipschitz condition in its second argument, with Lipschitz constant
L, so that

|f (t, u)− f (t, v)| ≤ L|u − v | , ∀(t, u), (t, v) ∈ Ω .

We can use this in (11) to get

|un+1 − Un+1| ≤ |un − Un|+ θ∆tL|un+1 − Un+1|
+(1− θ)∆tL|un − Un|+ ∆t|Tn| .

We can re-arrange this to get (for ∆t sufficiently small)

(1− Lθ∆t)|un+1 − Un+1| ≤ (1 + L(1− θ)∆t)|un − Un|
+∆t|Tn|

≤ (1 + L(1− θ)∆t)|un − Un|
+∆tTmax , (12)

where Tmax = max0≤n≤N |Tn| is an upper bound on the absolute
value of the truncation error.



Pointwise Errors

Now let en = un − Un denote the error at time tn. Then (12) can
be written as

|en+1| ≤
1 + L(1− θ)∆t

1− Lθ∆t
|en|+

∆tTmax

1− Lθ∆t
. (13)

We can show by induction that

|en| ≤
(

1 + L(1− θ)∆t

1− Lθ∆t

)n

|e0|

+
∆tTmax

1− Lθ∆t

n∑
r=1

(
1 + L(1− θ)∆t

1− Lθ∆t

)r−1

≤
(

1 + L(1− θ)∆t

1− Lθ∆t

)n

|e0|+
Tmax

L

[(
1 + L(1− θ)∆t

1− Lθ∆t

)n

− 1

]
,

where the final line comes from evaluating the sum and
simplifying. This holds for n = 0, 1, . . . ,N.



Pointwise Errors

In practice, we usually set U0 = u0 which means that e0 = 0.

We also have

1 + L(1− θ)∆t

1− Lθ∆t
= 1 +

L∆t

1− Lθ∆t

≤ exp

(
L∆t

1− Lθ∆t

)
.

In turn this means(
1 + L(1− θ)∆t

1− Lθ∆t

)n

≤
(

exp

(
L∆t

1− Lθ∆t

))n

≤ exp

(
nL∆t

1− Lθ∆t

)
≤ exp

(
LT

1− Lθ∆t

)
.



Pointwise Errors

Thus we have

|en| ≤
Tmax

L

[
exp

(
LT

1− Lθ∆t

)
− 1

]
, (14)

for n = 0, 1, . . . ,N.

This shows that the pointwise error has the same order as the
truncation error.



Summary

I For the initial value problem

u′(t) = f (t, u) , t ∈ (0,T ] ,
u(0) = u0 ,

the θ-method approximates the solution u(t) at the discrete
points tn = n∆t, n = 0, 1, . . . . ,N. Specifically the method
approximates u(tn) by Un which solves

Un+1 − Un

∆t
= θf (tn+1,Un+1) + (1− θ)f (tn,Un)

for n = 0, 1, . . . ,N − 1, with U0 = u0.

I If θ = 0, the method is explicit.

I If θ > 0, the method is implicit and a nonlinear system must
be solved at each timestep.

I If θ = 1/2 the method is second order accurate, otherwise the
error is first order accurate.


