
Statistical modelling to identify neural networks responsible for becoming neurological 

superagers 

 

Introduction 

Superagers are defined as adults more that 80 years old who have a memory performance 

similar or superior to that of middle-aged adults [1-2]. Understanding the reasons for this 

superior cognitive aging and the neurological markers in superagers is paramount to 

understanding the resilient brain areas necessary for memory maintenance in later life.  

 

Evidence to date suggests that specific neural networks differentiate superagers from age-

matched controls [3]. Differences in the default mode network (DMN) and the salience network 

(SN) have been noted in superagers which are not present in age-matched controls [3-4]. The 

DMN network is known to be active when a person is not focused on the outside world e.g. 

when an individual is thinking about others, thinking about themselves, remembering the past 

or planning for the future. Disruption in the DMN occurs in people with Alzheimer’s disease 

and the autism spectrum disorder. The salience network contributes to a variety of complex 

functions, including communication, social behaviour and self-awareness. Dysfunction in the 

salience network has been observed in various psychiatric disorders, including Alzheimer’s 

diseases, schizophrenia and dementia.  

 

Project  

This project will seek to identify whether networks additional to the DMN and SN may also  

differentiate between superagers and age-matched controls. We will use functional magnetic 

resonance (f-MRI) data from ~600 adults over 80 years old from a number of European 

neurological centers. Statistical analysis on the data will explore differences in the resting-state 

functional connectivity between superagers and age-matched controls and identify the most 

discriminative networks as well as the within-network nodes that can predict superagers. In 

addition to the DMN and SN, we will also include both executive control networks (executive 

control network left =ECN_L and executive control network right =ECN_R) and the 

hippocampal and language networks. All of these networks play an important role in the 

healthy functioning of brain activity. 

 

Within the six networks, Regions of Interest (ROIs) will be identified. The statistical analysis 

will comprise of: 

a. Developing a statistical model using penalized regression analysis [5-6] across all ROIs 

within all networks – but clustered per network- to identify which of the six networks 

are statistically different in superagers compared to age-matched controls and quantify 

this difference.  

b. Within each of the six networks a separate penalized regression analysis will explore 

nodes that are statistically different in superagers compared to age-matched controls 

and quantify this difference.  



 
Figure 1: Cortical thickness differences in average cognitive agers and cognitive superagers from [2]. 

The red and yellow regions show significant cortical thinning across both hemispheres in average 

cognitive agers compared to cognitive superagers. 

 

Prerequisites 

An interest in learning how to read and write, understand and interpret numerical code for 

statistical analysis in either R, Stata or Python. Support will be given and existing codes can be 

shared which can be adapted, extended and expanded for the purposes of this project.  

Interest in neurological aging and in interdisciplinary translational work with ability to 

communicate analysis and results with medical professionals such as neurosurgeons and 

radiologists as well as mathematicians and statisticians. 
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