
Analytic Topology: Problem sheet 0

1. (i) Prove that every compact subset of a Hausdorff space is closed.

Let X be a Hausdorff space, and let K be a compact subset of X .

We show that K is closed by showing that its complement is open.

Suppose that x is not an element of K.

For each y ∈ K, we use Hausdorffness of X to find disjoint open subsets Uy and Vy of
X such that x ∈ Uy and y ∈ Vy.

Now the family {Vy : y ∈ K} is an open cover of K.

K is compact, so there exists a finite subcover {Vyi
: i < n} (where n is some natural

number).

Let U =
⋂

i<n Uyi
.

Then for all i < n, U ⊆ Uyi
. So U ∩Vyi

= ∅. Also notice that U is a finite intersection
of open sets, so it is open.

Let V =
⋃

i<n Vyi
.

Then because U ∩ Vyi
= ∅ for all i, U ∩ V = ∅, and because {Vyi

: i < n} is a cover
of K, K ⊆ V . Hence U ∩K = ∅.

Hence for any x /∈ K, we have an open set U such that x ∈ U and U ∩K = ∅.

So the complement of K is open, and hence K itself is closed, as required.

(ii) Give an example of a space X with a compact subset K which is not closed.

There are many examples. The simplest is probably the two-point indiscrete space
X = {0, 1} (recall that a space X is indiscrete if and only if the only open sets are ∅ and
the the whole space X), with K = {0}: K is neither the empty set nor the whole of X , so
it is not closed, but it is finite, so it is compact.

2. (i) Prove that every closed subset of a compact space is compact.

Let X be a compact space, and let C be a closed subset.

Let U be an open cover of C.

Then because C is closed, X \ C is open.

Thus U ∪ {X \ C} is an open cover of X .

Now X is compact, so there exists V which is a finite subset of U ∪ {X \ C} and is a
cover for X .

The extra set X \C may or may not be a member of V. If it is not, then V is already
the finite subcover of U that we are seeking. If it is, we eliminate it, to obtain V \ {X \C},
which is a finite subset of U, and is a cover of C.

Thus C is compact.

(ii) Give an example of a space X with a closed subspace A which is not compact.

There are many examples of this. One of the most familiar is X = R with the usual
topology, and A = [0,∞).



3. Prove that the image of any compact space under a continuous function is compact.

Suppose that X is a compact space, and that f : X → Y is a continuous surjection.
Let U be an open cover of Y .
Then for each element U of U, f−1(U) is an open set, because f is continuous.
Also the set {f−1(U) : U ∈ U} is a cover of X .
Because X is compact, there is a finite subset {f−1(Ui) : i < n} which is a cover of

X .
Then {Ui : i < n} is a finite subset of U which is a cover for Y .
Hence Y is compact.

4. (i) Prove that if X is a compact space, Y is a Hausdorff space, and f : X → Y is

bijective and continuous, then it is a homeomorphism.

It is sufficient to prove that f−1 : Y → X is continuous.
Recall that a function is continuous if and only if the inverse image of every closed set

is closed.
So let C be a closed subset of X . We consider its inverse image under the function

f−1, namely (f−1)−1[C].
This is equal to the forward image f [C] of C under f .
Now C is a closed subset of X , and X is compact.
Hence C is compact.
The image of any compact space under a continuous function is compact.
Hence f [C] is compact.
Now Y is Hausdorff, so f [C] is closed.
Thus the inverse image of any closed set under the map f−1 is closed, so f−1 is

continuous.
Thus f is a homeomorphism.

(ii) Give examples to show that the hypotheses that X is compact and that Y is Haus-

dorff cannot be omitted.

We note that any function whose domain is discrete is continuous, and any function
whose range is indiscrete is continuous.

Let X and Y be spaces of the same infinite size, such that X is discrete and Y is
not, and let f : X → Y be a bijection. Then f is automatically continuous, but is not a
homeomorphism.

Note that because X is infinite and discrete, it is not compact.
Now let X and Y be spaces of the same size, which must be at least two, such that Y

is indiscrete and X is not, and let f : X → Y be a bijection. Then again f is automatically
continuous, but is not a homeomorphism.

Note that because Y is indiscrete and has at least two distinct points, it is not Haus-
dorff.

5. Let (X, d) be a metric space.

(i) Show that a subset A of X is closed if and only if every accumulation point a of a

sequence (an)n∈N of elements of A, is itself an element of A.



First, suppose that A is closed. Let (an)n∈N be a sequence of elements of A, and let
a be an accumulation point of this sequence.

Recall that a belongs to the closure of A if and only if every open set containing a
meets A.

But every open set containing a also contains an for infinitely many values of n, and
thus contains at least one point of A, as required.

So a belongs to A.
But A is closed, so A = A, so a belongs to A.
Now suppose that whenever a is an accumulation point of a sequence (an)n∈N on A,

then a is an element of A.
We argue that A is closed, by showing that A ⊆ A.
For suppose that a is an element of A.
Then every open set containing a meets A.
Let an be a point of A contained in the ball of radius 1/n around a.
Then the sequence (an)n∈N converges to a.
A fortiori, a is an accumulation point of the sequence.
By our hypothesis, a now belongs to A.
So we have shown that A ⊆ A, and so A is closed.

(ii) Show that if a is an accumulation point of a sequence (an)n∈N, then there is a

subsequence of (an)n∈N which converges to a.

Since a is an accumulation point of the sequence (an)n∈N, every open set containing
a contains an for infinitely many values of n.

For each natural number k ≥ 1, let nk be such that ank
is contained in the ball of

radius 1/k about a, and such that for all k, nk < nk+1.
Then the sequence (ank

)k∈N converges to a, as required.

(iii) Deduce that in a metric space, the topology can be completely described in terms

of convergent sequences.

This part just consists of restating what we’ve already proved.
A set A in a metric space is closed if and only if every accumulation point of any

sequence on A is contained in A, if and only if the limit of every convergent sequence of
elements of A is contained in A.

That is, we can tell whether A is closed purely by examining the convergent sequences
of X .

Thus we can tell whether a set is open purely by looking at the convergent sequences
of X ; that is, the topology can be completely described in terms of convergent sequences.

6. Let X be a Hausdorff space, let x be an element of X, and let C be a compact subset

of X such that x /∈ C. Prove that there exist disjoint open sets U and V such that x ∈ U
and C ⊆ V .

Following the hint, we use Hausdorffness of X to show that for each y ∈ C there exist
disjoint open sets Uy ∋ x and Vy ∋ y.

Now the family {Vy : y ∈ C} is an open cover of C.
Let {Vyi

: i < n} be a finite subcover.



Let V =
⋃

i<n Vyi
and let U =

⋂

i<n Uyi
. U is a finite intersection of open sets, so it’s

open. (This is the point at which compactness is crucial.) Also, U ∩ V = ∅; and x ∈ U
and C ⊆ V .

7. Prove that a product of two compact spaces is compact.

Let X and Y be compact spaces, and suppose that U is an open cover of X × Y .
For each x ∈ X and y ∈ Y , let Ux,y be an open subset of X and Vx,y be an open

subset of Y such that for some element Wx,y of the open cover U,

(x, y) ∈ Ux,y × Vx,y ⊆ Wx,y.

Fix x for a moment. Then for each y ∈ Y , y ∈ Vx,y, so {Vx,y : y ∈ Y } is an open cover
of the compact space Y . So let Fx be a finite subset of Y such that {Vx,y : y ∈ Fx} covers
Y .

Then the finite family
{Ux,y × Vx,y : y ∈ Fx}

covers {x} × Y .
Let Ux =

⋂

y∈Fx
Ux,y. Then Ux is a finite intersection of open sets, so it is open. Also

x ∈ Ux, so

{x} × Y ⊆ Ux × Y = Ux ×
⋃

y∈Fx

Vx,y =
⋃

y∈Fx

Ux × Vx,y ⊆
⋃

y∈Fx

Ux,y × Vx,y.

Now for each x, x ∈ Ux, so the open sets Ux cover the compact space X , so let G be
a finite subset of X such that {Ux : x ∈ G} covers X .

Then X =
⋃

x∈G Ux.
Hence

X × Y =

(

⋃

x∈G

Ux

)

× Y =
⋃

x∈G

(Ux × Y ) ⊆
⋃

x∈G

⋃

y∈Fx

Ux,y × Vx,y.

It follows that the family {Ux,y × Vx,y : x ∈ G, y ∈ Fx} covers X × Y .
Hence so does U ′ = {Wx,y : x ∈ G, y ∈ Fx}.
Since G is finite, and all sets Fx are finite, so is U ′; so U ′ is a finite subcover.
The proof that X × Y is compact is now complete.

This argument can obviously be iterated to show that a product of three, four, five,. . .
compact spaces is compact. However it provides no clue as to how to extend this to infinite
products of compact spaces.


