Problem Set 1

For this sheet assume the Empty Set Axiom, the Axioms of Extensionality, Pairs, Unions and the Comprehension Scheme. In question 1 only assume also the Powerset Axiom: if X is a set there is a set $\mathcal{P}(X)$ whose elements are precisely the subsets of X (this set is called the powerset of X).

1. For each statement give either a proof or a counterexample.
(i) $\mathcal{P}(\cup X)=X$
(ii) $\cup \mathcal{P}(X)=X$
(iii) If $\mathcal{P}(a) \subseteq \mathcal{P}(b)$ then $a \subseteq b$.
2. (a) Prove that the unordered pair $\{x, y\}$ of x and y is the unique set whose elements are precisely x and y.
(b) Let $\phi\left(z, w_{1}, \ldots, w_{k}\right)$ be a formula of \mathcal{L} and w_{1}, \ldots, w_{k}, x sets. Prove that the subset y of x afforded by the Comprehension Scheme is unique with the stated property.
3. Let a be a set. Prove that $\{a\} \times\{a\}=\{\{\{a\}\}\}$.
4. (a) Show that if we define an ordered triple (a, b, c) of sets to be $\langle\langle a, b\rangle, c\rangle$ then this definition "works": i.e. if $(a, b, c)=\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ then $a=a^{\prime}, b=b^{\prime}, c=c^{\prime}$. You may use the fact (from lectures) that $\langle a, b\rangle$ "works".
(b) for each of the following alternative possible definitions of an ordered triple, prove that the definition "works" or give a counterexample.
(i) $(a, b, c)_{1}=\{\{a\},\{a, b\},\{a, b, c\}\}$
(ii) $(a, b, c)_{2}=\{\langle 0, a\rangle,\langle 1, b\rangle,\langle 2, c\rangle\}$ (where $\left.0=\emptyset, 1=\{0\}, 2=\{0,1\}\right)$
(iii) $(a, b, c)_{3}=(\{0, a\},\{1, b\},\{2, c\})$ where $(., .,$.$) is as in part (a)$
(iv) $(a, b, c)_{4}=\{\{0, a\},\{1, b\},\{2, c\}\}$.
5. A set a is called transitive if $\bigcup a \subseteq a$, i.e. if, for all sets x, if $x \in a$ then $x \subseteq a$. Prove that
(i) \emptyset is transitive
(ii) if a is transitive then so is $a \cup\{a\}$ (this set is denoted a^{+})
(iii) a is transitive iff $\bigcup(a \cup\{a\})=a$
(iv) a is transitive iff, for all sets x, y, if $x \in y \in a$ then $x \in a$
(v) the intersection of any (non-empty) set of transitive sets is transitive
(vi) the union of any set of transitive sets is transitive
(vii) write a formula in \mathcal{L} with a free variable x expressing " x is transitive".
6. Prove the following.
(i) If x is a set, there is no set whose elements are all the sets y with $y \notin x$.
(ii) There is no set of all one-element sets.
(iii) There is no set of all two-element sets.
7. (a) Prove that
(i) if a, b, c are sets then $\{a, b, c\}$ is a set.
(ii) if x_{1}, \ldots, x_{n} are sets then $\left\{x_{1}, \ldots, x_{n}\right\}$ is a set (here $n \in \mathbb{N}$).
(iii) if X is a finite set then $\mathcal{P}(X)$ is a set (do not assume the Powerset Axiom!).
(iv) if X is a finite set then the collection of all two-element subsets of X is a set.
(b) Suppose X is a set all of whose elements are finite sets. Prove that there is a set Y consisting of all the elements of X that have an even number of elements. (Note it is not sufficient that Y "is" a subset of X.)

Hint: You must not use the power set axiom. However, from part (a) (ii) you know that a finite number of sets can always be assembled into a set with just them as elements. (So if X is a finite set then there is a set which is its powerset, but you do not necessarily need the power set...)
8. Prove that there exist infinitely many sets.

