Computational Mathematics - Problem Sheet 4

MT 2022

Once you have completed the exercises, use the publish command to generate a .pdf file of your solutions.

The famous sequence of Fibonacci numbers F_{i} is constructed by combining the initial conditions $F_{0}=1$ and $F_{1}=1$ with the recursive equation

$$
F_{i}=F_{i-1}+F_{i-2}
$$

so the first few terms are $1,1,2,3,5,8,13, \ldots$ The limit of successive ratios F_{i} / F_{i-1} exists and is called the Golden ratio:

$$
\phi=\lim _{i \rightarrow \infty} \frac{F_{i}}{F_{i-1}} .
$$

Its actual value is $\phi=\frac{1+\sqrt{5}}{2}$.

1. Write a function that generates the first n Fibonacci numbers.
2. Using your function from Q 1 , write a function that outputs the n-th approximation (i.e., $\left.F_{n+1} / F_{n}\right)$ to the Golden Ratio.
3. Use the function from Q 2 to compute an approximation to the Golden Ratio with accuracy 10^{-7}. Give your answer as a fraction.
4. Plot a graph of the error of your approximations against n. Your n values should range from $n=1$ to the value corresponding to the error determined in Q3.
