Analytic Topology: Problem sheet 0

1. (i) Prove that every compact subset of a Hausdorff space is closed.

Let X be a Hausdorff space, and let K be a compact subset of X.
We show that K is closed by showing that its complement is open.
Suppose that x is not an element of K.

For each y € K, we use Hausdorffness of X to find disjoint open subsets U, and V,, of
X such that z € Uy and y € V,.

Now the family {V,, : y € K} is an open cover of K.

K is compact, so there exists a finite subcover {V,, : i < n} (where n is some natural
number).

Let U =(,.,, Uy,.

Then for all ¢ < n, U C U,,. SoUNV,, = @. Also notice that U is a finite intersection
of open sets, so it is open.

Let V = U, Vi

Then because U NV,, = @ for all i, UNV = &, and because {V,, : i < n} is a cover
of K, KCV. Hence UNK = @.

Hence for any x ¢ K, we have an open set U such that x € U and UN K = @.

So the complement of K is open, and hence K itself is closed, as required.

(ii) Give an example of a space X with a compact subset K which is not closed.

There are many examples. The simplest is probably the two-point indiscrete space
X =1{0,1} (recall that a space X is indiscrete if and only if the only open sets are @ and
the the whole space X), with K = {0}: K is neither the empty set nor the whole of X, so
it is not closed, but it is finite, so it is compact.

2. (i) Prove that every closed subset of a compact space is compact.

Let X be a compact space, and let C be a closed subset.
Let % be an open cover of C.

Then because C' is closed, X \ C' is open.

Thus 77U {X \ C} is an open cover of X.

Now X is compact, so there exists ¥ which is a finite subset of ZU {X \ C} and is a
cover for X.

The extra set X \ C' may or may not be a member of ¥. If it is not, then ¥'is already
the finite subcover of % that we are seeking. If it is, we eliminate it, to obtain ¥\ {X \ C'},
which is a finite subset of %, and is a cover of C.

Thus C' is compact.
(ii) Give an example of a space X with a closed subspace A which is not compact.

There are many examples of this. One of the most familiar is X = R with the usual
topology, and A = [0, 00).



3. Prove that the image of any compact space under a continuous function is compact.

Suppose that X is a compact space, and that f: X — Y is a continuous surjection.
Let % be an open cover of Y.
Then for each element U of %, f~1(U) is an open set, because f is continuous.

Also the set {f~1(U) : U € %} is a cover of X.
Because X is compact, there is a finite subset {f~1(U;) : i < n} which is a cover of

Then {U; : i < n} is a finite subset of % which is a cover for Y.
Hence Y is compact.

4. (i) Prove that if X is a compact space, Y is a Hausdorff space, and f : X — Y is
bijective and continuous, then it is a homeomorphism.

It is sufficient to prove that f~!:Y — X is continuous.

Recall that a function is continuous if and only if the inverse image of every closed set
is closed.

So let C' be a closed subset of X. We consider its inverse image under the function
f~* namely (f~)7H[C].

This is equal to the forward image f[C] of C under f.

Now (' is a closed subset of X, and X is compact.

Hence C' is compact.

The image of any compact space under a continuous function is compact.

Hence f[C] is compact.

Now Y is Hausdorff, so f[C] is closed.

Thus the inverse image of any closed set under the map f~! is closed, so f~! is
continuous.

Thus f is a homeomorphism.

(ii) Give examples to show that the hypotheses that X is compact and that' Y is Haus-
dorff cannot be omitted.

We note that any function whose domain is discrete is continuous, and any function
whose range is indiscrete is continuous.

Let X and Y be spaces of the same infinite size, such that X is discrete and Y is
not, and let f: X — Y be a bijection. Then f is automatically continuous, but is not a
homeomorphism.

Note that because X is infinite and discrete, it is not compact.

Now let X and Y be spaces of the same size, which must be at least two, such that Y
is indiscrete and X is not, and let f : X — Y be a bijection. Then again f is automatically
continuous, but is not a homeomorphism.

Note that because Y is indiscrete and has at least two distinct points, it is not Haus-
dorff.

5. Let (X,d) be a metric space.

(i) Show that a subset A of X is closed if and only if every accumulation point a of a
sequence (an)nen of elements of A, is itself an element of A.



First, suppose that A is closed. Let (a,)nen be a sequence of elements of A, and let
a be an accumulation point of this sequence.

Recall that a belongs to the closure of A if and only if every open set containing a
meets A.

But every open set containing a also contains a,, for infinitely many values of n, and
thus contains at least one point of A, as required.

So a belongs to A.

But A is closed, so A = A, so a belongs to A.

Now suppose that whenever a is an accumulation point of a sequence (a,)nen On A,
then a is an element of A.

We argue that A is closed, by showing that A C A.

For suppose that a is an element of A.

Then every open set containing a meets A.

Let a,, be a point of A contained in the ball of radius 1/n around a.

Then the sequence (a,)nen converges to a.

A fortiori, a is an accumulation point of the sequence.

By our hypothesis, a now belongs to A.

So we have shown that A C A, and so A is closed.

(ii) Show that if a is an accumulation point of a sequence (an)nen, then there is a
subsequence of (an)nen which converges to a.

Since a is an accumulation point of the sequence (a,)nen, every open set containing
a contains a,, for infinitely many values of n.

For each natural number k£ > 1, let ny be such that a,, is contained in the ball of
radius 1/k about a, and such that for all k, ny < ngy;.

Then the sequence (ay, )ren converges to a, as required.

(iii) Deduce that in a metric space, the topology can be completely described in terms
of convergent sequences.

This part just consists of restating what we’ve already proved.

A set A in a metric space is closed if and only if every accumulation point of any
sequence on A is contained in A, if and only if the limit of every convergent sequence of
elements of A is contained in A.

That is, we can tell whether A is closed purely by examining the convergent sequences
of X.

Thus we can tell whether a set is open purely by looking at the convergent sequences
of X; that is, the topology can be completely described in terms of convergent sequences.

6. Let X be a Hausdorff space, let x be an element of X, and let C' be a compact subset
of X such that x ¢ C'. Prove that there exist disjoint open sets U and V' such that x € U
and C C V.

Following the hint, we use Hausdorffness of X to show that for each y € C there exist
disjoint open sets U, > x and V,, 3 y.

Now the family {V, : y € C} is an open cover of C.

Let {V}, : i <n} be a finite subcover.



Let V =J,., Vy, and let U =,_,, Uy,. U is a finite intersection of open sets, so it’s
open. (This is the point at which compactness is crucial.) Also, UNV = &; and x € U

and C C V.

7. Prove that a product of two compact spaces is compact.

Let X and Y be compact spaces, and suppose that % is an open cover of X x Y.
For each x € X and y € Y, let U, , be an open subset of X and V, , be an open
subset of Y such that for some element W, , of the open cover %,

('CC? y) S U‘r7y X Vmay g Wx’y-

Fix « for a moment. Then for eachy € Y,y € V, ,, s0 {V,, : ¥y € Y} is an open cover
of the compact space Y. So let F;, be a finite subset of Y such that {V, , : y € F,} covers
Y.

Then the finite family

covers {x} x Y.
Let U, = ﬂyEFx U,y. Then U, is a finite intersection of open sets, so it is open. Also
z € U,, so

(2} xY CUxY =Upx | Vay= |J Us xVary € | Uryy x Vo

yeky, YyeEF, yEFy,

Now for each z, x € U,, so the open sets U, cover the compact space X, so let G be
a finite subset of X such that {U, : z € G} covers X.
Then X = J,cq Us-

Hence

XxY:<U Um)xY: UWexy)C | U Uy x Vau-

zeG zeG rzeG yeF,

It follows that the family {U, , X V2 € G,y € F,} covers X x Y.

Hence so does %' = {W,, :x € G, y € F,}.

Since G is finite, and all sets F}, are finite, so is %’; so %' is a finite subcover.
The proof that X x Y is compact is now complete.

This argument can obviously be iterated to show that a product of three, four, five,. ..
compact spaces is compact. However it provides no clue as to how to extend this to infinite
products of compact spaces.



