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Recommended books and resources

There are a large variety of good textbooks and lecture notes on general relativity. This course

borrows from a number of them, in various different places. An assortment of textbooks that

have been used in writing these notes are:

• Wald, General Relativity

A very thorough introduction to the subject.

• Weinberg, Gravitation and cosmology

• Carroll, An introduction to general relativity, spacetime and geometry.

Aimed more at particle physicists. We will follow this in the cosmology section and borrow

bits for elsewhere.

• Hartle, Gravity, an introduction to Einstein’s general relativity

• Misner, Thorne and Wheeler, Gravitation

It is a very big book.

• Nakahara, Geometry, Topology and Physics

An excellent book for learning about geometry and topology and will be useful for the

differential geometry section of the notes.

There are also a number of useful lecture notes online. In particular:

• Joe Kier’s lecture notes from 2020

• David Tong’s lecture notes

• Sean Carroll’s lecture notes

• Harvey Reall’s lecture notes
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Conventions

• We will use the god-given signature convention of mostly plus (−,+,+,+). This may

differ with the convention you have used in other courses, especially field theory courses.

This convention is preferable when thinking about geometry as it gives positive spatial

distances. For quantum field theory the other convention is preferable since it ensures

that energies and frequencies are positive. You may map between the two conventions

through Wick rotation, essentially allowing the coordinates to become complex.

• Spacetime indices will be taken to be greek letters from the middle of the alphabet:

µ, ν, ρ, ... and run over 0, 1, 2, 3. Latin indices i, j, k, .. run over the spatial directions

and take values 1, 2, 3.

• We employ Einstein summation convention, repeated indices are summed over, unless

otherwise stated.

• We work in units where the speed of light c is set to 1. Occasionally it is instructive to

reintroduce c which can be done by dimensional analysis.

• The Minkowski metric will be denoted by ηµν = diagonal(−1, 1, 1, 1)µν .

• After introducing curvature we will take the metric to be gµν and the determinant will

be det(gµν) ≡ g.

Useful formulae

• The Lagrangian for the geodesic equation of a massive test particle is

L
(dxµ
dλ

, xµ
)
=

√
−gµν(x)

dxµ

dλ

dxν

dλ
,

with λ an arbitrary parameter along the worldline.

• The geodesic equation for a massive particle is

d2xµ

dτ2
+ Γµ

νρ

dxν

dτ

dxρ

dτ
= 0 , gµν(x)

dxν

dτ

dxρ

dτ
= −1 ,

where τ is the proper time. For light, the first equation takes the same form just

replacing τ with an affine parameter. The second is modified by −1 → 0.

5



• The Christoffel symbols (Levi–Civita connection) are

Γµ
νρ =

1

2
gµσ
(
∂νgσρ + ∂ρgσν − ∂σgνρ

)
.

• The Riemann tensor is

Rµ
νρσ = ∂ρΓ

µ
νσ − ∂σΓ

µ
νρ + Γµ

ρλΓ
λ
νσ − Γµ

σλΓ
λ
νρ .

– Symmetries

Rµνρσ = −Rµνσρ ,

Rµνρσ = Rσρµν .

– Bianchi identity 1

Rµ
νρσ +Rµ

ρσν +Rµ
σνρ = 0 .

– Bianchi Identity 2

∇µR
σ
λνρ +∇νR

σ
λρµ +∇ρR

σ
λµν = 0 .

• Ricci tensor

Rµν = Rρ
µρν

• Ricci scalar

R = Rµνg
µν .

• Einstein tensor

Gµν = Rµν − 1

2
Rgµν .

• Einstein–Hilbert action plus cosmological constant,

S =
1

16πG

∫
d4x

√
−g
(
R+ Λ

)
.

• Under a variation gµν → gµν + δgµν we have

δgµν = −gµρgνσδgρσ ,

δg = ggµνδgµν ,

δRµν = ∇ρδΓ
ρ
µν −∇µδΓ

ρ
ρν .
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1 Introduction

Gravity is one of the four1 fundamental forces alongside electromagnetism, the strong nuclear

force and the weak nuclear force. Of these forces gravity is by far the weakest force, the ratio

of the gravitational force to electric force acting on an electron is 10−36.2 Despite this gravity

plays a dominant role in shaping the large scale structure of the universe, this is because the

strong and weak forces have a very short range, while, though electromagnetism is a long

range force it is both attractive and repulsive and for bodies of macroscopic dimensions the

repulsion of like charges is approximately balanced by the attraction of oppositely charges.

On the other hand gravity is only an attractive force, thus for sufficiently large bodies the

gravitational field of the sum of all its constituents adds up to become the dominant force.

The leading candidate for a theory of gravity for some time was Newton’s theory of

gravitation. This however is a non-relativistic theory of gravity and therefore is incompatible

with special relativity: it is not invariant under Lorentz transformations. One can see this

by thinking about what would happen if the sun suddenly disappeared. For 8 minutes, the

time it takes for light to travel from the sun to Earth, we would be completely oblivious.

This is because special relativity tells us that no signal can travel faster than light: the Earth

must continue on its orbit for these 8 minutes, after which, it is flung out of the solar system

leading to almost certain death for all life on Earth. However, Newton’s theory of gravity

acts instantaneously, we would be flung out of the solar system immediately. In Newton’s

theory, the force on one mass depends on the location of the other mass at the same time.

Einstein’s breakthrough lead to a conceptual revolution in the way that we view space-

time. The fact that objects with the same initial conditions travel along the same curve,

independent of their mass, hints that the curve that is followed is a property of the geometry

of spacetime rather than a force acting on the body. General relativity (GR) understands

gravity as the curvature of spacetime and the trajectories within spacetime as geodesics on

this curved space. Or as John Wheeler once said, “Mass tells space how to curve, while curved

space tells matter how to move”.

The aim of this course is to introduce you to General relativity and by the end of it to

allow you to perform calculations. Among other topics we will see how gravity bends light,

the corrections to the motion of the planets and some cosmology. This is a large topic and

1One should probably add currently known to physics at this point.
2You can see this very clearly by holding two magnets together, gravity is not strong enough to pull one

magnet to the floor.
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we will therefore omit many interesting directions, but this will lay the foundation for further

study and for the follow up course general relativity II.

The notes are organised as follows. We begin by reviewing special relativity and Newto-

nian gravity in section 2. To understand general relativity properly we need to understand

the underlying geometry of spacetime. This requires knowledge of the sophisticated tools of

differential geometry to describe curved spacetime. With these new tools we are finally in a

position to introduce Einstein’s equations and physics in curved spacetime. The Schwarzschild

solution is the go to solution of general relativity and we will use it as a testing ground for

studying many interesting topics in GR including black holes, the motion of the planets and

the bending of light. We will also see what GR has to say about the large scale structure of

the universe with a trek through the world of cosmology.

2 Newtonian gravity and Special relativity

2.1 Special relativity

We begin with a whirlwind exploration of special relativity. This section is by no means meant

to be an introduction to special relativity, more a refresher on the subject and to emphasise

the pertinent points. Excellent texts for a more detailed treatment are []. Add refs

By the end of the 18th century two areas of physics that were in conflict had emerged:

Newtonian mechanics and Electromagnetism. Newtonian mechanics has a notion of absolute

time with the equations of motion are invariant under Galilean coordinate transformations.

The transformation law between two inertial frames moving at a uniform speed v in the x

direction is

(t′, x′, y′, z′) = (t, x− vt, y, z) . (2.1)

Galilean transformations imply that the speed of light should changes in different inertial

frames moving with respect to each other. This is incompatible with Maxwell’s equations

describing electromagnetism where the speed of light is fixed. A resolution to this problem

was proposed by conjecturing a preferred frame, the frame of the physical medium in which

light propagates, called the Ether. The speed of light in any other rest frame would then be

modified by the Newtonian addition of velocities. An experiment by Michelson and Morley in

1887 to detect the Ether failed, the Newtonian law of addition of velocities was not correct,

either Newtonian mechanics of Maxwell’s equations required modification.

Einstein gave the resolution to this problem in 1905 with his theory of special relativity.

The principle of special relativity states that the laws of nature are invariant under Lorentz

8



transformations, a group of spacetime coordinate transformations. In particular the speed

of light is the same in any reference frame and requires an abandonment of the notion of

absolute time. Events which are simultaneous in one reference frame need not be in another

frame (see problem sheet 1 for an example to work through).

Lorentz transformations A Lorentz transformation is a transformation from one space-

time coordinate system xµ = (c t, x, y, z) to another x′µ,

x′µ = Λµ
νx

ν , (2.2)

where Λ is a constant matrix which satisfies

Λµ
ρΛ

ν
σηµν = ηρσ . (2.3)

The matrix η is the famed Minkowski metric

ηµν = diag(−1, 1, 1, 1)µν ≡


-1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


µν

. (2.4)

The Lorentz group is denoted O(1, 3), the numbers signify the signature of the space. We

could also add in constant shifts of the coordinates, x′µ = Λµ
νxν + aµ, with aµ a constant

four-vector. This would enhance the Lorentz group to the Poincaré group. Here we will focus

only on the Lorentz group. The fundamental property that distinguishes the Lorentz group

is that it leaves the line element (sometimes also called length element, invariant interval ....)

ds2 = ηµνdx
µdxν , (2.5)

invariant.3 Here, d stands for a small displacement, you also see δ and ∆ to mean the same

thing.
Aside: The group described above is sometimes called the homogeneous Lorentz group.

It admits a proper subgroup defined by imposing

Λ0
0 ≥ 1 , detΛ = 1 . (2.6)

The proper subgroup restricts to all transformations which can be smoothly joined

to the identity. The improper Lorentz transformations involve either space inversion

detΛ = −1 , ,Λ0
0 ≥ 1, or tome reversal detΛ = 1 , ,Λ0

0 ≤ 1. Space and time inversions

are known not to be exact symmetries of nature and therefore when we say Lorentz

transformation what we really mean is the proper Lorentz transformations.

3One can show that the Lorentz transformations are the only non-singular coordinate transformations that

leave ds2 invariant. Here non-singular means that both x′(x) and x(x′) are well behaved differential functions

and thus ∂xµ

∂x′ν has an inverse. When we consider ds2 = 0 there is an enhancement of the symmetry group.
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The proper Lorentz transformations have a further subgroup consisting of rotations taking

the form:

Λ0
0 = 1 , Λ0

i = Λi
0 = 0 , Λi

j = Rij , (2.7)

with R an SO(3) matrix: RRT = 1, detR = 1. The remaining transformations are known as

boosts which mix the space and time directions. You may think of the boosts as rotations

between space and time. Examples of the two types of transformation are4

ΛRotation =


1 0 0 0

0 cos θ sin θ 0

0 − sin θ cos θ 0

0 0 0 1

 , ΛBoost =


coshϕ − sinhϕ 0 0

− sinhϕ coshϕ 0 0

0 0 1 0

0 0 0 1

 . (2.8)

The first is a rotation in the x, y directions and the second is a boost in the x direction. The

rotation parameter is compact θ ∈ [0, 2π) while the boost parameter, known as the rapidity

is non-compact ϕ ∈ (−∞,∞). Altogether the Lorentz group has six parameters, split evenly

between boost and rotations. Rotations commute amongst themselves but do not commute

with boosts, thus it the Lorentz group is non-abelian. Exercise: Compute the addition of the

rapidity under two successive boosts along the x axis.

The interpretation of the rotations is clear from our understanding of Galilean symmetries

but what is the interpretation of the boosts? This corresponds to changing coordinates to

that of a moving frame which travels at a constant velocity. The transformed coordinates

under such are boost are

t′ = t coshϕ− x sinhϕ , x′ = −t sinhϕ+ x coshϕ . (2.9)

The point x′ = 0 is then moving, as viewed from the original frame, with velocity

v =
x

t
= tanhϕ . (2.10)

Motivated by this it is useful to replace ϕ = arctanh v in the transformations to obtain

t′ = γ(t− vx) ,

x′ = γ(x− vt) ,
with γ = (1− v2)−1/2 . (2.11)

Applying these transformations leads to time dilation, length contraction, and other phenom-

ena. In problem sheet 0 you will review some of these problems.

A useful way of visualising the causal structure of spacetime is the spacetime diagram.

We begin by portraying the original t, x directions as axes, suppressing the y and z directions.

4Note that we have implicitly taken the proper Lorentz group.
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Under a boost, (2.9), the x′ axis is given by t = x tanhϕ and the t′ axis is given by x = t tanhϕ.

The boost rotates the space and time axes into each other, with the angle between them

seemingly closing. This is a Euclidean view-point however, the axis remain orthogonal in

the Lorentzian sense. The paths corresponding to the motion of light in the diagram are the

x = ±t lines. The paths defined by t′ = ±x′ are precisely the same as the x = ±t lines

(Exercise: check that this is correct). A set of points which are all connected to a single event

by straight lines moving at the speed of light is called a light cone, and is invariant under

Lorentz transformations. Light cones are divided into the future and the past. The set of all

points inside the future and past light cones of a point p are called time-like separated from

p. Those outside of the light cones are space-like separated while those lying on the cone are

called lightlike or null separated. The interval between time-like separated points is negative,

for space-like separated it is positive and for light-like/null it is vanishing.

To probe the structure of Minkowski space it is necessary to introduce the concepts of

vectors and tensors. We will give a full treatment of this subject later in section 3 introducing

only the necessary notation for the moment. You may be used to thinking of a vector as

something stretching from one point to another and which can be freely moved around. In

relativity this is no longer true and so we must be more careful by what we mean by a vector.

To each point p in spacetime we associate the set of all possible vectors located at that point.

This is known as the tangent space at p, and denoted as Tp. A vector is a perfectly well-defined

object geometric object, so too is a vector field which is a set of vectors with exactly one at

each point in spacetime. The set of all the tangent spaces Tp of a manifold5 M is known as

the tangent bundle T (M). It is often useful to decompose vectors into components in terms

of some basis. Recall that a basis is a set of vectors which both spans the vector space and is

linearly independent. There are an infinite number of possible bases, but each will have the

same number of basis elements, the dimension of the manifold. Let us imagine that at every

point we set up a basis with four vectors êµ.

A standard example of a vector in spacetime is the tangent to a curve. We can specify

a curve by specifying coordinates in terms of a parameter, xµ(λ). The tangent vector has

components

V µ =
dxµ(λ)

dλ
. (2.12)

The full vector is then

V = V µêµ . (2.13)

5We will define a manifold later in section ??.
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Figure 1: The lightcone diagram. The pink areas are time-like separated from the point

at the centre, while points in the blue area are space-like separated. The dotted lines are

light-like separated.

Under a Lorentz transformation the coordinates transform according to (2.2), and from this

we may deduce the transformation of the components of the four-vector V µ,

V µ → V ′µ = Λµ
νV

ν , (2.14)

when the coordinate system is transformed as in (2.2). Since the vector itself does not change

under Lorentz transformations, and the parametrisation with λ is unaltered it follows that

the basis vectors transform according to

êµ = Λν
µê

′
ν . (2.15)

This is just multiplication by the inverse of the Lorentz transformation which transforms the
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coordinates, therefore

ê′µ = Λ ν
µ êν . (2.16)

To summarise, we have introduced a set of coordinates labelled by upper indices which trans-

form in a certain way under Lorentz transformations. We then considered vector components

with upper indices which transformed in the same way as the coordinates. The basis vectors

associated with the coordinate system transformed via the inverse matrix and were labelled

by a lower index. These transformations leave invariant the vector, that is summing over the

vector components with the basis vectors.

Once we have a vector space we can define and associated vector space known as the

dual vector space. It is usually denoted with an asterisk, so that the dual vector space of

the Tangent space Tp is T ∗
p . The dual space is the space of all linear maps from the original

vector space to the real numbers, so that if ω ∈ T ∗
p then

ω(aV + bW ) = aω(V ) + bω(W ) ∈ R , (2.17)

for V,W ∈ Tp and a, b ∈ R. It follows that T ∗
p is a vector space itself. We may introduce a

basis of dual vectors θ̂µ by fixing

θ̂µ(êν) = δµν . (2.18)

Every dual vector can be written in components in terms of this basis as

ω = ωµθ̂
µ . (2.19)

We will usually simply write ωµ for the entire dual vector, and similarly write V µ for the

vector. Typically one refers to the elements of Tp as contravariant four vectors and elements

of T ∗
p as covariant vectors, or even one-forms, (a name that will make more sense after we

have introduced differential geometry in section 3). The set of all cotangent spaces over M is

called the cotangent bundle T ∗(M). The action of a dual vector field on a vector field is no

longer a single number but a scalar, depending on the spacetime position. A scalar has no

indices and is left invariant under Lorentz transformations.

The component notation is useful when considering the action of a dual vector on a

vector:

ω(V ) = ωµV
ν θ̂µ(êν) = ωµV

νδµν = ωµV
µ . (2.20)

The scalar product of a contravariant and covariant vector, which is invariant under Lorentz

transformations

ω′
µV

′µ = Λ ρ
µ ΛµσωρV

σ = ωµV
µ , (2.21)
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in other words it is a scalar. It is from here that we can obtain the transformation of the dual

vector: a covariant four-vector is a quantity which transforms as

ωµ → ω′
µ = Λ ν

µ ων , (2.22)

where

Λ ν
µ ≡ ηµρη

νσΛρ
σ , (2.23)

with ηµν the inverse of ηµν , which are numerically the same.6

To every contravariant vector we may associated a covariant vector by

ωµ = ηµνV
ν , (2.24)

and vice-versa. We see that the Minkowski metric raises and lowers the indices of four-vectors.

One may extend the notion of a vector to a tensor. A tensor of type (rank) (k, l), is a

multilinear map from a collection of dual vectors and vectors to R:

T : T ∗
p × ...× T ∗

p × Tp × ..× Tp → R , (2.25)

for example a scalar is a tensor of rank (0,0), a vector a rank (0, 1) tensor and a contravariant

vector of rank (1, 0). The space of all tensors of a fixed rank (k, l) forms a vector space. To

construct a basis for this space it is useful to define the tensor product ⊗. If T is a (k, l)-tensor

and S a (m,n)-tensor then T ⊗ S is a (k +m, l + n) tensor defined to be

T ⊗ S
(
ω(1), ...ω(k), ..., ω(k+m), V (1), ..., V (l), ..., V (l+n)

)
(2.26)

= T
(
ω(1), ...ω(k), V (1), ..., V (l)

)
S(ω(k+1), ..., ω(k+m), V (l+1), ..., V (l+n)

)
.

As with vectors we will Let T be a tensor of rank (k, l), then under a Lorentz transfor-

mation it transforms as

T ′µ1...µk
ν1...νl

= Λµ1

µ′
1
...Λµk

µ′
k
Λ

ν′1
ν1 ...Λ

ν′l
νl T

µ′
1...µ

′
k

ν′1...ν
′
l
. (2.27)

One can uses tensors to construct additional tensors either by taking linear combinations of

tensors with the same upper and lower indices, direct products, contraction, or differentiation.

The order of the indices of a tensor matters.

Note that because of the map between contravariant and covariant vectors via the

Minkowski metric we can define an inner product on two vectors as

η(V,W ) = ηµνV
µWµ . (2.28)

6Using the properties of the Lorentz transformation it is not hard to show that Λ ν
µ is the inverse of Λµ

ν .

14



Two vectors whose inner product vanishes are called orthogonal. Since it is a scalar the dot

product is left invariant under Lorentz transformations and therefore orthogonality is basis

and frame independent. We can define the norm of a vector to be the inner product with

itself. Unlike in Euclidean geometry this is not positive definite, instead

if ηµνV
µV ν is


< 0 , V µ is timelike ,

= 0 , V µ is lightlike or null ,

> 0 , V µ is spacelike ,

(2.29)

This is the more mathematical definition of these concepts from our earlier discussion.

Some tensors that will appear regularly are: the metric which is a (0, 2) tensor, with the

inverse begin a (2, 0) tensor, the Kronecker delta δµν which is a (1, 1) tensor, and finally the

Levi–Civita tensor which is a (0, 4) tensor. Not only can the metric be used to raise and lower

indices of a tensor, it can also be used to contract indices. Contraction takes a (k, l) tensor

to a (k − 1, l − 1) tensor by

Tµνρ
µσ ≡ Sνρ

σ . (2.30)

So far we have been very good and everything we have defined applies equally well for

curved spacetime. We will now start to introduce some technology which requires modification

when going to curved space. This will be given in the differential geometry section 3. Let us

see how physics works in Minkowski space.

Let us start with a worldline, this is a curve in spacetime: γ : [0, 1] → R1,3. Usually we

will think of such a curve in inertial coordinates such that γ(λ) = xµ(λ). The tangent vector

to the curve at the point p with coordinate xµ(λ0) is

vµ
∣∣
p
:=

d

dλ
xa(λ)

∣∣
λ=λ0

. (2.31)

Note that the tangent depends on the parametrisation of the curve. An object of interest

is the norm of the tangent vector as this characterises the path: if the tangent is time-

like/null/spacelike for some value of λ we say that the path is timelike/null/spacelike at that

point. Note that the sign of the norm of a tangent vector is quite a natural thing to classify

the different tangent vectors by. The interval between two points on the other hand is not:

it depends on the specific choice of path. In flat spacetime we think of straight lines between

points and this is unique. When the manifold is curved this is no longer true.

A more natural object is the line element we introduced earlier in (2.5). Since ds2 need

not be positive we should not just take the square root and integrate along a curve, it depends
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on the type of path. For spacelike paths we define the path length

∆s =

∫ λf

λi

√
ηµν

dxµ

dλ

dxν

dλ
dλ , (2.32)

where the integral is over the path start and end points. For null paths the integral is zero

so we need not define anything. For timelike paths we define the proper time

∆τ =

∫ λf

λi

√
−ηµν

dxµ

dλ

dxν

dλ
dλ , (2.33)

which is positive. The proper time is useful because of the clock postulate.

Clock Postulate An accurate clock moving along a timelike worldline measures the proper

time along the worldline.

This point of view makes the “twin paradox” and similar puzzles clear. Two worldlines

which have two intersections at different events will have proper times which measure their

respective proper times, however these numbers in general will be different since the paths

are different.

Note that the proper time is a convenient choice for parametrising a curve since it satisfies

ηµνv
µvν = ηµν

d

dτ
xµ(τ)

d

dτ
xν(τ) = −1 . (2.34)

Such a parameter can always be found along a timelike curve and is unique up to the start

point of the curve. For spacelike curves the proper length gives a similarly useful parametri-

sation since

ηµνv
µvν = ηµν

d

ds
xµ(s)

d

ds
xν(s) = 1 . (2.35)

There is no such analogue along a null curve.

Massive paths Let us now consider the worldlines of massive particles. We will use the

proper time as the parameter along the path with the path starting at τ = 0. The tangent

vector is known as the four-velocity Uµ:

Uµ =
dxµ

dτ
. (2.36)

This is automatically normalised, ηµνU
µUν = −1 since we parametrised the curve using the

proper time. We may define the energy-momentum four-vector as

pµ = mUµ , (2.37)

with m the mass of the particle. The mass is a fixed quantity independent of inertial frame,

this is what you may have been used to calling the rest mass. The energy is simply p0, and as
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one component of a four-vector is not invariant under Lorentz transformations. Note that in

the particles rest frame we have p0 = m (recall c = 1) and so this is the celebrated E = mc2.

Note that the energy in the rest frame is the norm of the energy momentum four vector. In

a general frame we have

E2 − pipi = m2 , (2.38)

which is the full version of Einstein’s famous formula.

We now want the special relativity version of Newton’s second law. The requirement

that it be tensorial puts some stringent constraints on the possible form, we must introduce

a force four-vector fµ satisfying

fµ = m
d2

dτ2
xµ(τ) =

d

dτ
pµ(τ) . (2.39)

For electromagnetism and the Lorentz force law (f = q(E + v ×B) ) we find

fµ = qUνF µ
ν , (2.40)

where F is the field strength of the electromagnetism gauge field.

Although pµ provides a complete description of the energy and momentum of a particle

for extended systems it is necessary to go further and define the energy-momentum tensor, or

stress tensor, Tµν . This is a symmetric (2, 0) tensor which tells us all we need to know about

the energy like aspects of a system: energy density, pressure, stress etc.. Consider a fluid.

This is a continuum of matter described macroscopic quantities such as temperature, pressure,

entropy, viscosity, etc. We will work with perfect fluids which are completely characterised

by their pressure and density. This in particular means that they are isotropic (same in every

direction) in the rest frame.

To understand this let us first consider dust. This is a collection of particles which are

at rest with respect to each other, as a perfect fluid they have zero pressure. Since all the

particles have an equal velocity in any fixed inertial frame we can imagine a four-velocity field

Uµ(x) defined over all spacetime. We can define the number-flux four-vector

Nµ = nUµ , (2.41)

where n is the number density of the particles as measured in their rest frame. Then N0

is the number density of particles as measured in any other frame, while N i is the flux of

particles in the i’th direction. Let us imagine each of the particles have the same mass m.

Then in the rest frame the energy density of the dust is given by

ρ = nm . (2.42)
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This completely specifies the dust, however this only measures the energy density in the rest

frame, how do we measure it in other frames? Notice that both n and m are 0-components

of four-vectors in their rest frame: Nµ = (m, 0, 0, 0) and pµ = (m, 0, 0, 0). Therefore ρ is the

µ = 0, ν = 0 component of the tensor p⊗N as measured in the rest frame. We are therefore

lead to define the energy momentum tensor for dust

Tµν
dust = pµNν = nmUµUν = ρUµUν , (2.43)

where ρ is the energy density as measured in the rest frame.

We can now consider other perfect fluids. The key point is the isotropic in the rest

frame property which implies that the energy momentum tensor must take a diagonal form

in the rest frame, since there cannot be a net flux of momentum in an orthogonal direction.

Moreover the spacelike components must all be equal T 11 = T 22 = T 33, there are only two

independent components. We will take the two independent parameters to be the energy

density ρ and the pressure p (note that p is also used for momentum but will always come

with a superscript or subscript). In the rest frame the energy momentum tensor takes the

form

Tµν =


ρ 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p

 . (2.44)

We want a formula which is good in any frame and therefore we want to write this in terms of

tensors. For dust we had Tµν = ρUµUµ, so we may guess that there should be (ρ+p)UµUµ,

which gives ρ+ p in the 00 component and zero elsewhere in the rest frame. To include the

remainder we should find something which is of the form pdiag(−1, 1, 1, 1) this is of course

given by the Minkowski metric! The general form of the energy momentum tensor for a

perfect fluid is

Tµν = (ρ+ p)UµUν + pηµν . (2.45)

This will be important when we consider the cosmology section of the course.

2.2 Newtonian gravity

We can cast Newtonian gravity in terms of a field theory. The force acting on a particle of

mass m is

F = −m∇Φ(t, x⃗) , (2.46)
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where the gravitational field Φ(t, x⃗) is determined by the surrounding matter distribution

ρ(t, x⃗),

∇2Φ(t, x⃗) = 4πGρ(t, x⃗) , (2.47)

where G is Newton’s constant with approximate value

G ∼ 6.67× 10−11m3kg−1s−2 . (2.48)

This is simply a rewriting into field theory language of the inverse square law of Newton. For

example if there is a mass M concentrated at a single point at (t, 0⃗), then the mass density is

ρ(t, x⃗) =Mδ(3)(x⃗) , (2.49)

which gives the gravitational field,

Φ(x⃗) = −GM
r

, r2 = x⃗ · x⃗ . (2.50)

This can be extended to more complicated matter distributions, either summing up contribu-

tions from the location of point-like particles or more generally by using the Greens function

for the Laplacian and the mass density

Φ(x⃗) = −
∫

d3x′
Gρ(x⃗′)

|x⃗− x⃗′|
. (2.51)

Exercise: Newton’s theorem

Newton’s theorem states that the gravitational field outside of a spherically symmetric mass

distribution depends only on its total mass. Show this by using (2.46), (2.47) and Gauss’

theorem.

We can now insert the gravitational force law into Newton’s second law of motion F = ma.

At this point one should ask oneself whether the inertial mass appearing in Newton’s second

law is the same as the one appearing in the gravitational force law (2.46), there is no reason

that they need to be the same. Application of Newton’s second law gives

a⃗ = −mG

mi
∇Φ , (2.52)

with a⃗ the acceleration Starting with Galileo, Christaan Huygens all the way to more recent

experimental data has shown that mi = mG to an accuracy of 10−13. This is known as the

weak equivalence principle. In the Newtonian theory this appears as an isolated unexplained

fact, however it is this experimental fact that underlies general relativity. Since all bodies

with the same initial conditions fall along the same curve regardless of their composition, we

can interpret that curve to be a property of the geometry of the spacetime not of a force

acting on the body.
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2.3 Equivalence Principles

The Weak equivalence principle was one of the starting points for the development of GR. It

is motivated by thought experiments using Newtonian gravity. The exact equality ofmi = mg

is one version of the weak equivalence principle. Newtonian gravity gives no explanation for

why this should be true. A theory of gravity should be able to explain this. Another way to

formulate the weak equivalence principle is

The trajectory of a freely falling test body depends only on its initial position and initial

velocity and is independent of the composition of the body.

A consequence of the weak equivalence principle is that it is not possible to tell the difference

between constant acceleration and a constant gravitational field. Suppose that you are in a

closed box and consider the two situations 1) you are on earth, 2) you are in a spaceship

undergoing constant acceleration. Within Newtonian mechanics there is no local experiment

that you can perform which distinguishes the two.7 Another version of this is 1) the box is in

free fall 2) you are floating in deep space. Again there is not local experiment that you can

conduct to tell the difference. If the two situations can’t be distinguished why do we describe

them so differently?

This motivated the Einstein equivalence principle:

1)The weak equivalence principle is valid and 2) In a local inertial frame the results of all non-

gravitational experiments will be indistinguishable from the results of the same experiments in

an inertial frame in Minkowski spacetime.

The weak equivalence principle implies that 2) is valid for test bodies. The fact that test

bodies which include ordinary matter which is held together by the three other forces, gives

evidence that the electromagnetic and nuclear forces also obey 2).

Implications The Einstein equivalence principle implies that light is bent in a gravitational

field. Consider a uniform gravitational field and a freely falling lab. Inside the lab the Einstein

equivalence principle says that light rays must move on straight lines. But a straight line with

respect to the lab corresponds to a curved path with respect to a frame at rest relative to the

Earth. The effect is small but

7One of the important words is local. You can use tidal forces to distinguish between the two. Roughly if

you drop two masses on Earth they will ever so slightly come together because the direction gravity acts on

them is slightly different, they are pulled to the centre of the Earth. On a spaceship this is not the case and

they fall down never getting closer together. This however is a non-local experiment, you need to watch the

masses fall for a while and for a distance.
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2.4 Some worked examples

Proper time along an accelerated worldline We treat the planets as being at rest

relative to each other in this question.

Leia begins at rest on the planet Polis Massa and sets off in a spaceship to visit a distant

planet called Alderaan. Alderaan is at rest relative to Polis Massa and is a proper distance

D away. Leia’s spaceship accelerates during the journey at a constant rate α,

ηµνa
µaν = α2 , (2.53)

where aµ is the four-acceleration of Leia. We want to answer two questions: 1) what path

does Leia take in terms of coordinates centred on Polis Massa? 2) How much time passes,

from Leia’s point of view until she reaches Alderaan?

We can choose coordinates (t, x, y, z) where the worldline of Polis Massa is simply (t, 0, 0, 0)

and the worldline of Alderaan is (t,D, 0, 0) (recall that the two planets are at rest relative to

each other). Leia’s world line is then of the form

(t(τ), x(τ), 0, 0) , (2.54)

where τ is the proper time along Leia’s worldline. Since we have parametrised Leia’s worldline

by the proper time we have

−ṫ(τ)2 + ẋ(τ)2 = −1 •̇ ≡ d•
dτ

. (2.55)

Leia’s acceleration is therefore,

a =
(
ẗ(τ), ẍ(τ), 0, 0

)
=

(
ẋ(τ)ẍ(τ)√
1 + ẋ(τ)2

, ẍ(τ), 0, 0

)
, (2.56)

where for the second equality we have used (2.55) to eliminate ẗ(τ). Since Leia’s acceleration

is constant, (2.53), we have

α2 =
ẍ(τ)2

1 + ẋ(τ)2
. (2.57)

We have that ẋ(τ) > 0 and therefore the solution for ẋ(τ) is

ẋ(τ) = sinh(ατ + β) , (2.58)

with β a constant of integration. Since Leia began at rest on Polis Massa, we take β = 0.

Integrating again and using that Leia begins at Polis Massa at τ = 0, i.e. x(0) = 0, we have

x(τ) =
1

α

(
cosh(ατ)− 1

)
. (2.59)
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Inserting this into (2.55), solving for t(τ) and imposing t(0) = 0 we find

t(τ) =
1

α
sinh(ατ) . (2.60)

Leia reaches Alderaan when

τ = arccosh(1 + αD) , (2.61)

If αD is large then τ ∼ 1
α log(αD) and therefore no matter how large D is, for a sufficiently

large acceleration Leia can reach Alderaan in a ”reasonable” proper time. On the other hand,

when Leia reaches Alderaan

t =

√
D2 +

2D

α
, (2.62)

and therefore no matter how large α is it always takes at least a time of D (recall c = 1) to

reach Alderaan as viewed from Polis Massa.

Null curves in Minkowski space By know we have all seen that a straight line is a null

curve in Minkowski space but are there more? Note that we are not asking about geodesics.

Consider the curve, given in inertial coordinates, by

xµ = (λ, sinλ, cosλ, 0) . (2.63)

The tangent to the vector is

vµ =
dxµ

dλ
= (1, cosλ,− sinλ, 0) , (2.64)

and has norm

vµvνηµν = −1 + cos2 λ+ sin2 λ = 0 . (2.65)

This is a null curve that is not straight, it is not a geodesic however.

Ladders and barns Barry and Paul Chuckle have been employed by Albert E. to put a

ladder in a barn, a simple feat you would imagine but these are the Chuckle brothers and

nothing is simple with them. Albert E. stands outside the barn, and tells Barry and Paul to

run very quickly at a constant speed in a straight line through the barn carrying the ladder.

The barn has doors at the front and back, and two apprentices (Jimmy and Brian) stand at

either door ready to close or open them. Initially the front door is open and the back door

is closed. The proper length of the ladder is l, while the proper length of the barn is b with

b < l.
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Albert E. claims that if Barry and Paul run fast enough, and that there is no slacking,

then both doors of the barn can be temporarily closed with both Barry, Paul and the ladder

inside the barn. One of the apprentices can then open the back door again so that Barry,

Paul and the ladder can pass through the barn safely. The brothers are stumped, “oh dear,

oh dear” says Barry, “the ladder is bigger than the barn, it will never work”. To put their

minds at rest show that the ladder will fit in a chosen reference frame.

Let us work in inertial coordinates where the barn is at rest, which corresponds to Albert

E.’s point of view. In these coordinates the front of the barn is at xµ = (λ, 0, 0, 0) while the

back of the barn is at xµ = (λ, b, 0, 0).

The worldline of the front of the ladder in this reference frame is xµ = (λ, vλ, 0, 0), where

v is the velocity of the ladder. We have chosen coordinates so that the front of the ladder

enters the barn at λ = 0. The back of the ladder follows the worldline xµ = (λ, λv − L, 0, 0)

for some L which is not l!

First we must work out what L is in terms of l. We could of course perform a Lorentz

transformation to switch to the rest frame of the ladder, the proper length of the ladder is

then the coordinate length in this frame. We will use an alternative approach, staying in the

original coordinate frame. How can we measure a length? Well we can define it to be half the

proper time along the worldline at one end of the ladder between the emission and reception

of a light signal which bounces off the other end of the body. The worldlines of the points

making up the ladder are given by xµ = (λ, λv − β, 0, 0) where β ∈ [0, L] and their tangent

vectors are
dxµ

dλ
= (1, v, 0, 0) . (2.66)

We now want to find a spacelike straight line orthogonal to this tangent vector. Such a

worldline is given by nµ = (−vλ̃,−λ̃, 0, 0). This curve meets the front of the ladder at λ̃ = 0

and the back of the ladder at λ̃ = L(1 − v2)−1. We want to calculate the proper length of

this curve with λ̃ ∈ [0, L
1−v2

]. To do so we should parametrise the curve by the proper length.

The norm of the tangent of the above vector is ηµν ṅ
µ(λ̃)ṅν(λ̃) = 1 − v2. Then the proper

length is

s = λ̃
√
1− v2 . (2.67)

The ladder then has proper length

l = s
∣∣
λ̃=

L
1−v2

=
L√

1− v2
. (2.68)
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The entire ladder can fit into the barn from Albert E.’s perspective if b ≥ L and therefore

the Chuckle brothers must run at a speed of

v ≥
√

1− b2

l2
. (2.69)

Both doors of the barn can be closed if: the front of the ladder is still in the barn, b > vλ

and the back of the ladder is in the barn λv−L > 0. Since t = λ the ladder is in the barn for

l
√
1− v2

v
≤ t ≤ b

v
. (2.70)

We see that Albert E. sees the ladder fully inside the barn with the doors closed.

Now consider what happens from the Chuckle brother’s perspective. We can do a Lorentz

transformation to coordinates in which they are at rest:

(t′, x′, y′, z′) = (γt− γvx, γx− γvt, y, z) , γ =
1√

1− v2
. (2.71)

In the Chuckle brother’s coordinates the barn follows the worldline (λ,−vλ, 0, 0), while the

back of the barn follows the worldline (λ,−vλ+ b
√
1− v2, 0, 0).

The front door can be closed when the front of the barn passes the back of the ladder, so

−vλ < −l and therefore the front door of the barn is closed for t′ > l
v .

The back door must open when the front of the ladder is about to go through it. So it is closed

until b
√
1− v2 − vt′ = 0 and therefore the back door is closed for t′ ∈ [0, b

vγ ]. In summary we

have {
Front door closed l

v ≤ t′ ,

Back door closed 0 ≤ t′ ≤ b
vγ .

(2.72)

Since the ladder is longer than the barn l > b and γ ≥ 1 it follows that there is no time for

which both doors are closed from the point of view of the Chuckle brothers. The entire ladder

never fits into the barn from their perspective. The two view-points are depicted in figure 2.

Having been convinced by your arguments the brothers were off with a “to me, to you”.8

Planetary orbits in Newtonian mechanics Let us now consider the orbits of the planets

in Newtonian mechanics. Let us set up a coordinate system where the massive body of mass

M is at r = 0 and the planet of mass m is a distance r from that point. The Lagrangian

describing the system is

L =
m

2

(
ẋ(t)2 + ẏ(t)2 + ż(t)2

)
− V (r) , V (r) = −mMG

r
. (2.73)

8ChuckleVision was a British children’s comedy tv show following the antics of the Chuckle brothers Barry

and Paul. Carrying a ladder was a common theme.
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Figure 2: The two different perspectives of the ladder and barn. On the left from the

perspective of Albert E., a stationary observer in the rest frame of the barn. On the right

from the perspective of the Chuckle brothers carrying the ladder.

To make this more tractable it is useful to change coordinates to polar coordinates rather

than Cartesian coordinates:

x = r sin θ cosϕ , y = r sin θ sinϕ , z = r cos θ . (2.74)

The Lagrangian becomes

L =
m

2

(
ṙ2 + r2

(
θ̇2 + sin2 θϕ̇2

))
+
mMG

r
. (2.75)

We can now compute the equations of motion via the Euler–Lagrange equations: we find

r̈ − r
(
θ̇2 + sin2 θϕ̇2

)
+
MG

r2
= 0 ,

d

dt
(r2θ̇)− r2 sin θ cos θϕ̇2 = 0 ,

d

dt
(r2 sin2 θϕ̇) = 0 .

(2.76)

First let us consider the θ̇ equation. If we kick the particle off in the θ = π
2 plane with θ̇ = 0

then it will remain in that plane. We will make this choice from now on. The coordinate ϕ
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is an ignorable coordinate since it does not appear explicitly in the Lagrangian. Recall that

for every ignorable coordinate there is an associated conserved charge, in this case it will be

the angular momentum. We may define

l = r2ϕ̇ , (2.77)

which is conserved. We have now solved the last two equations of (2.76) and only the first

remains. Then we have

r̈ − l2

r3
+
MG

r2
= 0 . (2.78)

To proceed further it is useful to note that there is on more conserved quantity, the Energy

of the system. This follows since the Lagrangian is explicitly time independent, thus

Em =
m

2

(
ṙ2 + r2

(
θ̇2 + sin2 θϕ̇2

))
+ V (r) , (2.79)

is conserved. We can now substitute θ̇ and ϕ̇ into this final condition to obtain an equation

for ṙ only:

E =
1

2
ṙ2 +

l2

2r2
− MG

r
≡ 1

2
ṙ2 + VN (r) . (2.80)

We can now study the orbits by looking at the Newtonian potential. At large distances

the attractive −r−1 dominates, while the angular momentum prohibits the particle from

getting too close to the origin, see figure 3.

r

VN (r)

Figure 3: A representative example of the Newtonian potential.

The potential has a minimum when

V ′(r∗)−
MG

r2∗
− l2

r3∗
= 0 r∗ =

l2

MG
. (2.81)
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The planet can happily sit at r = r∗ for all time on a circular orbit, note that E < 0 in this

case. The planet could also oscillate back and forth around the minima. This happens when

E < 0 so that the planet cannot escape off to infinity. This describes an orbit where the

distance to the massive body varies, as you may expect this is the usual elliptic orbit. For

E > 0 the motion describes a flyby, the planet gets close to the massive body, never reaching

it, before being flung off to infinity. Clearly such a planet would be dead and inhospitable for

life.

So far we have discussed the radial motion of the planet, this does not tell us about the

full motion however. We consider the orbit trajectory, the flyby motion is not so interesting

for us. We now need to solve the angular momentum equations (2.77). To solve the coupled

equations we start by employing a change of coordinates

u = r−1 , (2.82)

and then view this as a function of ϕ. This works nicely because

u̇ =
du

dϕ
ϕ̇ = lu2

du

dϕ
, (2.83)

where we have used (2.77). We have

ṙ = − 1

u2
u̇ = −ldu

dϕ
. (2.84)

The conservation of energy equation (2.80) becomes(du
dϕ

)2
+
(
u− GM

l2

)2
=

2E

l2
+
G2M2

l4
. (2.85)

This turns out to be straightforward to solve, the solution is

u(ϕ) =
GM

l2
(1 + e cosϕ) . (2.86)

In the original radial coordinate we have

r(ϕ) =
l2

GM

1

1 + e cosϕ
. (2.87)

This is the equation for a conic section with the eccentricity given by

e =

√
1 +

2El2

G2M2
. (2.88)

The shape of the orbit depends on the eccentricity. Motion with E > 0 is not in a bounded

orbit, tracing out a hyperbola for e > 1 and a parabola for e = 1. Objects in orbit have
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e < 1 with elliptical orbits. An important thing to note about this solution is that the orbit

does not precess, its closest approach to the origin, known as the perihelion9 is always at the

same point it does not precess, nor does the furthest point of the orbit, the aphelion. This

disagrees with observations of Mercury’s orbit and is the first observational discrepancy of

Newtonian gravity.10

2.5 Problems with Newtonian gravity and why we need GR

Newton’s theory of gravitation is successful in explaining the motions of the moon and planets.

Some irregularities in the orbit of Uranus remained unexplained until the irregularities were

used independently by John Couch Adams and Jean Joseph Le Verrier in 1846, to predict the

existence and position of Neptune. There were still issues with predictions from Newtonian

gravity and experimental data however. The precession of the perihelion of Mercury was one

such problem. It was shown to be out by 43”/century11, recall that in the section above we

showed that the perihelion does not precess in Newtonian gravity. We will see later how GR

corrects this. A more obvious (and mathematical) problem arose after Einstein’s work on

special relativity in 1905. Newtonian gravity is incompatible with special relativity. A body

can, in principle, be accelerated to a speed greater than the speed of light. Moreover, effects

are instantaneous in Newtonian gravity clearly this is not allowed in special relativity where

the speed of light gives an upper bound on the transfer of information.

Despite Newtonian gravities’ failings it t is sufficient for studying a large range of phenom-

ena. To understand when a relativistic theory is needed let us consider a circular orbit around

a star of mass M . The speed of the planet is easily computed by equating the centripetal

force with the gravitational force giving,

v2

r
=
GM

r2
. (2.89)

Relativistic effects become important when v ∼ c and therefore the dimensionless parameter

which governs corrections to Newtonian gravity is

GM

rc2
. (2.90)

9Strictly this is for the closest approach to the sun. Helios is the word for the sun in greek, while peri

means around.
10To perform a more accurate computation one should also take into account the effect of the gravitation

fields of the other planets. This is notoriously difficult since one has to study a multi-body problem. Instead

what one can do is imagine that the other planets to consider form a shell of mass along their orbit. One

can then evaluate the force due to these. This approximation works if one considers the problem over a long

enough time. Since planets closer to the sun have quicker orbits over a long enough time this approximation

will give a reasonable result.
11The ” stands for arcseconds, with 3600 arcseconds(=3600”) in a degree.
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There is a convenient length scale which one can construct from a mass and the fundamental

constants known as the Schwarzschild radius,12

Rs =
2GM

c2
. (2.91)

Relativistic corrections to gravity are then necessary when Rs ∼ 2r. By this measure the

earth is not a relativistic system Rs ∼ 10−2m and the corrections on the surface of the Earth

are of the order 10−8. For satellites in orbit this is even smaller ∼ 10−9 however for GPS

satellites clocks with such high precision are needed that this effect can be seen and if GR

was not taken into account would fail very soon. The sun has Rs ∼ 3km and for Mercury the

corrections are of order 10−7, clearly very small but over a century the precession of Mercury’s

perihelion adds up to the previously quoted 43”.

General relativity is the theory that replaces both Newtonian gravity and special rel-

ativity. However, general relativity is not the final theory of gravity, one eventually needs

a theory of quantum gravity. General relativity breaks down for very extreme phenomena

where quantum effects become important, e.g. the Big Bang and inside black holes. If one

views gravity as a classical field theory and attempts to quantise it one finds that it is pertur-

batively non-renormalizable. Essentially this means that to obtain sensible observable results

we must absorb infinities in computations by introducing new parameters. For a renormal-

izable theory we need to introduce only a finite number of these new parameters but for a

non-renormalizable theory we need to introduce an infinite number, rendering the theory un-

able to give meaningful predictions. A candidate theory for quantum gravity, but no means

the only candidate, is string theory. We should emphasise that a theory of quantum gravity is

only needed for these extreme phenomena, general relativity is still worth learning and using.

3 Differential Geometry

Gravity is geometry and to properly understand general relativity we need to be able to

understand curved spacetime. This is the language of differential geometry. Our discussion

will not be all encompassing, there will be both topics and proofs that we omit. Instead we

will build up all the necessary mathematical structure, in a logical order, that we will need

to understand general relativity. As we proceed many of the objects that we will introduce

may already be familiar to you, they will however take a different guise in places.

This section closely follows the excellent book by Nakahara: Geometry, Topology and

physics.

12We will see this appear later when we consider the Schwarzschild solution in section 6.1.
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3.1 Manifolds

Definition Let X be any set and T = {Ui|i ∈ I} denote a certain collection of subsets of X.

The pair (X, T ) is called a topological space if T satisfies

1. Both the set X and the empty set ∅ are open subsets: M ∈ T and ∅ ∈ T .

2. If T is any, possibly infinite, sub-collection of I, then the family {Uj |j ∈ J} satisfies

∪j∈JUj ∈ T .

3. If K is any finite sub-collection of I then the set {Uk|k ∈ K} satisfies ∩k∈KUk ∈ T .

Sometimes X alone is called a topological space, i.e. without associating to it a topology.

The sets Ui are called open sets (we may sometimes refer to them as coordinate patches, the

reason why will become obvious later) and T gives a topology to X.

Examples

a) If X is a set and T a collection of all subsets of X then this is a topological space, and

is known as the discrete topology.

b) Let X be a set and take T = {∅, X}. This is then a topological space and the topology is

known as the trivial topology. While the discrete topology is too stringent, this topology

is too trivial.

c) Take X = R. All open subsets (a, b) (a, b may be ∓∞ respectively) and their unions

define a topology known as the usual topology.

Exercise: Consider the usual topology on R and show that if we allow for an infinite

number of open sets in condition 3 for the definition of a topological space, then the usual

topology reduces to the discrete topology.

A metric d : X ×X → R is a function that for any x, y, z ∈ X satisfies:

1. d(x, y) = d(y, x),

2. d(x, y) ≥ 0 with equality iff x = y,

3. d(x, y) + d(y, z) ≥ d(x, z).

If X is endowed with a metric then X is made a topological space whose open sets are

given by open discs

Uϵ(x) = {y ∈ X|d(x, y) < ϵ} , (3.1)
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and all possible unions. The topology T is called the metric topology determined by d.

Definition: Suppose T gives a topology to X. Then N is a neighbourhood of the point

x ∈ X if N is a subset of X and N contains at least one open set Ui which contains x. Note

that there is no requirement for N to be open, in the case where it is open it is called an open

neighbourhood.

Definition: A topological space (X, T ) is a Hausdorff space if for an arbitrary pair of

distinct points x, y ∈ X, there always exists neighbourhoods Ux and Uy such that Ux∩Uy = ∅.
Example Let X = {A,B,C,D} define the sets

U0 = ∅ , U1 = {A} , U2 = {A,B} , U3 = {A,B,C,D} . (3.2)

Then the topology T = {U0, U1, U2, U3} makes X a topological space but it is not Hausdorff.

First note that both the empty set and X are in the topology T , satisfying 1 of the definition

of a topological space. Note that the union of these sets is within T thereby satisfying the

second requirement. Finally the intersection of any of the sets is within T and therefore it is

a topological space. To see why it is not Hausdorff it suffices to show that we can pick two

points which have no open sets in which one of the points is in and that the intersection of

these open sets is not the empty set. There are a few choices we could take but an obvious on

is C,D. They both appear in only one open set and therefore the space cannot be Hausdorff.

Most examples in physics that one encounters are Hausdorff spaces. We will assume this

is the case in this course since the property protects us against funky things happening.

Definition Let X and Y be topological space. A map f : X → Y is continuous if the

inverse image of an open set in Y is an open set in X. Note that a continuous function

does not need to map an open set in X to an open set in Y , f(x) = x2 is an example of a

continuous function that would fail this requirement.

Definition Let (X, T ) be a topological space. A subset A of X is closed if its complement

X − A ∈ T in X is an open set. The closure of the subset A is the smallest closed set that

contains A and is denoted by Ā. The interior of A is the largest open subset of A and is

denoted by A◦. The boundary b(A) of A is the complement of A◦ in Ā: b(A) = Ā− A◦. An

open set is always disjoint from its boundary while a closed set always contains its boundary.

To make this a little more clear let us consider a concrete example.

Example: Let us consider R2 with the metric topology and let A be the open set {(x, y) ∈
R2|x2 + y2 < 1}. Then the closure of A is

Ā = {(x, y) ∈ R2|x2 + y2 ≤ 1} . (3.3)
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The interior of A is itself A◦ = A. The boundary is then the complement of A◦ in Ā, thus

b(A) = {(x, y) ∈ R2|x2 + y2 = 1} . (3.4)

It therefore agrees with our usual understanding of these concepts.

Definition Let (X, T ) be a topological space. A family {Ai} of subsets of X is called a

covering of X if ⋃
i∈I

Ai = X . (3.5)

If all the Ai happen to be the open sets of the topology T then the covering is called an open

covering.

Definition Consider a set X and all possible coverings of X. The set X is compact if

for every open covering {Ui|i ∈ I} there exists a finite subset J of I such that {Uj |j ∈ J} is

also a covering of X.

Theorem Let X be a subset of Rn, then X is compact iff it is closed and bounded.

Definition

i) A topological space X is connected if it cannot be written as X = X1 ∪X2 where X1

and X2 are both open and X1 ∩X2 = ∅. Otherwise X is called disconnected.

ii) A topological space is called arcwise connected if for any points x, y ∈ X there exists

a continuous map f : [0, 1] → X such that f(0) = x and f(1) = y. Only in a few

pathological cases is arcwise connectedness not equivalent to connectedness.

iii) A loop in a topological spaceX is a continuous map f : [0, 1] → X such that f(0) = f(1).

If every loop in X can be continuously shrunk to a point, X is called simply connected.

Some simple examples are:

• R2 − R is not arcwise connected.

• R2 − {0} is arcwise connected but not simply connected.

• R3 − {0} is arcwise connected and simply connected.

• The n-dimensional torus is arcwise connected but not simply connected.

The main purpose of topology is to classify spaces. Suppose we have several figures, we

want to be able to say which are equal and which are different, and probably more fundamen-

tally what does being equal or different mean. In topology two figures are equivalent if it is
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possible to deform them continuously into each other. We therefore construct an equivalence

relation under which geometrical objects are classified according to whether it is possible to

deform one into the other. Of course these are just words and we should define this more

mathematically. To wit let us define

Definition Let X1 and X2 be two topological spaces. A map f : X1 → X2 is a homeomor-

phism if it is continuous and has an inverse f−1 : X2 → X1 which is also continuous. If there

exists a homeomorphism between X1 and X2 we say that X1 and X2 are homeomorphic to

each other.

The classic example of two homeomorphic spaces are a donut and a coffee mug.

One would like a quick way to understand whether two spaces are homeomorphic to each

other. Even today we cannot fully characterise the equivalence classes between spaces. One

modest statement that we can make is that if two spaces have different topological invariants

then thy are not homeomorphic to each other. A topological invariant is conserved under

homeomorphisms. It may be a number such as the number of connected components of

the space, an algebraic structure such as a group or a ring which can be constructed from

the space, or something like connectedness, compactness or the Hausdorff property. If we

knew the complete class of topological invariants we could specify the equivalence classes

easily, however so far we only know a partial list. As such even if all the known topological

invariants of two spaces coincide these spaces may still not be homeomorphic.

We are now finally in a position to define a manifold. An n-dimensional manifold is

a space which looks locally like Rn. Globally it need not be Rn but we may glue local

patches, each of which look like Rn together to get the full global space. A manifold is then

homeomorphic to Rn locally. The local homeomorphism allows us to give each point on the

manifold a set of n numbers called local coordinates. If the manifold is not homeomorphic

to Rn then we need to cover it in more than one patch, and so we need to introduce several

local coordinates. We will require that the transition functions between these coordinates on

the overlapping region are smooth. In this way we can develop the usual notion of calculus on

a manifold. Topology is based on continuity, while manifolds is based on smoothness. With

that let us begin with our definitions again.

Definition M is an n-dimensional differentiable manifold if it satisfies:

1. M is a Hausdorff topological space,

2. M is provided with a family of pairs {(Ui, φi)};

3. {Ui} is a family of open sets which covers M : ∪iUi =M .
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4. φi is a homeomorphism from Ui onto an open subset U ′
i of Rn,

5. Given Ui and Uj such that Ui ∩ Uj ̸= ∅, then the map ψij = φi ◦ φ−1
j from φj(Ui ∩ Uj)

to φi(Ui ∪ Uj) is infinitely differentiable. ψij is known as a transition function.

In figure 4 we have represented (well copied the image from Nakahara) the ideas above.

Figure 4: Here we see the manifold M and two coordinate charts. The homeomorphisms

φi maps Ui onto an open set of U ′
i ⊂ Rn providing coordinates for the point p ∈ M . If

Ui ∩ Uj ̸= ∅ the transition functions from one coordinate system to another is smooth.

The pair (Ui, φi) are called a chart and the collection of charts is called an atlas. The

subsets Ui are called the coordinate neighbourhood while the φi is called the coordinate

function, or simply the coordinate. The homeomorphism φi is represented by n functions

{x1(p), ..., xn(p)}, with this set {xµ(p)} also called the coordinate. A point p ∈M exists inde-

pendently of its coordinates, however we will often be sloppy and denote the point p through

its coordinates.
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If Ui and Uj overlap, two coordinate systems are assigned to the same point in Ui ∩ Uj .

Axiom 5 asserts that the transition function from one coordinate system to another be smooth

C∞. One may be alarmed by this but there is not reason for trepidation, it is analogous to

labelling a point by Euclidean coordinates and polar coordinates. The map φi assigns n

coordinates values xµ, (1 ≤ µ ≤ n) to a point p ∈ Ui ∩ Uj , while φj assigns coordinates yµ to

the same point. The transition function from y to x, xµ = xµ(y) is given by n functions of

n variables, and is the explicit form of the map ψji = φj ◦ φ−1
i . The differentiablility in the

definition is then in the usual sense we are familiar from calculus. All this leads to use being

able t move over M however we may choose with the coordinates varying in a smooth way.

If the union of two atlases {(Uiφi)} and {(Vj , ψj)} is again an atlas, then these two

atlases are said to be compatible. The compatibility is an equivalence relation. This equiva-

lence class is called the differentiable structure. Mutually compatible atlases define the same

differentiable structure on M .

Let us briefly comment on manifolds with a boundary. We have assumed that the coor-

dinate neighbourhood Ui is homeomorphic to an open set of Rn. In some cases this is too

restrictive. If a topological space M is covered by a family of open sets {Ui} each of which is

homeomorphic to an open set Hn ≡ {(x1, ..., xn) ∈ Rn|xn ≥ 0}, M is said to be a manifold

with boundary. The analogous plot of figure 4 for the manifold with a boundary is given in

figure 5.

The set of points which are mapped to points with xn = 0 is called the boundary of M

and is denoted by ∂M . The coordinates on ∂M are given by n− 1 numbers (x1, ..., xn−1, 0).

We now need to be careful when we define smoothness on the overlaps. The map ψij :

φj(Ui ∩ Uj) → φ(Ui ∩ Uj) is defined on an open set of Hn in general, and ψij is said to be

smooth if it is C∞ in an open set of Rn which contains φj(Ui ∩ Uj).

Examples

• Rn is a differentiable manifold trivially. A single chart covers the whole space and we

take φ to be the identity map.

• Let n = 1 and let us impose connectedness. Then there are two choices, either R or the

circle S1. Let us work out an atlas for S1. For concreteness let us embed the circle in

R2 via x2 + y2 = 1. We will need at least two charts. We can take them as in figure 6.
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Figure 5: A manifold with a boundary. The point p is on the boundary. Note the subtle

difference, for a manifold without a boundary the left figure would be extended below xn=0.

Define φ−1
1 : (0, 2π) → S1 by13

φ−1
1 : θ → (cos θ, sin θ) , (3.6)

whose image is S1 − {(1, 0)}. Similarly define φ−1
2 : (−π, π) → S1 by

φ−1
2 : θ → (cos θ, sin θ) , (3.7)

whose image is S1 − {(−1, 0)}. Clearly both φ−1
i are invertible and all the maps are

continuous, thus the φi’s are homeomorphisms. The transition functions seem trivial

for this example but one must be careful to end up in the correct domain. The two

charts overlap on the upper and lower hemispheres and therefore we have

φ2(φ
−1
1 (θ)) =

{
θ if θ ∈ (0, π)

θ − 2π if θ ∈ (π, 2π)
. (3.8)

The transition function isn’t defined at θ = 0 or θ = π, nonetheless it is smooth on each

of the two overlapping open sets as required.

13Until now we would just have taken the range to be θ ∈ [0, 2π) and been happy with this. However this

does not meet our requirement of being a chart since it is not an open set. This would present problems later

when we try to differentiate anything at θ = 0. Recall that the derivative requires us to be able to take limits

form both sides, and since there is nothing smaller than 0 we are stuck.
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Figure 6: Two charts on S1.

• Let us consider a slightly less trivial example, the n-dimensional sphere Sn. We may

realise it by embedding it in Rn+1. (Note that embedding it in a higher-dimensional

space is just for convenience and not a necessary requirement for being a manifold, in

fact some n-dimensional spaces cannot be embedded in Rn+1, for example hyperbolic

space.)

We can realise the n-dimensional sphere Sn in Rn+1 as

n∑
i=0

(xi)2 = 1 . (3.9)

We can introduce coordinate neighbourhoods

Ui+ ≡{(x0, x1, ...., xn) ∈ Sn|xi > 0} ,

Ui− ≡{(x0, x1, ...., xn) ∈ Sn|xi < 0} .
(3.10)

Next define the coordinate map φi+ : Ui+ → Rn to be

φi+(x
0, ..., xn) = (x0, ..., xi−1, xi+1, ..., xn) , (3.11)

and φi− : Ui− → Rn to be

φi−(x
0, ...xi−1, xi+1, ..., xn) . (3.12)

Note that the domains of φi+ and φi− are different and they have no overlap. Instead

they are the projections of the hemispheres Ui± to the plane xi = 0. The transition

functions can be obtained simply from the above maps. As an example let us take S2,

then we have six coordinate neighbourhoods: Ux±, Uy±, Uz±. The transition function

ψ(y−)(x+) ≡ φy− ◦ φ−1
x+ is given by

ψ(y−)(x+) : (y, z) →
(√

1− y2 − z2, z
)
. (3.13)
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This is infinitely differentiable on Ux+ ∩ Uy−.

We have seen that to describe n-dimensional spheres we need more than one chart. The

need to deal with multiple charts arises when we consider manifolds of non-trivial topology.

When we come to discuss general relativity we will care a lot about changing coordinates

and the limitations of the coordinate systems. In almost all situations that we will consider a

single set of coordinates generally covers enough of the space to tell us everything we need to

know. However as one progresses in physics, topology becomes more important. We will not

see much of this but you should see this in some of your other physics/mathematics courses.

3.2 Calculus on manifolds

The reason why differentiable manifolds are useful is because it allows us to use the usual

calculus we have developed on Rn. Smoothness of the transition functions implies that the

calculus is independent of the chosen coordinates.

Differentiable maps Let f :M → N be a map from an m-dimensional manifold M to an

n-dimensional manifold N . A point p ∈ M is mapped to a point f(p) ∈ N . We may take a

chart (U,φ) on M and a chart (V, ψ) in N where for all p ∈ U , f(p) ∈ V . Then f has the

following coordinate presentation:

ψ ◦ f ◦ φ−1 : Rm → Rn . (3.14)

If we write φ(p) = {xµ} and ψ
(
f(p)

)
= {yα} then, ψ ◦ f ◦φ−1 is just the usual vector-valued

function y = ψ ◦f ◦φ−1(x) of m variables. Sometimes it is useful to abuse notation and write

y = f(x) or yα = fα(xµ) when we know the coordinate systems on M and N that are in use.

Definition We say that a function f : M → R is smooth if the map f ◦ φ−1 : U → R is

smooth for all charts. We let the set of all small functions on M be denoted by F(M).

Definition We say that a map f :M → N between two manifolds is smooth if the map

ψ◦f ◦φ−1 : U → V is smooth for all charts φ :M → Rm and ψ : N → Rn. If y = ψ◦f ◦φ−1(x)

is C∞ then we say that f is differentiable at p. This is actually independent of the coordinate

system.

Definition Let f : M → N be a homeomorphism and ψ and φ coordinate functions. If

ψ ◦ f ◦φ−1 is invertible, f is called a diffeomorphism and M is said to be diffeomorphic to N

and vice-versa. This is denoted by M ≡ N .

Since the map is invertible it follows that if M ≡ N then dimM = dimN . Homeomor-

phisms classify spaces according to whether it is possible to deform one space into another
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continuously. Diffeomorphisms classify spaces into equivalence classes according to whether

it is possible to deform one space into the other smoothly. As such a diffeomorphism is

stronger than a homeomorphism, it requires that both the map and its inverse are smooth.

Two diffeomorphic manifolds are viewed as the same manifold.

3.2.1 Tangent Vectors

Having defined maps on a manifold we can define other objects on the manifold. The ele-

mentary notion of a vector no longer works: where is the origin, what is a straight arrow. On

a manifold a vector is defined to be a tangent vector to a curve in M .

To define a tangent vector we need a curve γ : (a, b) → M and a function f : M → R.
Let t ∈ (a, b) then we can define the tangent vector at γ(0) as a directional derivative of a

function f(γ(t)) along the curve γ(t) at t = 0. The rate of change of f(γ(t)) at t = 0 along

the curve is
df(γ(t))|

dt

∣∣∣∣
t=0

. (3.15)

In terms of local coordinates this becomes

∂f

∂xµ
dxµ(γ(t))

dt

∣∣∣∣
t=0

. (3.16)

Notice the abuse of notation, the first term should really be

∂
(
f ◦ φ−1(x)

)
∂xµ

, (3.17)

we will persist with this abuse of notation. This is then equivalent to applying the differential

operator

X = Xµ

(
∂

∂xµ

)
, Xµ =

dxµ(γ(t))

dt

∣∣∣∣
t=0

(3.18)

then
df(γ(t))|

dt

∣∣∣∣
t=0

= Xµ ∂f

∂xµ
≡ X[f ] . (3.19)

We define X as the tangent vector to M at p = γ(0) along the direction given by the curve

γ(t).

One can define an equivalence class of curves on M . If two curves γ1(t) and γ2(t) satisfy

(i) γ1(0) = γ2(0) = p ,

(ii) dxµ(γ1(t))
dt

∣∣∣∣
t=0

= dxµ(γ2(t))
dt

∣∣∣∣
t=0

,
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then γ1(t) and γ2(t) yield the same differential operator X at p. This allows us to define the

equivalence relation between curves at the point p, γ1(t) ∼ γ2(t). We identify the tangent

vector X with the equivalence class of curves

[γ(t)] =

{
γ̃(t)

∣∣∣γ(0) = γ̃(0) and
dxµ(γ(t))

dt

∣∣∣
t=0

=
dxµ(γ̃(t))

dt

∣∣∣
t=0

}
(3.20)

rather than a particular representative of the curve.

All the equivalence classes of curves at a point p ∈ M , i.e. all the tangent vectors at

p, form a vector space called the tangent space of M at p, Tp(M). We can take a basis of

vectors for Tp(M) to be eµ = ∂
∂xµ . It follows that dimTp(M) = dim(M). The basis {eµ} is

called the coordinate basis. If a vector X ∈ Tp(M) is written as X = Xµeµ the numbers Xµ

are called the components of X with respect to the basis {eµ}. The vector X exists without

specifying a choice of coordinates, it is just simpler to assign coordinates and work with this.

The coordinate independence of the vector allows us to understand how the components of

the vector must transform. Let p ∈ Ui ∩ Uj and let x = φi(p) and y = φj(p). Then we have

two expressions for the vector X in two different coordinate bases:

X = Xµ ∂

∂xµ
= X̃µ ∂

∂yµ
, (3.21)

therefore

X̃µ = Xν ∂y
µ

∂xν
. (3.22)

Note that for two distinct points p and q the tangent spaces Tp(M) and Tq(M) are different.

We cannot add vectors from one to a vector in the other. In fact even to compare the vectors

in Tp(M) with the vectors in Tq(M) we need to introduce the notion of parallel transport.

3.2.2 One-forms

Since Tp(M) is a vector space, there exists a dual vector space to Tp(M) whose element is a

linear function from Tp(M) → R. The dual space is called the cotangent space at p, and is

denoted by T ∗
p (M). An element ω : Tp(M) → R of T ∗

p (M) is called a dual vector/cotangent

vector or in the context of differential forms a one-form. The simplest example of a one-

form is the differential df for a smooth function f on M . The action of a vector V on f is

V [f ] = V µ ∂f
∂xµ ∈ R. The action of df ∈ T ∗

p (M) on V ∈ Tp(M) is defined by

⟨df, V ⟩ ≡ V [f ] = V µ ∂f

∂xµ
∈ R . (3.23)

This is then R-linear in both V and f . In terms of the coordinate basis we have

df =
∂f

∂xµ
dxµ , (3.24)
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and it is natural to regard {dxµ} as a basis of T ∗
p (M). This is a dual basis since〈

dxµ,
∂

∂xν

〉
=
∂xµ

∂xν
= δµν . (3.25)

We can then write an arbitrary one-form as

ω = ωµdx
µ . (3.26)

If we take a vector V and a one-form ω we may define the inner product ⟨ , ⟩ : T ∗
p (M) ×

Tp(M) → R to be

⟨ω, V ⟩ = ωµV
ν
〈
dxµ,

∂

∂xν

〉
= ωµV

νδµν = ωµV
µ . (3.27)

The inner product is defined between a vector and a covector. Since ω is defined without

reference to any coordinate system for a point p ∈ Ui ∩ Uj we have

ω = ωµdx
µ = ω̃µdy

µ , (3.28)

with x and y as before. Then we have

ω̃ν = ωµ
∂xµ

∂yν
. (3.29)

3.2.3 Tensors

We can now define a tensor of type (q, r) to be a multilinear object which maps q elements

of T ∗
p (M) and r elements of Tp(M) to R. Let T (q,r)

p (M) denote the set of (q, r) tensors at

p ∈M . An element of T (q,r)(M) can be written in terms of the bases described above as

T = T
µ1...µq

ν1...νr
∂

∂xµ1
...

∂

∂xµq
dxν1 ...dxνr . (3.30)

T is a linear function

T : ⊗qT ∗
p (M)⊗r Tp(M) → R . (3.31)

Let Vi = V µ
i

∂
∂xµ with 1 ≤ i ≤ r and ωj = ωjµdx

µ with 1 ≤ j ≤ q then the action of T is

T (ω1, ..., ωq;V1, ....Vr) = T
µ1...µq

ν1...νr ω1µ1 ....ωqµqV
µ1
1 ....V µr

r . (3.32)

3.2.4 Tensor fields

So far we have defined vectors, one-forms and tensors at a particular point p ∈M . We want

to be able to smoothly assign such an object to every point of M . For a vector we call such

an object a vector field. In other words if V is a vector field then for every f ∈ F(M) then

V [f ] ∈ F(M). We will denote the set of all vector fields on M as X (M). A vector field X

at p ∈M is denoted by X|p which is an element of Tp(M). Similarly we may define a tensor

field of type (q, r) by a smooth assignment of an element of T q
r,p(M) at each point p ∈ M .

The set of tensor fields of type (q, r) on M is denoted by T q
r (M).
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3.2.5 Induced maps

A smooth map f : M → N naturally induces a map f∗ called the differential map or push-

forward,

f∗ : Tp(M) → Tf(p)(N) . (3.33)

The explicit form of f∗ is obtained by the definition of the directional derivative along a

Figure 7: A map f : M → N induces the differential map f∗ : Tp(M) → Tf(p)(N). Note

that the mapping is performed by mapping the curve c(t) between the two manifolds using

the map f .

curve. Let g ∈ F(N) then g ◦ f ∈ F(M). A vector V ∈ Tp(M) acts on g ◦ f to give a number

V [g ◦ f ]. We can now define f∗V ∈ Tf(p)(N) by

(f∗V )[g] ≡ V [g ◦ f ] . (3.34)

We can write this more explicitly by introducing coordinates. Let us introduce the charts

(U,φ) on M and (V, ψ) on N , then

(f∗V )[g ◦ ψ−(y)] = V [g ◦ f ◦ φ−1(x)] , (3.35)

where x = φ(p) and y = ψ(f(p)). Let V = V µ ∂
∂xµ and f∗V =Wα ∂

∂yα , then in components it

reads

Wα ∂

∂yα
[g ◦ ψ−1(y)] = V µ ∂

∂xµ
[g ◦ f ◦ φ−1(x)] . (3.36)

If we take the function g = yα, i.e. we map the point in N to the α’th component of the

coordinate, then we find

Wα = V µ ∂

∂xµ
yα(x) . (3.37)

This is nothing but the Jacobian of the map f :M → N . This can be extended to tensors of

type (q, 0).
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Example Let (x1, x2) and (y1, y2, y3) be coordinates on M and N respectively, and let

V = a ∂
∂x1 + b ∂

∂x2 . Take the map f :M → N whose coordinate representation is

y =
(
x1, x2,

√
1− (x1)2 − (x2)2

)
. (3.38)

Then

f∗V = V µ ∂y
α

∂xµ
∂

∂yα
= a

∂

∂y1
+ b

∂

∂y2
−
(
a
y1

y3
+ b

y2

y3

) ∂

∂y3
. (3.39)

A map f also induces a map between cotangent space

f∗ : T ∗
f(p)(N) → T ∗

p (M) , (3.40)

which is called the pull-back. If we take V ∈ Tp(M) and ω ∈ T ∗
f(p)(N) then the pull-back of

ω by f∗ is defined to be

⟨f∗ω, V ⟩ = ⟨ω, f∗V ⟩ . (3.41)

In components we have

(f∗ω)µ = ωα
∂yα

∂xµ
. (3.42)

The pull-back can be extended to tensors of type (0, r).

3.3 Flows and Lie derivatives

Let X be a vector field on M . An integral curve x(t) of X is a curve in M whose tangent

vector at x(t) is X|x. Given a chart (U,φ), this means that

dxµ(t)

dt
= Xµ(x(t)) , (3.43)

where xµ(t) is the µ’th component of φ(x(t)) and X = Xµ ∂
∂xµ . As always we have very

much abused notation, using x to denote a point in M as well as its coordinates. Finding

an Integral curve is equivalent to solving the ODE with initial conditions xµ(0) = xµ. The

existence and uniqueness theorems for ODEs implies that there is always a unique solution,

at least locally, with the given initial data.

Let σ(t, x0) be an integral curve of X which passes through the point x0 at t = 0, and

denote the coordinate by σµ(t, x0). The flow equation becomes

d

dt
σµ(t, x0) = Xµ(σ(t, x0)) , (3.44)

with the initial condition

σµ(0, x0) = xµ0 . (3.45)
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The map σ : R×M → M is called a flow generated by X ∈ X (M). A flow satisfies the

rule

σ(t, σµ(s, x0)) = σ(t+ s, x0) , (3.46)

for any s, t ∈ R, such that both sides make sense. This follows from the uniqueness of the

ODE with fixed initial condition.

Theorem For any point x ∈ M , there exists a differentiable map σ : R×M → M such

that

(i) σ(0, x) = x ,

(ii) t 7→ σ(t, x) is a solution of (3.44) and (3.45),

(iii) σ(t, σµ(s, x)) = σ(t+ s, x)

note that the initial point is denoted by x to emphasise that σ is a map R×M →M .

We may imagine a flow asa steady stream flow. If a particle is observed at a point x at

t = 0 it will be found at σ(t, x) at later time t.

Example Let M = R2 and let X((x, y)) = −y ∂
∂x + x ∂

∂y be a vector field in M . Then

σ(t, (x, y)) = (x cos t− y sin t, x+ sin t+ y cos t) , (3.47)

is a flow generated by X. The flow through (x, y) is a circle whose centre is at the origin.

Clearly σ(t, (x, y)) = (x, y) if t = 2πn, n ∈ Z. If (x, y) = (0, 0), the flow stays at (0, 0).

3.3.1 One-parameter group of transformations

For fixed t ∈ R a flow σ(t, x) is a diffeomorphism from M to M which we denoted by

σt : M → M . This map is made into a commutative group by the following rules (Exercise:

Check this):

1. σt(σs(x)) = σt+s(x) i.e. σt ◦ σs = σt+s,

2. σ0=identity map (unit element),

3. σ−t = (σt)
−1.

This group is called the one-parameter group of transformations. Locally the group looks

like the additive group R, although they may not be isomorphic globally. For example in
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the example above (see equation (3.47)) we had that σ2πn+t = σt and we find that the one-

parameter group is isomorphic to SO(2) the multiplicative group of 2× 2 real matrices of the

form; (
cos θ − sin θ

sin θ cos θ

)
(3.48)

or U(1) the multiplicative group of complex numbers of unit modulus eiθ.

We can consider an infinitesimal transformation and see where it maps the point x. Using

(3.44) and (3.45) we find

σµϵ (x) = σµ(ϵ, x) = xµ + ϵXµ(x) . (3.49)

The vector field X in this context is called the infinitesimal generator of the transformation

σt.

Given a vector field X the corresponding flow σ is often referred to as the exponentiation

of X and is denoted by

σµ(t, x) = exp(tX)xµ . (3.50)

To see why this is so, let us take a parameter t and evaluate the coordinate of a point which

is separated from the initial point x = σ(0, x) by the parameter distance t along the flow σ.

The coordinate corresponding to the point σ(t, x) is

σµ(t, x) = xµ + t
d

ds
σµ(s, x)

∣∣∣
s=0

+
t2

2!

( d

ds

)2
σµ(s, x)

∣∣∣
s=0

+ ....

=

[
1 + t

d

ds
+
t2

2!

( d

ds

)2
+ ...

]
σµ(s, x)

∣∣∣
s=0

≡ exp
(
t
d

ds

)
σµ(s, x)

∣∣∣
s=0

. (3.51)

The last expression can also be written as σµ(t, x) = exp(tX)xµ as in the definition above.

Then the flow satisfies the following exponential properties

σ(0, x) = x = exp(0X)x ,

σ(t, x)

dt
= X exp(tX)x =

d

dt

(
exp(tX)x

)
, (3.52)

σ(t, σ(s, x)) = σ(t, exp(sX)x) = exp(tX) exp(sX)x = exp
(
(t+ s)X

)
x = σ(t+ s, x) .

3.3.2 Lie Derivatives

Let σ(t, x) and τ(t, x) be two flows generated by the vector fields X and Y respectively:

dσµ(s, x)

ds
= Xµ(σ(s, x)) ,

dτµ(t, x)

dt
= Y µ(τ(t, x)) . (3.53)
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Let us evaluate the change of the vector field Y along σ(s, x). To do this we need to compare

the vector Y at a point x with Y at a nearby point x′ = σϵ(x), see figure 8. We cannot

simply take the difference between the components of Y at the two points since they belong

to different tangent spaces: Tx(M) and Tσϵ(x)
(M), and so the difference between the two

vectors is ill-defined. To define a sensible derivative, we first map Y |σϵ(x) to Tx(M) by using

the push-forward (σ−ϵ)∗ : Tσϵ(x)(M) → Tx(M), after which the two vectors are in the same

tangent space and we can take the difference between them. The Lie derivative of a vector

field Y along the flow σ of the vector field X is defined by

LXY = lim
ϵ→0

1

ϵ

[
(σ−ϵ)∗Y |σϵ(x) − Y |x

]
. (3.54)

Figure 8: To compare a vector Y |x with the vector Y |σϵ(x) the latter must be transported

back to x by the differential map (σ−ϵ)∗, that is we use the push-forward.

By writing this in components we may obtain another expression for the Lie derivative

of a vector field. Let (U,φ) be a chart with the coordinates x and let X = Xµ ∂
∂xµ and

Y = Y µ ∂
∂xµ be vector fields defined on U . Then σϵ(x) has the coordinates xµ + ϵXµ(x) and

Y |σϵ(x) = Y µ
(
xν + ϵXν(x)

)
eµ|x+ϵX

≃
[
Y µ(x) + ϵXν(x)∂νY

µ(x)
]
eµ|x+ϵX , (3.55)

with eµ = ∂
∂xµ ≡ ∂µ. Mapping this vector at σϵ(x) to x using (σ−ϵ(x))∗ we obtain

(σ−ϵ(x))∗Y |σϵ(x) =
[
Y µ(x) + ϵXλ(x)∂λY

µ(x)
]
∂µ
(
xν − ϵXν(x)

)
eν |x
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=
[
Y µ(x) + ϵXλ(x)∂λY

µ(x)
][
δνµ − ϵ∂µX

ν(x)
]
eν |x (3.56)

=Y µ(x)eµ|x + ϵ
[
Xµ(x)∂µY

ν(x)− Y µ(x)∂µX
ν(x)

]
eν |x +O(ϵ2) ,

and therefore we find

LXY =
(
Xµ∂µY

ν − Y µ∂µX
ν
)
eν . (3.57)

This motivates the introduction of the Lie bracket, [ , ]. For vector fields X,Y on M we have

[X,Y ]f = X[Y [f ]]− Y [X[f ]] , (3.58)

for all f ∈ F(M). In components [X,Y ] reads

(Xµ∂µY
ν − Y µ∂µX

ν)eν . (3.59)

Then the Lie derivative of Y along X is

LXY = [X,Y ] . (3.60)

Exercise: Show that the Lie bracket does define a vector field. In addition show that it satisfies

the following properties:

1. Bilinearity

[X, c1Y1 + c2Y2] = c1[X,Y1] + c2[X,Y2] ,

[c1X1 + c2X2, Y ] = c1[X1, Y ] + c2[X2, Y ] ,
(3.61)

for any constants c1 and c2.

2. Skew symmetry

[X,Y ] = −[Y,X] . (3.62)

3. Jacobi Identity

[[X,Y ], Z] + [[Z,X], Y ] + [[Y,Z], X] = 0 , (3.63)

4. For X,Y vector fields and f a smooth function on M then

LfXY = f [X,Y ]− Y [f ]X ,

LX(fY ) = f [X,Y ] +X[f ]Y
(3.64)

5. For f :M → N then

f∗[X,Y ] = [f∗X, f∗Y ] . (3.65)
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Geometrically the Lie bracket shows the non-commutativity of two flows. Let us take

the flows σ(s, x) and τ(t, x) generated by X and Y respectively. If we first move a small

parameter distance ϵ along the flow σ and then by δ along the second flow τ we end up at a

point whose coordinates are

τµ
(
δ, σ(ϵ, x)

)
≃τµ

(
δ + xν + ϵXν(x)

)
≃xµ + ϵXµ(x) + δY µ(xν + ϵXν)

≃xµ + ϵXµ(x) + δY µ9x) + ϵδXν(x)∂νY
µ(x) .

(3.66)

If we instead first move along τ and then move along σ we find

σµ
(
ϵ, τ(δ, x)

)
≃ xµ + δY µ(x) + ϵXµ(x) + ϵδY ν(x)∂νX

µ(x) . (3.67)

The difference between the two points is proportional to the Lie bracket

τµ
(
δ, σ(ϵ, x)

)
− σµ

(
ϵ, τ(δ, x)

)
= ϵδ[X,Y ]µ . (3.68)

The Lie bracket measures the failure of the parallelogram in figure 9 to close. It is easy to

see that

LXY = [X,Y ] = 0 ⇐⇒ σ
(
s, τ(t, x)

)
= τ

(
t, σ(s, x)

)
. (3.69)

Figure 9: Moving first along the flow σ and then the flow τ or first along τ and then along σ

we find that we may not end up at the same point. The difference is measured by the failure

of the Lie bracket to vanish.
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We may also define the Lie derivative of a one-form ω ∈ Ω1(M) along X. This time we

need to use the pull-back, then the Lie derivative of the one-form ω is

LXω ≡ lim
ϵ→0

1

ϵ

[
(σϵ)

∗ω|σϵ(x) − ω|x
]
, (3.70)

where ω|x ∈ T ∗
x (M) is ω at x. Introducing coordinates such that ω = ωµdx

µ, then we have

(σϵ)
∗ω|σϵ(x) = ωµ(x)dx

µ + ϵ
[
Xν(x)∂νωµ(x) + ∂µX

ν(x)ων(x)
]
dxµ , (3.71)

which leads to

LXω =
(
Xν∂νωµ + ∂µX

νων

)
dxµ . (3.72)

This remains a one-form, that is LXω ∈ T ∗
x (M) since it is the difference of two one-forms at

the same point.

This may also be extended to functions f on M . Then

LXf ≡ lim
ϵ→0

1

ϵ

[
f(σϵ(x))− f(x)

]
= lim

ϵ→0

1

ϵ

[
f(xµ + ϵXµ(x))− f(xµ)

]
= Xµ(x)

∂f

∂xµ
= X[f ] ,

(3.73)

which is just the usual directional derivative of f along X.

To extend this to more general tensors we need the following proposition:

Proposition: The Lie derivative satisfies

LX(t1 + t2) = LXt1 + LXt2 , (3.74)

where t1 and t2 are tensor fields of the same type. Moreover

LX(t1 ⊗ t2) =
(
LXt1

)
⊗ t2 + t1 ⊗

(
LXt2

)
, (3.75)

with t1 and t2 tensors of arbitrary type this time.

3.4 Differential forms

Not all tensors are created equally, some will play a more prominent role than others. One

class of interesting tensors are the p-forms. To define them we must first introduce some

additional notation. The symmetry operation on a tensor ω ∈ T (0,r)
p (M) is defined by

Pω(V1, ..., Vr) ≡ ω(VP (1), ..., VP (r)) , (3.76)
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with the Vi ∈ Tp(M), and P an element of the symmetric group of order r. Let us take the

coordinate basis, {eµ = ∂
∂xµ }, then the components of ω in this basis are

ω(eµ1 , ...., eµr) = ωµ1...µr . (3.77)

It follows that the components of Pω are

Pω(eµ1 , ..., eµr) = ωµP (1)...µP (r)
. (3.78)

For a general tensor of type (q, r) the symmetry operations are defined for the q and r indices

separately. For ω ∈ T (0,r)
p (M) the symmetrizer S is defined by

Sω =
1

r!

∑
P∈Sr

Pω , (3.79)

while the anti-symmetrizer A is defined to be

Aω =
1

r!

∑
P∈Sr

sgn(P )Pω , (3.80)

with sgn(P ) = +1 for an even permutation and −1 for an odd permutation. Sω is totally

symmetric so that PSω = Sω for any P ∈ Sr while Aω is totally anti-symmetric so that

Aω = sgn(P )Aω.

Definition A differential form of order r, or more succinctly an r-form, is a totally

anti-symmetric tensor of type (0, r).

The Wedge product ∧ of r one-forms is defined to be the totally anti-symmetric tensor

product of the one-forms

dxµ1 ∧ dxµ2 ∧ ...dxµr ≡
∑
P∈Sr

sgn(P )dxµP (1) ⊗ dxµP (2) ⊗ ....⊗ dxµP (r) . (3.81)

Thus

dxµ ∧ dxν = dxµ ⊗ dxν − dxν ⊗ dxµ . (3.82)

The wedge product satisfies the following conditions

• dxµ1 ∧ ... ∧ dxµr = 0 if some index is repeated.

• dxµ1 ∧ ... ∧ dxµr = sgn(P )dxµP (1) ∧ ... ∧ dxµP (r) .

• dxµ1 ∧ ... ∧ dxµr is linear in each dxµ.
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We will denote the vector space of r-forms at the point p ∈M by Ωr
p(M), a basis is provided

by the set of all wedge products in (3.81). We can then expand an element of Ωr
p(M) as

ω =
1

r!
ωµ1...µrdx

µ1 ∧ ... ∧ dxµr , (3.83)

where ωµ1...µr are taken to be totally anti-symmetric. Since there are

(
m

r

)
choices of the set

{µ1, ....µr} out of (1, 2, ...,m) the dimension of the vector space Ω
(r)
p (M) is(

m

r

)
=

m!

r!(m− r)!
. (3.84)

We take Ω0
p(M) = R and it is obvious that Ω1

p(M) = T ∗
p (M). Also since we are anti-

symmetrising it follows that if r exceeds m = dim(M) then it vanishes identically. Moreover

since

(
m

r

)
=

(
m

m− r

)
it follows that dimΩr

p(M) = dimΩm−r
p (M). Since Ωr

p(M) is a vector

space it is isomorphic to Ω
(r−m)
p (M).14

3.4.1 Exterior product

We may define the exterior product to be the map ∧ : Ωq
p(M) × Ωr

p(M) → Ωq+r
p (M). Its

action follows by trivial extension of the wedge product defined above. Let ω ∈ Ωq
p(M) and

ξ ∈ Ωr
p(M) be an q-form and and r-form respectively. The action of the (q + r)-form ω ∧ ξ

on q + r vectors Vi is

(ω ∧ ξ)(V1, ..., Vq+r) =
1

q!r!

∑
P∈Sq+r

sgn(P )ω
(
VP (1), ..., VP (q)

)
ξ
(
VP (q+1), ..., VP (q+r)

)
. (3.85)

It follows that if q+ r > m then ω ∧ ξ vanishes. With this product we can define and algebra

Ω∗
p(M) ≡ Ω0

p(M)⊕ Ω1
p(M)⊕ ...⊕ Ωm

p (M) . (3.86)

Exercise: From the properties of the wedge product show that for ξ ∈ Ωq
p(M), η ∈ Ωr

p(M)

and ω ∈ Ωs
p(M) that

ξ ∧ ξ = 0 if q odd ,

ξ ∧ η = (−1)qrη ∧ ξ , (3.87)

(ξ ∧ η) ∧ ω = ξ ∧ (η ∧ ω) .

We may assign an r-form smoothly at each point on a manifold M . We denote the space

of smooth r-forms on M by Ωr(M), and take Ω0(M) = F(M) to be the space of smooth

functions.
14When the manifold is equipped with a metric the isomorphism is provided by the Hodge star operation ⋆.
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3.4.2 Exterior derivative

Definition The exterior deriavtive dr is a map Ωr(M) → Ωr+1(M), whose action on an

r-form

ω =
1

r!
ωµ1...µrdx

µ1 ∧ ... ∧ dxµr , (3.88)

is

drω =
1

r!

(
∂

∂xν
ωµ1...µr

)
dxν ∧ dxµ1 ∧ ... ∧ dxµr . (3.89)

It is common to drop the r subscript and simply write d. The wedge product automatically

anti-symmetrises the coefficient so it is indeed a (r + 1)-form that we obtain. It follows that

for ξ ∈ Ωq
p(M), η ∈ Ωr

p(M) we have

d(ξ ∧ η) = dξ ∧ η + (−1)qξ ∧ dη . (3.90)

Example: Let us take R3 with coordinates (x, y, z). The generic r-forms are

ω0 = f(x, y, z) ,

ω1 = ωx(x, y, z)dx+ ωy(x, y, z)dy + ωz(x, y, z)dz ,

ω2 = ωxy(x, y, z)dx ∧ dy + ωyz(x, y, z)dy ∧ dz + ωzx(x, y, z)dz ∧ dx ,

ω3 = ωxyz(x, y, z)dx ∧ dy ∧ dz .

(3.91)

The exterior derivative of these forms is

dω0 =
∂

∂x
f(x, y, z)dx+

∂

∂y
f(x, y, z)dy +

∂

∂z
f(x, y, z)dz ,

dω1 =

(
∂

∂x
ωy −

∂

∂y
ωx

)
dx ∧ dy +

(
∂

∂y
ωz −

∂

∂z
ωy

)
dy ∧ dz +

(
∂

∂z
ωx −

∂

∂x
ωz

)
dz ∧ dx ,

dω2 =

(
∂

∂x
ωyz +

∂

∂y
ωzx +

∂

∂z
ωxy

)
dx ∧ dy ∧ dz , (3.92)

dω3 = 0 .

In the usual 3d vector calculus you may identify these as ‘grad’ for d acting on the scalar,

‘curl’ for the one-form and the ‘divergence’ for the two-form.

We have used coordinates to give the definition of the exterior derivative above, we may

also write it in coordinate free notation. For an r-form, ω ∈ Ωr(M) we have

dω(X1, ..., Xr+1) =
r∑

i=1

(−1)i+1Xiω(X1, ..., X̂i, ..., Xr+1)

+
∑
i<j

(−1)i+jω([Xi, Xj ], X1, ..., X̂i, ..., X̂j , ..., Xr+1) ,
(3.93)
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where the hats denote that this term should be removed.

From either the coordinate free expression (3.93) or the one using the coordinates in

(3.89), we can prove the important result that

d2 = 0 , (dr+1dr = 0) . (3.94)

Using the coordinate form (3.89) we find

d2ω =
1

r!

∂2

∂xν∂xσ
ωµ1...µrdx

ν ∧ dxσ ∧ dxµ1 ∧ ... ∧ dxµr . (3.95)

Using that the derivative term is symmetric in νσ while the wedge product is anti-symmetric

in these indices it follows that this vanishes.

It then follows that an exact form is always closed, though the converse need not be true.

The failure of a closed form to be exact tells us interesting information about the topology of

the underlying manifold. The exterior derivative induces the sequence

0
i−→ Ω0(M)

d0−→ Ω1(M)
d1−→ ...

dm−1−−−→ Ωm(M)
dm−−→ 0 , (3.96)

with i the inclusion map. This is known as the de Rahm complex. If we let the set of all

closed r-forms on M be Zr(M), so that for dr : Ωr(M) → Ωr+1(M), ker(dr) = Zr(M).

Moreover, let us also denote the set of all exact r-forms to be Br(M), i.e. the Br is the image

of Ωr−1(M) under dr−1 : Ωr−1(M) → Ωr(M). Then the rth de-Rahm cohomology group is

defined to be

Hr(M) = Zr(M)/Br(M) . (3.97)

This is the dual space of the homology group, though we will not have time to consider this.

The cohomology groups tell us important information about a manifold, the dimension of

them are topological invariants. Let br = dim(Hr(M)), these are the Betti numbers of the

manifold and are always finite. For a connected manifold one always has b0 = 1, these are

just the constant functions. The higher Betti numbers are non-zero when the manifold has

some interesting topology. The Euler characteristic of a manifold is

χ(M) =

m∑
r=0

(−1)rbr(M) . (3.98)

We have seen that every exact form is closed, however not every closed form is exact,

instead we have:

Theorem Poincaré’s lemma If a coordinate neighbourhood U of a manifoldM is contractible
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to a point p ∈M , any closed form on U is also exact. In particular onM = Rm, closed implies

exact.

Since we have been mapping manifold to Rm this says that for a general manifold any

closed form is locally exact. That is if ω is a closed r-form, then in any neighbourhood U ⊂M

it is always possible to find η ∈ Ωr−1(M) such that ω = dη on U . Since we cannot generally

cover the manifold with a single patch, it may not be possible to find such an η everywhere

on M , hence we say that the form is only locally exact.

Let us consider some examples. First consider M = R. We can take a one-form ω =

f(x)dx. This is trivially closed since it is a top form, it is also exact since we can write

g(x) =

∫ x

0
dx′f(x′) , (3.99)

such that ω = dg(x).

Now consider a circle, S1. We can view this as the phase eiθ ∈ C and can introduce the

one-form ω = dθ. Clearly this is once again closed since it is a top form. By the way we have

written this it makes it seem that this is once again an exact form however the caveat is that

θ is not a good coordinate everywhere on S1, it is not single valued. As such θ is not a good

smooth function and so is not a zero-form. Hence it is closed but not exact.

Next consider M = R2. The Poincaré lemma ensures that all closed forms are exact.

This changes if we remove a point, consider R2 − {0, 0} and the one-form

ω = − y

x2 + y2
dx+

x

x2 + y2
dy . (3.100)

This is not a smooth one-form on R2, the problematic point is the origin. However, on

R2 − {0, 0} it is smooth since we no longer have the problem area at the origin. It is not

difficult to see that ω is closed, but is it exact. If such a smooth function exists such that

ω = df then the function f must satisfy:

∂f

∂x
= − y

x2 + y2
,

∂f

∂y
=

x

x2 + y2
. (3.101)

The solution is

f(x, y) = arctan
(y
x

)
+ constant , (3.102)

so have we found an exact form. The answer is no, this is not a smooth function everywhere

on R2 − {0, 0}, and so ω is not exact. Removing a point makes a big difference: closed no

longer implies exact! A similar story holds for R3 and this is how magnetic monopoles sneak

back into physics despite being forbidden by Maxwell’s equations.
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3.4.3 Interior product

We can now go from Ωr(M) → Ωr+1(M), what about the other way around? To do this we

have to define the Interior product. Let X be a vector field and ω ∈ Ωr(M) then

iXω(X1, ..., Xr−1) ≡ ω(X,X1, ..., Xr−1) . (3.103)

If we introduce coordinates: X = Xµ ∂
∂xµ then

iXω =
1

(r − 1)!
Xνωνµ1...µr−1dx

µ2 ∧ ... ∧ dxµr . (3.104)

Example: Let us take R3 again with coordinates (x, y, z), and the usual coordinate basis,

then we have

iex(dx ∧ dy) = dy , iex(dy ∧ dz) = 0 , iex(dz ∧ dx) = −dz . (3.105)

The interior product and exterior derivative combine beautifully to give a simple way of

computing the Lie derivative of a form along the vector X:

LXω =
(
d iX + iX d)ω , (3.106)

this applies for any r-form.

The interior product satisfies (Exercise: show this)

i2X = 0 ,

iX(ω ∧ η) = iXω ∧ η + (−1)rω ∧ iXη ,

i[X,Y ]ω = X(iY ω)− Y (iXω) ,

LX iXω = iXLXω .

(3.107)

Hamiltonian mechanics in differential geometry We can now combine some of the

differential geometry we have learnt so far to reformulate classical Hamiltonian mechanics.

Recall that in classical mechanics the phase space is a manifoldM parametrised by coordinates

(qi, pj) where qi are the positions of particles and pj the momenta. Note that M is even

dimensional. The Hamiltonian H(q, p) is a function on M and Hamilton’s equations are

q̇i =
∂H

∂pi
, and ṗi = −∂H

∂qi
. (3.108)

Phase space comes equipped with the Poisson bracket, defined on a pair of functions f, g to

act as

{f, g} =
∂f

∂qj
∂g

∂pj
− ∂f

∂pj

∂g

∂qj
. (3.109)
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The time evolution of a function is

ḟ = {f,H} , (3.110)

with H the Hamiltonian. For f = qi and f = pi one obtains Hamilton’s equations.

Underlying this structure are forms. The key idea behind this is to convert the scalar

function H into a vector field XH on M . Particles will then follow trajectories which are

the integral curves generated by XH . To convert the scalar into a vector we introduce the

symplectic two-form ω. This is a two-form which is closed dω = 0 and is non-degenerate,

ω∧ω∧ ....∧ω ̸= 0. A manifold equipped with such a two-form is called a symplectic manifold.

Any two-form provides a map ω : Tp(M) → T ∗
p (M), since given a vector field X we can

simply take the inner product with ω to obtain a one-form, iXω. For our purposes we want

to go in the opposite direction, we want to convert a scalar function into a vector field. This

is possible if the map ω : Tp(M) → T ∗
p (M) is an isomorphism. This is equivalent to ω being

non-degenerate. In this case we can define a vector field XH via

iXH
ω = −dH . (3.111)

In coordinate notation we have

Xµ
Hωµν = −∂νH . (3.112)

If we take the inverse to be ωµν so that ωµνωνρ = δµρ , then

Xµ
H = ωµν∂νH . (3.113)

The integral curves generated by XH obey

dxµ(t)

dt
= Xµ

H = ωµν∂νH . (3.114)

These are the general form of Hamilton’s equations, just written without reference to canonical

coordinates. If we let xµ = (qi, pj) and choose the symplectic form to have block diagonal

form

ωµν =

(
0 1

−1 0

)
⇔ ω = dpi ∧ dqi (3.115)

then the integral curves reduce precisely to Hamilton’s equations (3.108).

To define the Poisson structure, we first note that we can repeat the map for obtaining

a vector from a scalar for any function f , to obtain a vector field Xf . Then

{f, g} = ω(Xf , Xg) = −ω(Xg, Xf ) . (3.116)
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This may be written in a multitude of different ways, we have

{f, g} = −iXf
ω(Xg) = df(Xg) = Xg(f) . (3.117)

It follows that the equation of motion in Poisson bracket structure is then

ḟ = {f,H} = XH(f) = LXH
f . (3.118)

We see that the Lie derivative along XH generates time evolution!

So far we have not explained why the symplectic two-form was taken to be closed. This

is required in order for the Poisson bracket to obey the Jacobi identity. It is also a necessary

(and sufficient) condition for the symplectic form to be invariant under Hamiltonian flow.

3.4.4 Integration

We have learnt how to differentiate on a manifold using a vector field X, what about inte-

gration? What can we integrate on a manifold and how? It turns out that it is differential

forms that we can integrate.

To begin we need to define an orientation on a manifold. Let M be a connected m-

dimensional differentiable manifold. At a point p ∈ M the tangent space Tp(M) is spanned

by the basis {eµ} = { ∂
∂xµ } where xµ is the local coordinate on the chart Ui which contains

p. Take Uj to be another chart such that Ui ∪ Uj ̸= ∅ and such that p ∈ Ui ∪ Uj . Then the

tangent space Tp(M) is spanned by both {eµ} or {ẽν} = { ∂
∂yµ }. The change of basis is

ẽν =
∂xµ

∂yν
eµ ≡ Jµ

ν eµ . (3.119)

If det(J) > 0 on Ui∪Uj , the two bases {em} and {ẽν} are said to defined the same orientation

on Ui ∪ Uj . If on the other hand det(J) < 0 then they define the opposite orientation.

Definition Ley M be a connected manifold covered by {Ui}. The manifold M is ori-

entable if for any overlapping charts Ui, U)j there exist local coordinates {xµ} for Ui and

{yν} for Uj such that det
(
∂xµ

∂yν

)
> 0.

If M is non-orientable, J cannot be made positive in all intersections of charts. An

example of a non-orientable manifold is the Möbius strip, se figure 10. To construct a Möbius

strip take two rectangles and glue them together with a twist of π on one of the edges to glue.

If an m-dimensional manifold M is orientable there exists an m-form ω which is nowhere

vanishing, called the volume form or volume element. It plays the role of the measure when

we integrate a function f ∈ F(M) over M . Two volume elements are said to be equivalent

if there exists a strictly positive function h ∈ F(M) such that ω = hω′. A negative-definite
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x2

x1

y2

y1

B A

A′ B′ 

B B′ 

A A′ 

Figure 10: To construct the Möbius strip we glue two rectangles together: A with A′ and

B with B′. When joining A with A′ we twist by π. The coordinate transformation on the

A, A′ intersection y1 = x1 and y2 = −x2, which has Jacobian −1 and is thus not orientable.

We see that the cyclist going around the Möbius strip end up “up-side down” as they travel

around the strip.

function h′ ∈ F(M) gives and inequivalent orientation to M . Therefore for any orientable

manifold there are tow inequivalent orientations, we may refer to one of them as right-handed

and the other as left-handed.

Since the volume form is a top form, and thus may be written locally as

ω = h(x)dx1 ∧ ...dxm , (3.120)

with the requirement that h(x) ̸= 0. We must then be able to patch this over the whole

manifold without the handedness changing. Suppose that we have two sets of coordinates xµ

and yν on the charts Ui and Uj respectively, then in the new coordinates we have

ω = h(x)
∂x1

∂yν1
dyν1 ∧ .... ∧ ∂xn

∂yνm
dyνm = h(x) det

(∂xµ
∂yν

)
dy1 ∧ .... ∧ dym , (3.121)

which makes clear that we may only define a volume form when the manifold is orientable.

For the Möbius strip we see that we begin with volume form ω = dx ∧ dy but as we change

charts this becomes ω = −dx ∧ dy and so ω is not defined uniquely on the Möbius strip.

Now we can define an integration of a function f : M → R over an orientable manifold

M . Let us take the volume form to be ω. Then in a coordinate neighbourhood Ui with
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coordinates xµ we define the integration of an m-form fω to be∫
Ui

fω ≡
∫
φ(Ui)

f
(
φ−1
i (x))

)
h
(
φ−1
i (x)

)
dx1...dxm . (3.122)

Notice that the right-hand side is an ordinary integration, albeit in m variables. Once the

integral of f over Ui is defined it can be extended to an integration over all of M by making

use of a partition of unity.

Definition Take an open covering {Ui} on M such that each point of M is covered with

a finite number of Ui. If this is always possible we call M paracompact.15 If a family of

differentiable functions ϵi(p) satisfies

1. 0 ≤ ϵi(p) ≤ 1 ,

2. ϵi(p) = 0 if p /∈ Ui ,

3. ϵ1(p) + ϵ2(p) + ..... = 1 for every point p ∈M .

The family {ϵi(p)} is called a partition of unity for the covering {Ui}.
From condition (3) if follows that

f(p) =
∑
i

f(p)ϵi(p) =
∑
i

fi(p) , fi(p) ≡ ϵi(p)f(p) . (3.123)

Hence given a point p ∈ M assumed paracompactness ensures that there are only a finite

number of terms in the summation over i. For each of the fi(p) we may define the integral

over Ui via (3.122), and therefore we have∫
M
fω ≡

∑
i

∫
Ui

fiω . (3.124)

Though a different choice of atlas gives a different set of coordinates and a different partition

of unity the integral as defined above stays the same.

Example Let us consider integrating a function on the circle. Let us take the atlas as

given in (3.6) and (3.7). Let U1 = S1−{(1, 0)} and U2 = S1−{(−1, 0)}. Then we may give a

partition of unity by fixing ϵ(θ) = sin2 θ
2 and ϵ2(θ) = cos2 θ

2 . Note that ϵ1(0) = 0 and ϵ2(π) = 0

and therefore they vanish at the removed points as required. Moreover ϵ1(θ) + ϵ2(θ) = 1 as

required. Thus {ϵi(θ)} furnishes us with a partition of unity subordinate to {Ui}. We can,

for an example, integrate the function f = cos2 θ. Of course we know∫ 2π

0
dθ cos2 θ = π , (3.125)

15We will assume this is the case whenever we integrate something in this course.
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but we should check with our partition of unity that we obtain the same result. We find∫
S1

dθ cos2 θ =

∫ 2π

0
dθ sin2

θ

2
cos2 θ +

∫ π

−π
dθ cos2

θ

2
cos2 θ =

1

2
π +

1

2
π = π . (3.126)

So far we have left the function h(x) appearing in the volume-form arbitrary. Since this

gets multiplied by the Jacobian it changes between different coordinate patches and therefore

there is no canonical way to pick this. Once we endow the manifold with a metric, as we

require to GR, there is a canonical choice that we can make.

We can also integrate forms over sub-manifolds of M , rather than the full manifold. A

manifold Σ with dimension k < n is a sub-manifold of M if we can find a map σ : Σ → M

which is one-to-one and σ∗ : Tp(Σ) → Tσ(p)(M) is also one-to-one. We can then integrate a

k-form ω on M over a k-dimensional sub-manifold Σ by pulling the form back to Σ:∫
σ(Σ)

ω =

∫
Σ
σ∗ω . (3.127)

For example consider a one-form A living on M and take C to be a one-dimensional manifold

inM . We can introduce a map σ : C →M which defines a non-intersecting curve σ(C) which

is a sub-manifold of M . We can then pull-back A onto the curve and integrate to obtain,∫
σ(C)

A =

∫
C
σ∗A . (3.128)

Let the curve trace out a path xµ(τ) in M then, in coordinates this reads∫
C
σ∗A =

∫
dτAµ(x)

dxµ

dτ
, (3.129)

which is precisely the way in which a worldline of a particle couples to the electromagnetic

field.

Stokes Theorem Until now our focus has been on smooth manifolds without boundary.

We saw that this can be extended to manifolds with a boundary in section 3.1. There we

have charts φ : M → Ui where Ui is an open subset of Rm = {(x1, ..., xm)|xm ≥ 0}. The

boundary is denoted by ∂M , and is the sub-manifold fixed by xm = 0. Then for a manifold

M with a boundary, for any (m− 1)-form ω we have∫
M

dω =

∫
∂M

ω . (3.130)

Stoke’s theorem is the mother of all integral theorems. You may be familiar with the di-

vergence theorem, Green’s theorem, etc. for example, this is the generalisation of those.

Exercise: show that this reduces to Stoke’s theorem on R3.
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4 Riemannian geometry

We now have all the necessary pre-requisites to introduce the M.V.P. of general relativity: the

metric. The introduction of a metric brings a whole slew of new objects that we can define.

4.1 The metric

Definition: Let M be a differentiable manifold. A Riemannian metric g on M is a type

(0, 2) tensor field on M which at each point p ∈M satisfies

• Symmetric: gp(X,Y ) = gp(Y,X),

• gp(X,X) ≥ 0 with equality iff X = 0

with X,Y ∈ Tp(M). A tensor field g of type (0, 2) is a pseudo-Riemannian metric if it satisfies

the first condition and

• Non-degenerate. If for any p ∈M gp(X,Y ) = 0 for all Y ∈ Tp(M) then Xp = 0,

We may extend the tensor gp over the full manifold. With a choice of coordinates we can

write the metric as

g = gµν(x)dx
µ ⊗ dxν . (4.1)

We will often write this as the line elements ds2,

ds2 = gµν(x)dx
µdxν . (4.2)

Strictly this is not a metric, since the metric is a tensor, however we will often use this abuse

of terminology as is common in the field.

One can extract out the components by evaluating the metric on a pair of basis elements

gµν(x) = g

(
∂

∂xµ
,
∂

∂xν

)
. (4.3)

We may view gµν as a matrix, which by the symmetry property above is symmetric. This

implies that the matrix is diagonalisable, with real eigenvalues. If there are i positive eigen-

values and j negative eigenvalues the pair (i, j) is called the index of the metric. If j = 1

the metric is called a Lorentz metric, for j = 0 we have a Euclidean metric. The number of

negative entries is called the signature and by Sylvester’s law of inertia16, this is independent

of the choice of basis.

16This has nothing to do with inertia, Sylvester just wanted a law of inertia like Newton.
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For most applications of differential geometry, we are interested in manifolds with signa-

ture 0, i.e. a Riemannian manifold. The simplest example which you are probably familiar

with, though maybe not in this language, is the metric on Euclidean space Rm, which is

Cartesian coordinates has the metric

g = dx1 ⊗ dx1 + ...+ dxm ⊗ dxm , (4.4)

which in components reads gµν = δµν .

4.1.1 Riemannian metric

A general Riemannian metric is a useful object to have in ones tool belt. It gives us a way of

measuring the length of a vector X at each point

|X| =
√
g(X,X) . (4.5)

Moreover we may measure the angle between two vectors

g(X,Y ) = |X||Y | cos θ . (4.6)

Furthermore it can be used to measure the distance between two points p and q along a curve

in M . For the curve σ : [a, b] →M with σ(a) = p and σ(b) = q the distance between the two

points along the curve is

d(p, q) =

∫ b

a
dt
√
g(X,X)|σ(t) , (4.7)

where X is the tangent vector field of the curve. If the curve has coordinates xµ(t) then

Xµ = dxµ

dt and the distance is

d(p, q) =

∫ b

a
dt

√
gµν

dxµ(t)

dt

dxν(t)

dt
. (4.8)

This distance does not depend on the parametrisation of the curve.

4.1.2 Lorentzian manifolds

For our purposes Riemannian manifolds are not what we want to consider, instead we want

to consider Lorentzian manifolds. The simplest example is Minkowski space. This is R1,m−1

equipped with the metric

η = −dx0 ⊗ dx0 + dx1 ⊗ dx1 + ...+ dxm−1 ⊗ dxm−1 , (4.9)

which has components ηµν = diag(−1, 1, ..., 1). Note that on a Lorentzian manifold we take

the index to run over 0, 1, ..,m− 1.
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At any point p on a general Lorentzian manifold it is always possible to find an orthonor-

mal basis {eµ} of Tp(M) such that locally the metric looks like the Minkowski metric

gµν |p = ηµν . (4.10)

This is closely related to the equivalence principle we discussed previously.

The fact that locally the metric looks locally like Minkowski space allows us to import

some of the ideas of special relativity, namely we can classify the elements of Tp(M) into three

classes

• g(X,X) > 0 −→ X is spacelike ,

• g(X,X) = 0 −→ X is lightlike or null ,

• g(X,X) < 0 −→ X is timelike .

At each point on M we can then draw light cones which are the null tangent vectors at that

point. The novelty is that the directions of these light cones can vary smoothly as we move

around the manifold. This specifies the causal structure of spacetime which determines which

regions of spacetime can interact together.

As in the Riemannian case we can use the metric to determine the length of curves. The

nature of a curve is inherited from the nature of its tangent vector. A curve is called timelike

if its tangent vector is everywhere timelike. We then measure the proper time

τ =

∫ b

a
dt

√
−gµν

dxµ

dt

dxν

dt
. (4.11)

4.1.3 Why is the metric useful

The existence of a metric comes with a large number of benefits.

The metric as an isomorphism The metric gives a natural isomorphism between vectors

and covectors, g : Tp(M) → T ∗
p (M) for each p. In a coordinate basis we can write X = Xµ∂µ,

and map it to a one-form X = Xµdx
µ, as

Xµ = gµνX
ν . (4.12)

We will usually say that we use the metric to lower (or raise) an index. What we really mean

is that the metric provides and isomorphism between a vector space and its dual. Since g

is non-degenerate and is thus invertible we also have the inverse map. We take the inverse
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of gµν to be gµν so that gµνgνρ = δµρ . This can then be thought of as the components of a

symmetric (2, 0) tensor

ĝ = gµν∂µ ⊗ ∂ν . (4.13)

Then

Xµ = gµνXν . (4.14)

In Euclidean space since gµν = δµν one does not immediately notice the distinction between

vectors and one-forms.

The Volume form The metric also gives a natural volume form on the manifold M . On

a Riemannian manifold we take the volume form to be

vol(M) =
√
det(gµν)dx

1 ∧ ...dxm , (4.15)

and we use the shorthand
√

det(gµν) =
√
g. On a Lorentzian manifold the determinant is

negative and therefore we take the volume form to be

vol(M) =
√
−gdx0 ∧ dx1 ∧ ... ∧ dxn−1 . (4.16)

As it is written it looks coordinate dependent however it is not. To see this recall that if we

change coordinates y = y(x) we have (see (3.29))

dxµ = Λµ
νdy

ν , Λµ
ν =

∂xµ

∂yν
. (4.17)

Then

dx1 ∧ ...dxm = Λ1
ν1 ....Λ

m
νmdy

µ1 ∧ ... ∧ dyµm

=
∑

P∈Sm

sgn(P )Λ1
P (1)...Λ

m
P (m)dy

1 ∧ ... ∧ dym

= det(Λ)dy1 ∧ ...dym ,

(4.18)

where in the penultimate line we have used the properties of the wedge product and in the

last line used the definition of the determinant. The metric components transform as

gµν =
∂yρ

∂xµ
∂yσ

∂xν
g̃ρσ , (4.19)

and therefore

det(gµν) = det(g̃µν)
(
det(Λ)

)−2
, (4.20)

and therefore this cancels with the transformation of the wedge product leaving

vol(M) =
√
|g|dy1 ∧ ...dym . (4.21)
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We may rewrite the volume form as

vol(M) =
1

m!
vµ1...µmdx

µ1 ∧ ....dxµm , where vµ1...µm =
√

|g|ϵµ1...µm . (4.22)

It follows that vµ1....µm is a tensor, while ϵµ1...µm is not, instead it is a tensor density (one

needs to multiply by the square root of the determinant to obtain a tensor). Note that we

define ϵµ1...µm to again be the totally anti-symmetric tensor with ϵ1...m = 1, i.e. we do not

raise the indices on ϵ with the metric. Instead we have

vµ1...µm = gµ1ν1 ...gµmνmvν1...νm = ± 1√
|g|
ϵµ1...µm . (4.23)

Hodge dual On an oriented manifold M we can use the totally anti-symmetric tensor

density to define a map which takes a p-form ω ∈ Ωp(M) to a (m− p)-form ⋆ω ∈ Ωm−p(M).

We define this map to be

(⋆ω)µ1...µm−p =
1

p!

√
|g|ϵµ1...µm−pν1...νpω

ν1..νp . (4.24)

This is called the Hodge dual and is independent of coordinates. One can see that it satisfies

⋆(⋆ω) = ±(−1)p(m−p)ω , (4.25)

with + for a Riemannian metric and − for a Lorentzian.17

With the Hodge dual in tow we can define an inner product on each vector space Ωr(M).

If ω, η ∈ Ωr(M) then

⟨η, ω⟩ ≡
∫
M
η ∧ ⋆ω . (4.26)

With such an inner product one can look at operators on Ωr(M) and their adjoints. The

differential operator we have introduced on r-forms is the exterior derivative. For ω ∈ Ωr(M)

and α ∈ Ωr−1(M) the adjoint is defined via

⟨dα, ω⟩ = ⟨α,d†ω⟩ , (4.27)

where the adjoint operator d† : Ωr(M) → Ωr−1(M) is given by

d† = ±(−1)m(r+1)−1 ⋆ d ⋆ . (4.28)

17One has actually seen the Hodge dual before, it was just hidden from view. Consider two vectors a⃗ and

b⃗ in R3, We can take the cross product to obtain a third vector c⃗ as a⃗ × b⃗ = c⃗. This however mixes a lot

of different objects. This is equivalent in our new language to first use the metric to relate the vectors to

one-forms. The cross product it really the wedge product of the two one-forms to give a two-form. We then

take the Hodge dual of this two-form to obtain a one-form and then use the metric once again to extract out

a vector. This more complicated route is hidden since the metric is just the Kronecker delta and so we can

raise and lower indices with impunity. Going to curved space and a non-trivial metric these subtleties become

relevant.
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One can then define a Laplacian □ : Ωr(M) → Ωr(M) defined as18

□ = (d + d†)2 = dd† + d†d . (4.29)

It can be defined on both Riemannian manifolds and Lorentzian, however it is only positive

definite on Riemannian manifolds. On a function f the Laplacian acts as

□f = − 1√
|g|
∂ν

(√
|g|gµν∂µf

)
. (4.30)

Aside: There is a beautiful interplay between the Eigenforms and Eigenvalues of the

Laplacian and the topology of the space that we will not cover. If one defines a har-

monic form to be one which is annihilated by the Laplacian □ω = 0, then there is an

isomorphism between the set of all harmonic forms and the cohomology group:

Harmr(M) ∼= Hr(M) . (4.31)

The Betti numbers which were the dimensions of the cohomology groups are then just

the dimension of the group of harmonic r-forms on the manifold.

4.2 Connections and curvature

A vector field X is a directional derivative acting on a function f ∈ F(M). However so far we

have not introduced such a derivative for tensors of type (q, r). The Lie derivative is not quite

what we want since it also involves derivatives of the vector defining the direction. This other

derivative is more useful than the Lie derivative, but requires the introduction of a connection

to map the vector spaces at one point to vector spaces at another. The resultant object is

known as the covariant derivative and is distinct from the Lie derivative that we introduced

previously.

An affine connections ∇ is a map ∇ : X (M) × X (M) → X (M), (X,Y ) 7→ ∇XY which

satisfies

∇X(Y + Z) = ∇XY +∇XZ , (4.32)

∇(fX+gY )Z = f∇XZ + g∇Y Z , (4.33)

∇X(fY ) = X[f ]Y + f∇XY , (4.34)

for vector fields X,Y, Z ∈ X (M) and functions f, g ∈ F(M).

18You may also see the Laplacian denoted by △ rather than □.
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Let us take a chart (U,φ) with coordinate x = φ(p) and define m3 functions Γµ
νρ called

the connection coefficients by

∇νeµ ≡ ∇eνeµ = eλΓ
λ
νµ , (4.35)

where {eµ} = { ∂
∂xµ } is the coordinate basis in Tp(M). The connection coefficients specify

how the basis vectors change from point to point, i.e. how to map the tangent space Tp(M)

to Tq(M). Using the properties of the connection we can work out the general covariant

derivative of a vector field

∇XY = ∇X(Y µeµ)

= X[Y µ]eµ + Y µ∇Xeµ

= Xν∂ν(Y
µ)eµ +XνY µ∇νeµ

= Xν
(
∂νY

µ + Γµ
νρY

ρ
)
eµ .

(4.36)

We can strip off the overall Xν to write(
∇νY

)µ
=
∂Y µ

∂xν
+ Γµ

νρY
ρ , (4.37)

so that

(∇XY )µ = Xν∇νY
µ (4.38)

In a function the covariant derivative coincides with both the Lie derivative and the regular

partial derivative, however its action on vectors differs. While the Lie derivative LXY depends

on both X and its first derivative, the covariant derivative depends only on X. This is the

natural generalisation of the partial derivative on curved space.

We will often be sloppy and write

(∇XY )µ = ∇νY
µ . (4.39)

Typically in older books, though some still like to use this stupid convention, one may see

the semi-colon notation

∇νY
µ = Y µ

;ν . (4.40)

We will refrain from using this convention to preserve our sanity.

At the moment the connection Γµ
νρ is somewhat abstract. One may guess that it is a

tensor however this is not correct. To see this let us consider how it transforms under a

change of coordinates. Recall that the basis elements transform as

ẽµ = Λµ
νeµ , with Λµ

ν =
∂yµ

∂xν
. (4.41)
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Recall that a (1, 2) tensor Tµ
νρ transforms as

T̃µ1
ν1ρ1 = (Λ−1)µ1

µ2
Λν2

ν1Λ
ρ2

ρ1T
µ2
ν2ρ2 . (4.42)

We can compute the transformation of the connection. In the basis {ẽµ} we have

∇ẽρ ẽν = Γ̃µ
νρẽµ

= ∇Λσ
ρ
eσ

(
Λτ

νeτ

)
= Λσ

ρ

(
∇σ(Λ

τ
ν)eτ + Λτ

ν∇σeτ

)
= Λσ

ρ

(
Λτ

νΓ
κ
στ + ∂σΛ

κ
ν

)
eκ

= Λσ
ρ

(
Λτ

νΓ
κ
στ + ∂σΛ

κ
ν

)
(Λ−1)µκẽµ .

(4.43)

From this we obtain

Γ̃µ
νρ = (Λ−1)µκΛ

σ
ρΛ

τ
νΓ

κ
στ + (Λ−1)µκΛ

σ
ρ∂σΛ

κ
ν . (4.44)

The first term is the expected transformation term of a (1, 2) tensor, however there is an

additional piece. This additional piece is independent of Γ and depends only on the ∂Λ. This

is the characteristic transformation of a connection.

Differentiating other tensors We can use the properties of the covariant derivative to

extend its action to any tensor field. Consider a one-form ω. If we differentiate ω we will

get another one-form ∇Xω, so we should check its action on a vector field Y ∈ X (M). We

impose that the connection obeys the Leibniz identity

∇X(ω(Y )) = (∇Xω)(Y ) + ω(∇XY ) . (4.45)

Since ω(Y ) is a function we know that

∇X(ω(Y )) = X[ω(Y )] . (4.46)

Using the Leibniz condition we have

(∇Xω)(Y ) = X(ω(Y ))− ω(∇XY ) , (4.47)

and reducing to coordinates we find

Xµ(∇µω)νY
ν = Xµ∂µ(ωνY

ν)− ωνX
µ
(
∂µY

ν + Γν
µρY

ρ
)

= Xµ
(
∂µωρ − Γν

µρων

)
Y ρ .

(4.48)
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We may then write

(∇µω)ρ ≡ ∇µωρ =
∂

∂xµ
ωρ − Γν

µρων . (4.49)

We can now extend this argument to an arbitrary tensor of rank (q, r) and we find

∇µT
ν1...νq

ρ1...ρr =
∂

∂xµ
T
ν1...νq

ρ1...ρr + Γν1
µσT

σ...νq
ρ1...ρr + ....+ Γ

νq
µσT

ν1...νq−1σ
ρ1...ρr

− Γσ
µρ1T

ν1...νq
σ...ρr − ...− Γσ

µρrT
ν1...νq

ρ1...ρr−1σ .
(4.50)

In words, you first differentiate the tensor and then for each upper index you add in a +ΓT

and for every down index a −ΓT .

4.3 Torsion and curvature

Even though the connection is not a tensor we can use it to construct two tensors. The first is

a rank (1, 2) tensor T known as Torsion, the second is a rank (1, 3) tensor known as curvature

or the Riemann tensor. The torsion tensor acts on X,Y ∈ X (M) and ω ∈ Ω1(M) by

T (ω : X,Y ) = ω
(
∇XY −∇YX − [X,Y ]

)
. (4.51)

We may equivalently think of this as a map T : X (M)×X (M) → X (M) defined by

T (X,Y ) = ∇XY −∇YX − [X,Y ] . (4.52)

The curvature acts on X,Y, Z ∈ X (M) and ω ∈ Ω1(M) as

R(ω : X,Y, Z) = ω
(
∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z

)
(4.53)

As for the torsion we may think of this as a map X (M) × X (M) to a differential operator

acting on X (M) as

R(X,Y ) = ∇X∇Y −∇Y ∇X −∇[X,Y ] . (4.54)

Exercise: Check that both the Torsion and Curvature tensors are actually tensors. You

should show that they are linear in all arguments, for example show T (ω : fX, Y ) = fT (ω :

X,Y ) for all f ∈ F(M).

Component form We can evaluate the tensors in a basis to obtain the component form.

Let {fρ} = {dxρ} then the components of the torsion tensor are

T ρ
µν = T (fρ : eµ, eν)

= fρ
(
∇µeν −∇νeµ − [eµ, eν ]

)
= fρ

(
Γσ

µν − Γσ
νµ

)
eσ

= Γρ
µν − Γρ

νµ .

(4.55)
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So despite Γσ
µν not being a tensor, the anti-symmetrised part is! The torsion tensor is clearly

anti-symmetric in the two lowered indices. We see that connections Γσ
µν which are symmetric

in the lowered indices have T ρ
µν = 0 and are called torsion-free.

A similar computation for the Riemann tensor gives

Rσ
ρµν = ∂µΓ

σ
νρ − ∂νΓ

σ
µρ + Γλ

νρΓ
σ
µλ − Γλ

µρΓ
σ
νλ . (4.56)

Consider the commutator of covariant derivatives acting on a vector field

∇[µ∇ν]X
σ =∂[µ

(
∇ν]X

σ
)
+ Γσ

[µ|λ|∇ν]Z
λ − Γρ

[µν]∇ρX
σ

=∂[µ∂ν]X
σ +

(
∂[µΓ

σ
ν]ρ

)
Xσ +

(
∂[µX

ρ
)
Γσ

ν]ρ + Γσ
[µ|λ|∂ν]X

λ

+ Γσ
[µ|λ|Γ

λ
ν]ρX

ρ − Γρ
[µν]∇ρX

σ .

(4.57)

The first term vanishes, while the third and fourth cancel. The Second and fifth combine to

give the Riemann tensor while the last gives the torsion, we have

2∇[µ∇ν]X
σ = Rσ

ρµνX
ρ − T ρ

µν ∇ρX
σ . (4.58)

This is the Ricci identity. Similar identities hold when acting on other tensors.

4.3.1 Levi–Civita connection

So far the discussion has not required a metric. When a metric exists we have

Theorem There exists a unique, torsion free, connection that is compatible with the

metric g:

∇Xg = 0 , (4.59)

for all vector fields X.

To prove this we first show uniqueness before constructing the connection. Suppose that

such a connection exists, then we have

X
(
g(Y,Z)

)
= ∇X

(
g(Y, Z)

)
=
(
∇Xg

)
(Y,Z) + g(∇XY,Z) + g(Y,∇XZ) . (4.60)

Since ∇Xg = 0 we have

X
(
g(Y,Z)

)
= g(Y,∇XZ) + g(∇XY,Z) . (4.61)

We may use our favourite trick and cyclically permute X,Y, Z to find

Y
(
g(Z,X)

)
= g(Z,∇YX) + g(∇Y Z,X) ,

Z
(
g(X,Y )

)
= g(X,∇ZY ) + g(∇ZX,Y ) .

(4.62)
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By the no torsion condition we have

∇XY −∇YX = [X,Y ] , (4.63)

and therefore

X
(
g(Y,Z)

)
= g(∇Y Z,X) + g(∇YX,Z) + g

(
[X,Y ], Z

)
,

Y
(
g(Z,X)

)
= g(∇ZY,X) + g(∇YX,Z) + g

(
[Y, Z], X

)
,

Z
(
g(X,Y )

)
= g(∇ZY,X) + g(∇XZ, Y ) + g

(
[Z,X], Y

)
,

(4.64)

Adding the first and second and subtracting the third we find

g(∇YX,Z) =
1

2

[
X
(
g(Y, Z)

)
+ Y

(
g(Z,X)

)
− Z

(
g(X,Y )

)
− g
(
[X,Y ], Z

)
− g
(
[Y,Z], X

)
+ g
(
[Z,X], Y

)] (4.65)

With a non-degenerate metric this specifies the connection uniquely.

It remains to be seen that the connection as defined does satisfy the properties of a

connection. We will present one of the terms to check. The most finicky one is ∇fXY =

f∇XY , so let us present that one

g(∇fYX,Z) =
1

2

[
X
(
g(fY, Z)

)
+ fY

(
g(Z,X)

)
− Z

(
g(X, fY )

)
− g([X, fY ], Z)− g([fY, Z], X) + g([Z,X], fY )

]
=
1

2

[
fX
(
g(Y,Z)

)
+X(f)g(Y,Z)+fY

(
g(Z,X)

)
−fZ

(
g(X,Y )

)
−Z(f)g(X,Y )

−fg([X,Y ], Z)−X(f)g(Y, Z)−fg([Y, Z], X)+Z(f)g(Y,X)+fg([Z,X], Y )

]
=g(f∇YX,Z) .

(4.66)

The coloured terms in the penultimate line cancel amongst themselves, leaving just the black

terms as required. The other properties follow similarly. This then proves the uniqueness and

has explicitly constructed such a connection.

In components we can evaluate

g(∇νeµ, eρ) = Γλ
νµgλρ =

1

2

(
∂µgνρ + ∂νgµρ − ∂ρgµν − ∂ρgµν

)
. (4.67)

Multiplying by the inverse metric we have

Γλ
µν =

1

2
gλρ
(
∂µgνρ + ∂νgµρ − ∂ρgµν − ∂ρgµν

)
. (4.68)
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The connection compatible with the metric is called the Levi–Civita connection while the

components of the Levi–Civita connection are called the Christoffel symbols.

There is a nice expression if you contract two indices of the Christoffel symbols, we have

Γµ
µν =

1√
|g|
∂ν
√
|g| (4.69)

To see this note

Γµ
µν =

1

2
gµρ∂νgµρ =

1

2
tr(g−1∂νg) =

1

2
tr(∂ν log g) , (4.70)

for diagonalisable matrices we have tr logA = log det(A) and therefore we find

Γµ
µν =

1

2
∂ν log det(g) =

1√
det(g)

∂ν
√

det(g) . (4.71)

This implies that√
|g|∇µX

µ =
√
|g|(∂µXµ + Γµ

µνX
ν) +

√
|g|
(
∂µX

µ +Xν 1√
|g|
∂ν
√
|g|
)
= ∂µ

(√
|g|Xµ

)
.

(4.72)

Using this result we can prove the divergence theorem:∫
M

dmx
√
|g|∇µX

µ =

∫
∂M

dn−1x
√
γnµX

µ , (4.73)

where γij is the pull-back of the metric to ∂M , γ = det(γij) and nµ is an outward pointing

unit vector orthogonal to ∂M . One a Lorentzian manifold this holds provided that ∂M is

either purely spacelike or purely timelike, which guarantees that γ ̸= 0.

4.4 Parallel transport and geodesics

We have introduced the connection but we are yet to explain what it connects. It connects

tangent spaces, or more generally any vector space at different points of the manifold. This

map is called parallel transport. Take a vector field X with some associated curve γ with

coordinates xµ(λ) such that

Xµ
∣∣
γ
=

dxµ(λ)

dλ
. (4.74)

We say that a tensor field T is parallel transported along γ if

∇XT = 0 . (4.75)

Let γ connect two points p, q ∈ M . The condition (4.75) provides a map from the vector

space defined at p to the vector space defined at q. Consider a second vector field Y . In

components (4.75) reads

Xν
(
∂νY

µ + Γµ
νρY

ρ
)
= 0 . (4.76)
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If we evaluate it on the curve γ, we can write Y µ = Y µ(x(λ)) and therefore the condition is

dY µ

dλ
+XνΓµ

νρY
ρ = 0 . (4.77)

This defines a set of coupled ordinary differential equations, given an initial condition at

p = γ(λ = 0) for example these can be solved to find a unique vector field at each point along

the curve. This is path dependent and depends on the connection and the underlying path

which was characterised by X here.

There is a subtle difference between what we are doing here and what we did with

the push-forward and pull-back, which we used to define the Lie derivative. Here X only

appears to define the map, there are no derivatives applied to Xµ as was for those maps. The

connection does the work of relating the vector spaces along the curve and not the vector X.

4.4.1 Geodesics

A geodesic is a curve tangent to a vector field X that obeys

∇XX = 0 . (4.78)

Along the curve γ with coordinates xµ and tangent vector X this implies

d2xµ

dλ2
+ Γµ

νρ

dxν

dλ

dxρ

dλ
= 0 . (4.79)

This is the same geodesic equation one obtains by varying the action

S =

∫
dλ

√
−gµν(x)

dxµ

dλ

dxν

dλ
, (4.80)

and picking an affine parameter if ∇ is the Levi–Civita connection.

If we choose the Levi–Civita connection, since ∇Xg = 0 it follows that for any vector

field Y which is parallel transported along a geodesic defined by X we have

d

dλ
g(X,Y ) = 0 . (4.81)

The vector field Y makes the same angle with the tangent vector at each point along the

geodesic. Further, this holds true if we replace Y by X in the expression above. Since the

norm of the vector field X tangent to the geodesic classifies the character of the geodesic,

(timelike/null/spacelike), if we define a geodesic using a metric compatible connection, then

the nature of the geodesic does not change. This statement relies on us using a metric

compatible connection though, in this course we will always take such a connection and

therefore the nature of a geodesic is preserved throughout all spacetime.
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Let us consider a timelike geodesic. When we vary the action what are we extremising

and is it a maximum of minimum? From our definition of the proper time we see that we

are extremising the proper time, it turns out that geodesics maximise the proper time. Why

is this true? Well given any time-like curve we can approximate it to arbitrary accuracy by

a null curve. We should consider jagged null curves that follow the time-like one, see figure

11. As we increase the number of null curves the approximation gets better and better, while

still having zero length. Timelike curves cannot therefore be curves with minimal proper time

since they are infinitesimally close to curves of zero length (and therefore zero proper time).

They must therefore maximise the proper time. This is why the twin who remains home in

the twin paradox ages more, they are on a geodesic (pretty much). We should really say

that this maximises the proper time locally. If we took a sphere, then there is more than one

geodesic between two points, we can either go the short way around or the long way around.

One is longer than the other (assuming the points are not opposite each other, i.e. picking

the poles), but both maximise locally the length functional.

Figure 11: We approximate the time-like curve with null curves. As we increase the number

of null curves the approximation gets better and better.

4.4.2 Normal coordinates

Geodesics allow for the construction of a particularly useful coordinate system. This holds

independently of whether the Levi–Civita connection is employed or note, however it takes a

particularly simple form when it is used. On a Riemannian manifold, in the neighbourhood

of a point p ∈M we can always find coordinates such that

gµν(p) = δµν , and ∂ρgµν(p) = 0 . (4.82)

74



The same is true for Lorentzian manifolds with δ → η. These coordinates are known as

normal coordinates. Since the first derivative of the metric vanishes at p it implies that the

Christoffel symbols vanish there: Γµ
νρ(p) = 0. As we move away from p this does not need to

continue to hold. It should be noted that one cannot generically make the second derivative

of the metric vanish at p, it is only the first derivative. This means that it is not possible to

pick the Riemann tensor to vanish at a given point.

We can brute force this. Start with a metric g̃µν in coordinates x̃µ and try to find a new

set of coordinates xµ(x̃) which satisfy the required conditions. In the new coordinates we

have
∂x̃ρ

∂xµ
∂x̃σ

∂xν
g̃ρσ = gµν = δµν . (4.83)

We can take the point p to be the origin of both coordinate systems. The we can Taylor

expand around the point

x̃ρ = 0 +
∂x̃

∂xµ

∣∣∣
x=0

xµ +
1

2

∂2x̃ρ

∂xµ∂xν

∣∣∣
x=0

xµxν + ... . (4.84)

Inserting the expansion into (4.83) together with the Taylor expansion of g̃µν and then we

can try to solve the resulting PDEs. The first order variation implies

∂x̃ρ

∂xµ

∣∣∣
x=0

∂x̃ρ

∂xµ

∣∣∣
x=0

g̃ρσ(p) = δµν . (4.85)

We can always find ∂x̃/∂x such that this is true, there are many choices. For dimM = m

there are m2 independent coefficients of ∂x̃/∂x. The equation above contains 1
2m(m + 1)

conditions on these, leaving us with 1
2m(m − 1) parameters still to play with. Notice that

this remainder is precisely the same number of components of the rotational group of SO(m)

or SO(1,m − 1) that leaves the flat metric unchanged and so it is to be expected. Next

consider the second order. There are 1
2m

2(m+ 1) independent components of ∂2x̃ρ/∂xµ∂xν

which is the same number of components of ∂ρgµν and so we can always choose the first

derivative of the metric at p to vanish. Consider now the second derivative term, requiring

∂ρ∂σgµν = 0 imposes 1
4m

2(m+1)2 constraints. However the next term in the Taylor expansion

is ∂3x̃ρ/∂xµ∂xν∂xσ which has only 1
6m

2(m + 1)(m + 2) independent coefficients: there are

not enough independent coefficients to cancel all of the terms of the second derivative. The

difference is the number of ways of characterising the second derivative of the metric that

cannot be undone by coordinate transformations. This is precisely the number of independent

components of the Riemann tensor, this is

1

4
m2(m+ 1)2 − 1

6
m2(m+ 1)(m+ 2) =

1

12
m2(m+ 1)(m− 1) . (4.86)
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One can explicitly construct the normal coordinates using the exponential map and geodesics

flowing through the point p. One can consider all affinely parametrised geodesics through p

and label the point q at a small fixed distance of the affine parameter by the coordinates of

the geodesic flowing through q. One then essentially uses geodesics to construct your basis

vectors. We will not consider this construction here.

The Equivalence principle Normal coordinates play an important role in GR. Any ob-

server at a point p who parametrises their immediate surroundings using normal coordinates

will experience a locally flat metric.

This is the mathematics underling the Einstein equivalence principle. Any freely falling

observer, performing local experiments will not experience a gravitational field. Here free

falling means following a geodesic and therefore they will use normal coordinates. The lack

of gravitational field is the statement that gµν(p) = ηµν .

There are limitations to the equivalence principle and the important word is local. There

is a way to distinguish whether there is a gravitational field or at p. We simply compute the

Riemann tensor. This depends on the second derivative of the metric and will in general be

non-vanishing. However to measure the effects of the Riemann tensor one typically has to

compare the result of an experiment at p with the result at a nearby point q, this is then a

“non-local” observable, according to the equivalence principle.

4.4.3 Path dependence: Curvature and Torsion

Let us take a vector Zp ∈ Tp(M) and parallel transport it along a curve C to some point

r ∈ M . In addition condition another curve C ′ along which we can parallel transport Zp to

q. It is then natural to as how do the resulting vectors differ?

Let us construct our curves from two segments, generated by linearly independent vector

fields X,Y and let us take [X,Y ] = 0. (Recall that this implies that the parallelogram

constructed from the vectors closes, see section 3.3.2). We take the points to be close and

pick normal coordinates xµ = (τ, σ, 0, ..., 0) so that the starting point is at xµ(p) = 0, and

the tangent vectors are aligned along the coordinates X = ∂
∂τ and Y = ∂

∂σ . The other corner

points are xµ(r) = (δτ, 0, 0, ..), xµ(s) = (0, δσ, 0, ...) and xµ(r) = (δτ, δσ, 0, ...), with δτ and

δσ small, see figure 12.

First parallel transport Zp along X to obtain Zq. Along the curve, therefore Zµ satisfies

dZµ

dτ
+XνΓµ

ρνZ
ρ = 0 . (4.87)
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Figure 12: Parallel transporting a vector Zp along two different paths does not give the

same answer.

We can Taylor expand the solution as

Zµ
q = Zµ

p +
dZµ

dτ

∣∣∣
p
δτ 1

2

d2Zµ

dτ2

∣∣∣
p
δτ2 +O(δτ3) . (4.88)

Using normal coordinates we have Γµ
ρν(p) = 0 and therefore dZµ

dτ

∣∣
p
= 0. To calculate the

second derivative we differentiate (4.87), to obtain

dZµ

dτ2

∣∣∣
τ=0

= −
(
XνZρdΓ

µ
ρν

dτ
+

dXν

dτ
ZρΓµ

ρν +Xν dZ
ρ

dτ
Γµ

ρν

)∣∣∣
p

= −XνZρdΓ
µ
ρν

dτ

∣∣∣
p

= −XνXσZρ∂σΓ
µ
ρν

∣∣∣
p

(4.89)

To get to the second line we have used that we are working in normal coordinates at p and

the final line is because τ parametrises the integral curve of X. We find

Zµ
q = Zµ

p − 1

2
XνXσZρ∂σΓ

µ
ρν

∣∣∣
p
δτ2 + .... (4.90)

Now we parallel transport again, this time along Y to Zµ
r . The Taylor expansion is

Zµ
r = Zµ

q +
dZµ

dσ

∣∣∣
q
δσ +

1

2

d2Zµ

dσ2

∣∣∣
q
δσ2 +O(δσ3) . (4.91)
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We can evaluate the first derivative dZµ

dσ

∣∣
q
using the analogue of the parallel transport equation

(4.87),
dZµ

dσ

∣∣
q
= −Y νZρΓµ

ρν

∣∣
q
, (4.92)

however since our normal coordinates are at p and not q we cannot argue that this term

immediately vanish, instead we can Taylor expand about p to get

Y νZρΓµ
ρν

∣∣
q
= Y νZρXσ∂σΓ

µ
ρν

∣∣
q
δτ + .... (4.93)

One should also expand Y ν and Zν however to leading order they multiply Γµ
ρν(p) = 0 ergo,

only contribute at the next order. For the second order term in the Taylor expansion (4.91)

there is a similar expression to before, we find

d2Zµ

dσ2

∣∣∣
q
= −Y νY σZρ∂σΓ

µ
ρν

∣∣
q
+ ....

= −Y νY σZρ∂σΓ
µ
ρν

∣∣
p
+ ....

(4.94)

After the dust settles we have

Zµ
r = Zµ

q − Y νZρXσ∂σΓ
µ
ρν

∣∣
p
δτδσ − 1

2
Y νY σZρ∂σΓ

µ
ρν

∣∣
p
δσ2 + .... (4.95)

and therefore

Zµ
r = Zµ

p − 1

2
∂σΓ

µ
ρν

∣∣
p

[
XνXσZρδτ2 + 2Y νZρXσδσδτ + Y νY σZρδσ2

]∣∣∣
p
+ .... (4.96)

with ... cubic and higher terms. We can now consider the same computation for the path C ′.

We merely need to swap the role of τ ↔ σ and X ↔ Y , so that

Z ′µ
r = Zµ

p − 1

2
∂σΓ

µ
ρν

∣∣
p

[
XνXσZρδτ2 + 2XνZρY σδσδτ + Y νY σZρδσ2

]∣∣∣
p
+ .... (4.97)

and therefore

∆Zµ
r = Zµ

r − Z ′µ
r =−

(
∂σΓ

µ
ρν − ∂νΓ

µ
ρσ)|p(Y νZρXσ)|pδσδτ + ....

= Rµ
ρσνY

νZρXσ|pδσδτ .
(4.98)

The final expression follows from the Riemann tensor expression in normal coordinates. Al-

though our calculation was performed in a certain choice of coordinates since the end result is

an equality between tensors in must hold in any coordinate system. This is a common trick,

normal coordinates generally simplify expressions.

The Riemann tensor tells us the path dependence of parallel transport. This is related

to the concept of holonomy. If we transport a vector around a closed loop we can ask how
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it compares to the original vector. This is captured by the Riemann tensor. A particularly

easy example is to consider a two-sphere. We can draw a loop by considering the intersection

of three great circles. First go along the equator by 1/4 of the circumference. Then make

a π/2 turn and head to the north pole. At the north pole go south on another π/2 angle.

You will end up with a triangle with angle 3π/2. Now consider parallel transporting a vector

along this loop. You will see that it changes direction when you get back to the start. Of

course one could take any path and the direction you end up facing depends on the path.

The set of all possible transformations of the vector at p along loops form a group known as

the holonomy group. For a Riemannian manifold with a metric this is a subgroup of SO(m)

while for a Lorentzian manifold it is a subgroup of SO(1,m− 1).

The meaning of Torsion Torsion will not play a role in GR for us but for completeness

let us understand what is its geometric meaning.

Take two vectors X,Y ∈ Tp(M) and let us use coordinates xµ. Starting at p ∈ M we

can use these vectors to construct two points infinitesimally close to p, let them be r and s

respectively:

r : xµ + ϵXµ and s : xµ + ϵY µ . (4.99)

We can now parallel transport X along Y to give a new vector X ′ ∈ Ts(M) and similarly

parallel transport Y along X to get a new vector Y ′ ∈ Tr(M). The new vectors have compo-

nents

X ′ = (Xµ − ϵΓµ
νρY

νXρ)∂µ , Y ′ = (Y µ − ϵΓµ
νρX

νY ρ)∂µ . (4.100)

Each now defines a new point. Starting from s and moving in the direction X ′ we get a new

point

q : xµ + (Xµ + Y µ)ϵ− ϵ2Γµ
νρY

νXρ . (4.101)

Similarly if we sit at r and move in the direction of Y ′ we get to a typically different point t

with coordinates

t : xµ + (Xµ + Y µ)ϵ− ϵ2Γµ
νρX

νY ρ . (4.102)

The two points are not the same when Γµ
νρ ̸= Γµ

ρν , i.e. when the connection has torsion.

Torsion measures the failure of the parallelogram in figure 13 to close.

4.4.4 Geodesic deviation

Consider a one-parameter family of geodesics with coordinates xµ(τ : s). τ is the affine

parameter along the geodesics, all of which are tangent to the vector field X. Thus, along
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Figure 13: We transport the two vectors X and Y along each other. The failure for the

parallelogram to close is measured by the torsion of the connection.

the surface spanned by xµ(τ : s) we have

∂xµ

∂τ

∣∣∣
s
= Xµ . (4.103)

The parameter s labels the different geodesics, see figure 14. We can compute the tangent

vector in the s direction to be generated by a second vector field S so that

Sµ =
∂xµ

∂s

∣∣∣
τ
. (4.104)

This tangent vector is known as the deviation vector, its job is to take us from one geodesic

to a nearby geodesic with the same affine parameter τ .

The family of geodesics sweep out a 2d surface embedded in the manifold. We have

freedom to choose coordinates so that on the surface S = ∂
∂s and X = ∂

∂τ and [X,S] = 0.

We can ask how neighbouring geodesics behave, do they converge, diverge, remain the

same distance apart? Consider a torsion free connection so that

∇XS −∇SX = [X,S] . (4.105)

Since [X,S] = 0, we have

∇X∇XS = ∇S∇SX = ∇S∇XX +R(X,S)X , (4.106)
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Figure 14: The black lines are geodesics generated by X while the red lines label constant

τ and are generated by S with [X,S] = 0.

where we have used the expression for the Riemann tensor in (4.54). Since X is tangent to

geodesics we have ∇XX = 0 and therefore

∇X∇XS = R(X,S)X . (4.107)

In index notation we have

Xν∇ν

(
Xρ∇ρS

µ
)
= Rµ

νρσX
νXρSσ . (4.108)

If we take an integral curve γ associated to X as before we have

D2Sµ

Dτ2
= Rµ

νρσX
νXρSσ , (4.109)

with D/Dτ the covariant derivative along the curve γ, D/Dτ = ∂xµ

∂τ ∇µ. The left hand side

tells us how the deviation vector S changes as we move along the geodesic. It measures

the relative acceleration of neighbouring geodesics. Relative acceleration is controlled by the

Riemann tensor. Experimentally one observer this through tidal forces.

4.5 Riemann tensor and its symmetries

The components of the Riemann tensor are given in (4.56). It is not hard to see that it is

anti-symmetric in the final two indices:

Rσ
ρµν = −Rσ

ρνµ . (4.110)
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This does not exhaust the symmetries however. If we lower an index then we have

Rµνρσ = Rσρµν , (4.111)

Rµ[νρσ] = 0 , (4.112)

∇[µRσρ]τν = 0 . (4.113)

These expressions can be proven by using normal coordinates.

4.5.1 Ricci and Einstein tensors

Given a rank (1, 3) tensor we can construct a rank (0, 2) tensor by contraction, for the Riemann

tensor the resultant (0, 2)-rank tensor is called the Ricci tensor and is defined by

Rµν = Rρ
µρν . (4.114)

It inherits symmetry in its indices from the properties of the Riemann tensor

Rµν = Rνµ . (4.115)

We can create a scalar by contracting the indices again

R = gµνRµν . (4.116)

The Bianchi identity implies that

∇µ
(
Rµν −

1

2
Rgµν

)
= 0 , (4.117)

which motivates us to define the covariantly constant tensor

Gµν = Rµν −
1

2
Rgµν , (4.118)

called the Einstein tensor. This will appear when we consider GR in the next section.

5 Einstein’s equations

After defining all this mathematics we can now use it to introduce general relativity. Like the

other forces, gravity is also mediated by some field, in this case it is the metric gµν . It is a

dynamical object, not something fixed and therefore there must be some rules as to how it can

evolve. These are provided by the equations of motion following from the Einstein–Hilbert

action.
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5.1 The Einstein–Hilbert action

We want to write down an action for the gravity. Differential geometry places some rigid con-

straints on what this can be. We want the action to be diffeomorphism invariant, the physics

should not depend on the choice of coordinates. This then implies that this is something

intrinsic about the metric.

Spacetime is a manifold M equipped with a metric of Lorentzian signature. The action

is an integral over M and so we require a volume-form. Thankfully the metric provides us

with a canonical volume-form with which we can integrate any scalar. Given that we only

have a metric there is not really much that we can do. The simplest non-trivial scalar we can

construct is the Ricci scalar, and therefore we can guess the action

SEH =

∫
d4x

√
−gR . (5.1)

As a quick check since the Ricci scalar takes the form R ∼ ∂Γ + ΓΓ and the Levi–Civita

connection is Γ ∼ ∂g it follows that the action is second derivative in the metric. This is like

all other actions that we have considered previously.

The equations of motion will follow from varying the action. We start with a fixed metric

and see how the action varies as we shift

gµν(x) → gµν(x) + δgµν(x) . (5.2)

Writing the Ricci scalar as R = gµνRµν the Einstein–Hilbert action changes as

δS =

∫
d4x
(
(δ
√
−g)gµνRµν +

√
−g(δgµν)Rµν +

√
−ggµνδRµν

)
. (5.3)

It turns out that it is simpler to consider the variation with respect to the inverse metric, this

is of course equivalent to considering the variation with the metric since

gµνg
νρ = δρµ , ⇒ (δgµν)g

νρ + gµνδg
νρ = 0 , ⇒ δgνρ = −gνσgρµδgσµ . (5.4)

The second term in the variation of the Einstein–Hilbert action is already proportional

to δgµν , we now want to consider the first and third terms. Let us first consider the variation

of the determinant term. We want to show that

δ
√
−g = −1

2

√
−ggµνδgµν . (5.5)

To do this we must remember a few properties of a diagonalisable matrix A, namely

log detA = tr logA . (5.6)
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(To prove this use that this is clearly true for a diagonal matrix since the determinant is

the product of the eigenvalues while the trace is the sum of the eigenvalues. Since both

the determinant and trace are invariant under conjugation it follows for any diagonalisable

matrix.) Thus we have
1

detA
δ detA = tr(A−1δA) . (5.7)

Applying this to the metric we have

δ
√
−g =

1

2
√
−g

(−g)gµνδgµν =
1

2

√
−ggµνδgµν . (5.8)

Using the identity (5.4) we have that

δ
√
−g = −1

2

√
−ggµνδgµν , (5.9)

as claimed.

With this the variation of the Einstein–Hilbert action takes the form

δS =

∫
d4x

√
−g
(
Rµν −

1

2
Rgµν

)
δgµν +

√
−ggµνδRµν . (5.10)

It remains to consider the final term. We claim that this term is a total derivative and can

therefore be neglected by using Stoke’s theorem under suitable assumptions of spacetime (no

boundary). We wish to prove

δRµν = ∇ρδΓ
ρ
µν −∇νδΓ

ρ
µρ , (5.11)

where

δΓρ
µν =

1

2
gρσ
(
∇µδgσν +∇νδgµσ −∇σδgµν

)
. (5.12)

We start by looking at the variation of the Christoffel symbols Γρ
µν . Though the Christof-

fel symbol is not a tensor the variation δΓρ
µν is a tensor. This is because it is the difference

of two Christoffel symbols, one computed using the metric gµν and one with gµν + δgµν and

the term in the transformation of the Christoffel which shows that it is not a tensor is in-

dependent of the metric and therefore cancels in the difference. This observation makes our

lives a lot simpler. It implies that at any point p ∈ M we can work in normal coordinates

such that ∂ρgµν = 0 and therefore Γρ
µν = 0. To linear order in the variation the change in

the Christoffel symbol evaluated at p is

δΓρ
µν =

1

2
gρσ
(
∂µδgσν + ∂νδgσµ − ∂σδgµν

)
=

1

2
gρσ
(
∇µδgσν +∇νδgσµ −∇σδgµν

) (5.13)
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where we have used that in normal coordinates we can replace partial derivatives with co-

variant derivatives. Both the left and right hand side are tensors and therefore this holds

in any coordinate system, moreover the point p was arbitrary and therefore this holds in all

coordinate systems at all points p ∈M .

Next consider the variation of the Riemann tensor. In normal coordinates we have

Rσ
ρµν = ∂µΓ

σ
νρ − ∂νΓ

σ
µρ , (5.14)

and the variation is

δRσ
ρµν = ∂µδΓ

σ
νρ − ∂νδΓ

σ
µρ = ∇µδΓ

σ
νρ −∇νδΓ

σ
µρ , (5.15)

where we have once again used that in normal coordinates we can replace partial derivatives

with covariant derivatives. As before we have a tensorial equation and therefore this must

hold in any coordinate system not just normal coordinates. We have

δRρν = ∇µδΓ
µ
νρ −∇νδΓ

µ
ρµ . (5.16)

It follows that

gµνδRµν = ∇µ

(
gρνδΓµ

ρν − gµνδΓρ
νρ

)
= ∇µX

µ (5.17)

The variation of the Einstein–Hilbert action can then be written as

δS =

∫
d4x

√
−g
[(
Rµν −

1

2
Rgµν

)
δgµν +∇µX

µ

]
. (5.18)

The final term is a total derivative after using the identity (4.72) and with suitable assump-

tions on spacetime can be neglected. Requiring that the action is extremised, so that δS = 0

we have the equations of motion

Gµν := Rµν −
1

2
Rgµν = 0 . (5.19)

These are the Einstein field equations in the absence of matter. We may further simplify

them by first contracting with the inverse metric to find R = 0 and therefore in the absence

of matter Einstein’s equations are simply

Rµν = 0 . (5.20)

Though this looks deceptively simple this holds a very rich set of solutions, in fact not all

solutions to this equation are known.

We threw away the boundary term in the usual cavalier way one does with such variational

principles. One can introduce the Gibbons–Hawking boundary term to allow for M to admit

a boundary.
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5.1.1 Newton’s constant

As it stand the action we have given does not have the correct dimension. At this stage where

we do not couple to matter this is not a problem however we wish to be able to couple to

matter soon and therefore we must fix this. We take the coordinates to have dimension of

length and therefore the metric is dimensionless. The Ricci scalar involves two derivatives and

therefore it has dimension [R] = L−2. Including the dimension of the integration measure the

current action in (5.1) has dimension [S] = L2. An action should have dimension of Energy

× time and therefore we should multiply the action by an appropriate dimensionful constant.

We take

SEH =
c3

16πGN

∫
d4x

√
−gR , (5.21)

where c is of course the speed of light, and G is Newton’s constant

GNx ∼ 6.67× 10−11m3kg−1s−2 . (5.22)

This will not change the equation of motion in the vacuum but once we couple matter will

determine the strength of the coupling of the gravitational field to matter.

If we are just interested in phenomena related to gravity it is sensible to set GN = 1.

Instead if we want to consider other phenomena other than gravity this is not so sensible since

ti defines the coupling of the forces. Instead the more useful convention is to pick ℏ = 1, which

equates energy with time. With this convention Newton’s constant has dimension [G] = m−2.

The corresponding energy scale is called the Planck mass and is given by

M2
pl =

ℏc
8πGN

. (5.23)

It is around 1018 GeV which is a very high energy scale and far beyond anything we can probe

experimentally. This is why the gravitational force is so weak.

5.1.2 Cosmological constant

We motivated the Einstein–Hilbert action as the simplest action one can write down. There is

in fact a simpler term we may write down other than the Einstein–Hilbert term we considered

previously. We may simply add a constant to the volume form. The resulting action is

S =
1

16πGN

∫
d4x

√
−g(R− 2Λ) . (5.24)

The constant Λ is known as the cosmological constant and has dimension [Λ] = L−2. The

minus sign in the action comes from thinking of the Lagrangian as T−V with the cosmological

constant playing the role of the potential energy V .
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Varying the action as before yields the Einstein equations

Rµν −
1

2
Rgµν = −Λgµν . (5.25)

This time if we contract with the inverse metric we get R = 4Λ. Substituting this back in

the vacuum Einstein equations in the presence of a cosmological constant becomes

Rµν = Λgµν . (5.26)

5.1.3 Higher derivative terms

The Einstein–Hilbert action with cosmological constant is the simplest thing we can write

down. We may however construct other scalars from the Riemann tensor, they will however

have higher derivative terms. For example there are three terms that we can add at four-

derivative in the metric

S4−deriv =

∫
d4x

√
−g
(
c1R

2 + c2RµνR
µν + c3RµνρσR

µνρσ
)
, (5.27)

with the ci dimensionless constant. Generic choices of the constants will not give rise to higher

derivative equations of motion with a well-defined initial value problem. Nonetheless there are

certain combinations which conspire to keep the equations second order in derivatives. This

goes by the name of Lovelock’s theorem and says that in four-dimensions the combination

1

8π2

∫
M

d4x
√
g(R2 − 4RµνR

µν +RµνρσR
µνρσ) = χ(M) , (5.28)

where χ(M) ∈ Z, is the Euler character of M . In Lorentzian signature this is also a total

derivative and therefore does not affect the classical equations of motion. Higher derivative

terms only become relevant for fast varying fields. For us these will not be important and

therefore we stick to the 2-derivative action.

5.1.4 Diffeomorphisms

A natural question to ask is how many degrees of freedom are there in the metric? Since it is

a 4× 4 symmetric matrix the naive guess is 1
2 × 4× 5 = 10 however this is not quite correct.

Not all of these 10 components are physical. Two metrics which are related by a change of

coordinates xµ → x̃µ(x) describe the same physical spacetime. This means that there is a

redundancy in any given representation of the metric which removes precisely 4 of the 10

degrees of freedom, leaving just 6 actual degrees of freedom.

This redundancy is implemented by diffeomorphisms. Recall that a diffeomorphism is a

map ϕ : M → M . We may use it to map all fields, including the metric on M to a new set
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of fields on M . The end result is physically indistinguishable from the original, it describes

the same system just in a different set of coordinates. Such diffeomorphisms are analogous

to the gauge transformations of a gauge theory, think Maxwell theory.

Let us look at how diffeomorphisms modify the action. Consider a diffeomorphism which

takes a point with coordinate xµ to a nearby point with coordinates

xµ → x̃µ = xµ + δxµ . (5.29)

We can view this either as an active change in which one point with coordinates xµ is mapped

to another point with coordinates xµ + δxµ or as a passive transformation in which we use

two different coordinate patches to label the same point. Either viewpoint leads to the same

conclusion, here we will take the passive viewpoint.

We can think of the change of coordinates as being generated by an infinitesimal vector

field X,

δxµ = −Xµ(x) . (5.30)

The metric transforms as

gµν(x) → g̃µν(x̃) =
∂xρ

∂x̃µ
∂xσ

∂x̃ν
gρσ(x) . (5.31)

We can invert the Jacobian matrix to find

∂x̃µ

∂xρ
= δµρ − ∂ρX

µ ⇒ ∂xρ

∂x̃µ
= δρµ + ∂µX

ρ , (5.32)

where the inverse holds to leading order in the variationX. Continuing to work infinitesimally

we have

g̃µν(x̃) =
(
δρµ + ∂µX

ρ)(δσν + ∂νX
σ)gρσ(x)

=gµν(x) + gµρ(x)∂νX
ρ + gνρ(x)∂µX

ρ .
(5.33)

We can also Taylor expand the left-hand side to find

g̃µν(x̃) = g̃µν(x+ δd) = g̃µν(x)−Xλ∂λg̃µν(x) . (5.34)

Comparing the different metrics at the same point x we find that the metric undergoes the

infinitesimal change

δgµν(x) = g̃µν(x)− gµν(x) = Xλ∂λgµν + gµρ∂νX
ρ + gνρ∂µX

ρ . (5.35)

This is precisely the Lie derivative of the metric. If we act with an infinitesimal diffeomorphism

along X then the metric changes as

δgµν = (LXg)µν . (5.36)
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We may also rewrite this by lowering the index on Xρ to find

δgµν = ∂µXν + ∂νXµ +Xρ(∂ρgµν − ∂µgρν − ∂νgµρ) , (5.37)

the last term is just the Christoffel symbols and therefore we have

δgµν = ∇µXν +∇νXµ . (5.38)

We may put this together to see how the action changes. Under a general change of the

metric the Einstein–Hilbert action changes as

δS =

∫
d4x

√
−gGµνδgµν , (5.39)

where we have discarded the boundary term. Insisting that δS = 0 for any variation δgµν gives

the equations of motion Gµν = 0. In contrast, symmetries of the action are those variations

δgµν for which δS = 0 for any choice of metric. Since diffeomorphisms are symmetries we

know that the action is invariant under changes of the form (5.38). Using the fact that Gµν

is symmetric we must have

δS = 2

∫
d4x

√
−gGµν∇µXν = 0 , for all Xµ(x) . (5.40)

After integrating by parts we find that this results in the Bianchi identity

∇µG
µν = 0 . (5.41)

We learn that from the path integral perspective the Bianchi identity is a result of diffeomor-

phism invariance.

5.1.5 Coupling to matter

Until now the action has only involved gravity, and at most we can allow for test particles

moving on geodesics. However matter is not just an actor doing what gravity says in space-

time, it also backreacts and affects the dynamics of spacetime. The first question to ask is

how does matter couple to the metric? Let us take matter which is described by a Lagrangian.

Scalar Field Consider first a scalar field ϕ(x). In flat spacetime the action takes the form

Sscalar =

∫
d4x
(
− 1

2
ηµν∂µϕ∂νϕ− V (ϕ)

)
, (5.42)

with ηµν the inverse Minkowski metric.19

19Note that the minus sign is due to our mostly plus signature convention, you may be more used to the

opposite convention when considering a field theory. The Lagrangian with take the form of kinetic energy

minus potential energy.
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It is straightforward to generalise this to describe a field moving in curved spacetime,

we simply need to replace the Minkowski metric with the curved metric, replace partial

derivatives with covariant derivatives and introduce the volume form when we integrate in

the action. This means that we take

Sscalar =

∫
d4x

√
−g
(
− 1

2
gµν∇µϕ∇νϕ− V (ϕ)

)
. (5.43)

Despite upgrading the partial derivatives to covariant ones this is somewhat redundant here

as they act the same on a scalar field: we keep it for later though.

Curved spacetime also introduces new possibilities for us to add to the action, for example

we could add a term such as ξRϕ2 to the action which gives rise to extra couplings. We will

not interest ourselves in such terms here however.

Maxwell Theory The action of Maxwell theory from special relativity is

SMaxwell = −1

4

∫
d4xηµρηνσFµνFρσ , (5.44)

with Fµν = ∂µAν − ∂νAµ. The electric and magnetic fields are encoded in F via

Fµν =


0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0

 , (5.45)

and the Bianchi identity dF = d2A = 0 yields two of the four Maxwell equations

∇ · B⃗ = 0 , ∇× B⃗ +
∂B⃗

∂t
= 0 . (5.46)

We may couple to curved space time through the minimal coupling outlined for the scalar

theory. The action is

SMaxwell = −1

4

∫
d4x

√
−ggµρgνσFµνFρσ = −1

2

∫
F ∧ ⋆F . (5.47)

We again take F = dA, which in components reads Fµν = ∂µAν − ∂νAµ = ∇µAν − ∇νAµ.

Antisymmetry implies that we may replace the covariant derivatives with normal derivatives.

The equations of motion are

∇µFµν = 0 , ⇔ d ⋆ F = 0 . (5.48)

We have now seen how to couple matter to gravity but how does the change the Einstein

equations of the previous section. We need to consider the combined action

S =
1

16πGN

∫
d4x

√
−g(R− 2Λ) + SMatter , (5.49)
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where SMatter is the action for any matter fields in the theory minimally coupled to gravity.

When we vary the Einstein–Hilbert term we know that we will obtain the Einstein tensor,

what about SMatter? We define the Energy-Momentum tensor to be

Tµν = − 2√
−g

δLMatter

δgµν
. (5.50)

By construction Tµν is symmetric. Varying the full action with respect to the metric we have

δS =
1

16πGN

∫
d4x

√
−g(Gµν + Λgµν)δg

µν − 1

2

∫
d4x

√
−gTµνδgµν , (5.51)

from which we may read the following equation of motion

Gµν + Λgµν = 8πGNTµν . (5.52)

This constitutes the full Einstein equations describing gravity coupled to matter. Note that

the presence of the energy-momentum tensor says that the matter distribution sources the

curvature of the spacetime.

For the scalar theory above the energy-momentum tensor is

Tµν = ∇µϕ∇νϕ− gµν

(1
2
∇ρϕ∇ρϕ+ V (ϕ)

)
. (5.53)

If we restrict to flat space then

T00 =
1

2
ϕ̇2 +

1

2
(∇ϕ)2 + V (ϕ) , (5.54)

with ∇ the usual 3d spatial derivative. This is the energy density of a scalar field.

For the Maxwell action we have

Tµν = gρσFµρFνσ − 1

4
gµνF

ρσFρσ . (5.55)

In flat space we have

T00 =
1

2

[
E⃗2 + B⃗2

]
. (5.56)

This is the energy density of the magnetic and electric fields.

5.2 Newtonian gravity as a limit

We now want to see that this reduces correctly to Newtonian gravity in some limit. We will

linearise Einstein’s equations and work in an approximate regime where Newtonian gravity

should hold. We consider a situation where the metric is approximately flat and set the
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cosmological constant to vanish Λ = 0. The weakness of the gravitational field is expressed

by decomposing the metric as

gµν = ηµν + hµν , (5.57)

with hµν ≪ 1 small, that is each of the components of the metric is small. This assumption

allows us to ignore anything that is higher than first order in this term. This allows us to

immediately write the inverse metric (to first order) as

gµν = ηµν − hµν , (5.58)

where hµν = ηµρηνσhρσ. We can now raise and lower indices with η since the corrections would

be of higher order in the perturbation. We can think of this linearised theory as describing

a theory of a symmetric tensor field hµν propagating on a flat background spacetime. We

could equally think of a perturbation around some other background metric then the theory

is that of the symmetric tensor field propagating on a curved background.

We want to consider equations of motion for the perturbations, which come from examin-

ing Einstein’s equations to linear order. To begin we should work out the Christoffel symbols

which take the form

Γρ
µν =

1

2
gρσ
(
∂µgσν + ∂νgσµ − ∂σgµν

)
=

1

2
ηρσ
(
∂µhσν + ∂νhσµ − ∂σhµν

)
+O(h2) .

(5.59)

Since the Riemann tensor is of the form R ∼ ∂Γ+ ΓΓ the first order contributions will come

from the derivative terms and not the ‘squared’ terms. We have

Rσ
ρµν = ∂µΓ

σ
νρ − ∂νΓ

σ
µρ +O(h2)

=
1

2
ησλ
(
∂µ∂ρhνλ − ∂µ∂λhνρ − ∂ν∂ρhµλ + ∂ν∂λhµρ

)
+O(h2) .

(5.60)

It follows that the Ricci tensor is

Rµν =
1

2

(
∂σ∂νhσµ + ∂σ∂νhµσ −□hµν − ∂µ∂νh

)
+O(h2) , (5.61)

where h = hµµ is the trace and □ = ∂µ∂µ. Moreover the Ricci scalar is

R = ∂µ∂νhµν −□h+O(h2) . (5.62)

Putting all of this together into the Einstein tensor we end up with

Gµν =
1

2

[
∂σ∂νhµσ + ∂σ∂µhνσ −□hµν − ∂µ∂νh− ηµν

(
∂ρ∂σhρσ −□h

)]
+O(h2) . (5.63)
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This can be obtained by varying the following Lagrangian with respect to hµν ,

L =
1

2

[
(∂µh

µν)∂νh+
1

2
∂µhρσ∂µhρσ − ∂µhρσ∂ρhµσ + ∂µh∂µh

]
. (5.64)

The full linearised equations of motion are then

1

2

[
∂σ∂νhµσ + ∂σ∂µhνσ −□hµν − ∂µ∂νh− ηµν

(
∂ρ∂σhρσ −□h

)]
= 8πGNTµν , (5.65)

where Tµν is assumed to be small.

Before we can proceed we must deal with gauge invariance. The demand that gµν =

ηµν + hµν does not completely fix the coordinate system on spacetime. Let us consider an

infinitesimal change of coordinates

xµ → xµ − ξµ (5.66)

with ξ assumed to be small. The metric changes by

δgµν = (Lξg)µν = ∇µξν +∇νξµ . (5.67)

When the metric takes the linearised form this should be understood as a transformation of

hµν . Since we assume that both h and ξ are small20 it follows that we may replace covariant

derivatives of g with covariant derivatives of η where the Christoffel symbols vanish. We then

have

hµν → hµν + (Lξη)µν = hµν + ∂µξν + ∂νξµ . (5.68)

For those who have seen gauge theories this is precisely the form of a gauge transformation of

Maxwell theory. There we shift the one-form A as A→ A+dΛ which leaves the field strength

(or curvature of the gauge bundle) F = dA invariant. Similarly the above transformation

leaves the linearised Riemann tensor invariant.

When we do computations in gauge theories we typically pick a gauge to work in. The

most common gauge to take is the Lorentz gauge

∂µAµ = 0 , (5.69)

which reduces the Maxwell equation d ⋆ F = ⋆J with source to the wave equation

□Aν = Jν . (5.70)

20If we did not restrict to small ξ then we could go to a region where hµν is not small by a coordinate

transformation, clearly we do not want this.
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There is a similar kind of gauge here called de Donder gauge. We take

∂µhµν −
1

2
∂νh = 0 . (5.71)

To see that this is always possible suppose that you are given a metric where

∂µhµν −
1

2
∂νh = fν , (5.72)

then after a gauge transformation we have

∂µhµν −
1

2
∂νh+□ξν = fν , (5.73)

and it amounts to finding ξ such that □ξν = fν .

De Donder gauge greatly simplifies our linearised equations of motion

□hµν −
1

2
□hηµν = −16πGNTµν . (5.74)

It is useful to define

h̄µν = hµν −
1

2
hηµν , (5.75)

so that the linearised Einstein equation becomes

□h̄µν = −16πGNTµν . (5.76)

To see that this is a sensible definition we see that from h̄µν we can recover hµν since by

taking the trace on both sides we have

h̄ = ηµν h̄µν = −h , (5.77)

so we can reconstruct hµν as

hµν = h̄µν −
1

2
h̄ηµν . (5.78)

Newtonian Limit We now are in a position to take the Newtonian limit. We require a low-

density slowly moving distribution of matter. We will take a stationary matter configuration

so that the Energy-momentum tensor is

T00 = ρ(x⃗) , (5.79)

with all other components vanishing. Via the stationary assumption we may replace the wave

operator □ with the 3d Euclidean Laplacian □ = −∂2t + ∂2i = ∇2. Einstein’s equations then

become

∇2h̄00 = −16πGNρ(x⃗) , ∇2h̄0i = 0 , ∇2h̄ij = 0 . (5.80)
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With suitable boundary conditions the solutions are

h̄00 = −4Φ(x⃗) h̄0i = h̄ij = 0 , (5.81)

where Φ is identified with the Newtonian potential obeying

∇2Φ(x⃗) = 4πGNρ(x⃗) . (5.82)

Translating back to hµν we find

h00 = −2Φ(x⃗) , hij = −2Φ(x⃗)δij , h0i = 0 . (5.83)

The final metric is then

ds2 = −
(
1 + 2Φ(x⃗)

)
dt2 +

(
1− 2Φ(x⃗)

)
dx⃗ · dx⃗ . (5.84)

We conclude that we can recover Newtonian gravity from general relativity and therefore

this is not complete craziness. We will see soon that if we replace Φ(x⃗) = −GNM
r , as would

be expected for a point mass, then this is the leading expansion of the Schwarzschild solution.

One can also study gravitational waves using the linearised equations of motion for ex-

ample. This has had recent experimental interest due to the observations of gravitational

waves by LIGO. Theorists have also taken an interest in these experimental results with the

hope that extra precision tests of GR and its quantum gravity extension can be performed

using this data.

6 Schwarzschild solution

Black holes are one of the most enigmatic objects and probably the reason why most of you

are here. We will take our first steps to understanding black holes here.

6.1 The Schwarzschild black hole

In 1915 Einstein had published his work on General relativity and made a comment saying

that he was not optimistic that the equations he had found could be solved other than

Minkowski space. Also in 1915 with the first world war raging in Europe, Karl Schwarzschild

was in the German army on the Russian front performing ballistic calculations, and suffering

from pemphigus a rare and painful autoimmune disease. Despite this he worked on finding

solutions to general relativity and found the first exact (non-trivial) solution to Einstein’s field

equations.21 Schwarzschild’s breakthrough was to use a convenient system of coordinates,

21Schwarzschild died in 1916 having left military service due to his illness.
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taking a polar like coordinate system as opposed to Einstein’s rectangular coordinate system.

The metric that bears his name is

ds2 = −
(
1− 2GNM

r

)
dt2 +

(
1− 2GNM

r

)−1

dr2 + r2
(
dθ2 + sin2 θdϕ2

)
. (6.1)

This solves Einstein’s equations in a vacuum, Rµν = 0. The coordinate ranges are22

t ∈ R , 0 < θ < π , 0 < ϕ < 2π . (6.2)

The range of r is slightly more subtle. At r = 2GNM something funky is happening since

the prefactor of dt2 and dr2 vanish of diverge respectively. For the moment we will keep

2GNM < r < ∞ and we are then safe. This value of the radial coordinate is called the

Schwarzschild radius and will play a prominent role later.

It depends on a single parameterM which is interpreted as the mass of the object. Indeed

using our results above on the Linearised equations and their Newtonian limit we have

g00 = −(1 + 2Φ) , (6.3)

with Φ the Newtonian potential. For the Schwarzschild metric we have

Φ = −GNM

r
, (6.4)

which is the Newtonian potential for a point mass M at the origin.

We can compute the mass of the black hole by using Komar integrals. The Schwarzschild

solution admits a time-like Killing vector K = ∂t: a Killing vector satisfies LKg = 0 which is

equivalent to ∇(µKν) = 0. Then to compute the Komar integral we must construct the dual

one-form

K = g00dt = −
(
1− 2GM

r

)
dt . (6.5)

The Komar integral is given by

MKomar = − 1

8πGN

∫
S2

⋆dK , (6.6)

where the S2 is any sphere with a radius larger than the horizon at r = 2GNM where the

Killing vector has vanishing norm. Then

dK = −2GNM

r2
dr ∧ dt ⇒ ⋆dK = −2GNM sin θdθdϕ . (6.7)

22The are singularities at θ = 0, π and ϕ = 0, 2π however these are just the expected singularities from

considering a two-sphere and attempting to use just one coordinate patch. We should be careful about this

but it is not a problem.
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and therefore

MKomar =M . (6.8)

Note that d ⋆ dK = 0 and therefore it obeys an equation similar to Maxwell’s equations

d ⋆ F = 0. These are Maxwell’s equations in the absence of any current and therefore one

would expect the electric charge to vanish. Yet this electric charge is precisely the mass and

this is non-zero. For the solution the mass is localised at the origin r = 0 where the field

strength diverges. This allows for a non-trivial value.

We may thus expect that this describes something physical only whenM > 0. ForM = 0

we find Minkowski space while for M < 0 the metric becomes unphysical.

6.1.1 Birkhoff’s theorem

The Schwarzschild solution turns out the be the unique spherically symmetric asymptotically

flat solution to the vacuum Einstein solutions, this fact is known as Birkhoff’s theorem. This

means that the Schwarzschild solution does not just describe the spacetime outside of a black

hole but outside any non-rotating, spherically symmetric object such as a star or planet.

We will sketch the proof of this fact since it allows us to get a feel for solving the Einstein

equations.

The spherical symmetry of the metric means that it has an SO(3) isometry. If you hold

up a round sphere and rotate it it looks the same no matter which way you rotate it. If

instead you did the same with a golf ball, which has dimples then this rotational symmetry is

broken. The distinction between these two situations should be captured by the metric. The

metric on a round two-sphere will look the same wherever you sit on the sphere whereas the

metric on the golf ball will depend on where you are.

To define this mathematically we need to use the concept of a flow that we introduce a

number of lectures ago. A flow on a manifoldM is a one-parameter family of diffeomorphisms

σt :M →M , and may be associated to a vector field K ∈ X (M) at each point along the flow

which is tangent to the flow

Kµ =
dxµ(λ)

dλ
. (6.9)

The flow is said to be an isometry if the metric looks the same at each point along a given

flow line, mathematically this means that an isometry satisfies

LKg = 0 , ⇔ ∇µKν +∇νKµ = 0 . (6.10)

A vector satisfying this equation is known as a Killing vector field. Sometimes it is simply

to see that a vector is an isometry, particularly when it is an ignorable coordinate, i.e. the
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metric does not depend on said coordinate. However sometimes the Killing vectors are not

so obvious.

There is a group structure underlying the symmetries, well technically a Lie algebra

structure. This follows since the Lie derivative satisfies

LXLY − LY LX = L[X,Y ] . (6.11)

Killing vectors form a Lie algebra of the isometry group of the manifold. (See problem sheet

3 where we consider the Killing vectors on the round three-sphere).

One can then prove that the SO(3) isometry implies that the metric must take the form

ds2 = gττ (τ, ρ)dτ
2 + 2gτρ(τ, ρ)dτdρ+ gρρ(τ, ρ)dρ

2 + r2(τ, ρ)ds2(S2) , (6.12)

where

ds2(S2) = dθ2 + sin2 θdϕ2 , (6.13)

is the metric on a round two-sphere. The SO(3) isometry then acts on the two-sphere and

leaves τ and ρ untouched. This is called a foliation of the space by S2 leaves.

The size of the sphere is determined by r(τ, ρ) and it is convenient to redefine the coor-

dinates such that r is a coordinate, we can then eliminate the ρ coordinate in favour of r, the

metric becomes

ds2 = gττ (τ, r)dτ
2 + 2gτr(τ, r)dτdr + grr(τ, r)dr

2 + r2ds2(S2) . (6.14)

The only subtlety we could encounter in doing this change of coordinates is if it is not possible

to exchange ρ with r, for example r could have been independent of ρ. We can rule out these

cases by imposing that asymptotically the spacetime looks like Minkowski space.

We now want to get rid of a new coordinate which removes the cross term dτdr. If we

pick t̃(τ, r) then we have

dt̃ =
∂t̃

∂τ
dτ +

∂t̃

∂r
dr (6.15)

and therefore we can pick a choice such that we can remove the cross term. The resultant

metric is then

ds2 = −e2α(t̃,r)dt̃2 + e2β(t̃,r)dr2 + r2ds2(S2) . (6.16)

We have included a minus sign since we are looking for a Lorentzian metric. This is the

simplest form of the metric that we can achieve just through coordinate transformations and
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we now need to plug this into Einstein’s equations. We can compute the Christoffel symbols

for the metric, the non-trivial ones are

Γt̃
t̃t̃
= ∂t̃α , Γt̃

t̃r
= ∂rα , Γt̃

rr = e2β−2α∂t̃β ,

Γr
t̃t̃
= e2α−2β∂rα , Γr

t̃r
= ∂t̃β , Γr

rr = ∂rβ ,

Γθ
rθ =

1

r
, Γr

θθ = −re−2β , Γϕ
rϕ =

1

r
,

Γr
ϕϕ = −re−2β , Γθ

ϕϕ = − sin θ cos θ , Γϕ
θϕ =

cos θ

sin θ
. (6.17)

It follows that the non-vanishing components of the Riemann tensor are

Rt̃
rt̃r

= e2β−2α
(
∂2
t̃
β + (∂t̃β)

2 − ∂t̃α∂t̃β
)
+
(
∂rα∂rβ − ∂2rα− (∂rα)

2
)
,

Rt̃
θt̃θ

= −re−2β∂rα ,

Rt̃
ϕt̃ϕ

= −re−2β sin2 θ∂rα ,

Rt̃
θrθ = −re−2α∂t̃β ,

Rt̃
ϕrϕ = −re−2α sin2 θ∂t̃β ,

Rr
θrθ = re−2β∂rβ ,

Rr
ϕrϕ = re−2β sin2 θ∂rβ ,

Rθ
ϕθϕ = (1− e−2β) sin2 θ .

(6.18)

From the Riemann tensor we can construct the Ricci tensor finding the non-trivial components

Rt̃t̃ =
(
∂2
t̃
β + (∂t̃β)

2 − ∂t̃α∂t̃β
)
+ e2α−2β

(
∂2rα+ (∂rα)

2 − ∂rα∂rβ +
2

r
∂rα

)
,

Rrr = −
(
∂2rα+ (∂rα)

2 − ∂rα∂rβ − 2

r
∂rβ
)
+ e2β−2α

(
∂2
t̃
β + (∂t̃β)

2 − ∂t̃α∂t̃β
)

Rt̃r =
2

r
∂t̃β ,

Rθθ = e−2β
(
r
(
∂rβ − ∂rα

)
− 1
)
+ 1 ,

Rϕϕ = Rθθ sin
2 θ .

(6.19)

Our job is to now solve Einstein’s equations in the vacuum, Rµν = 0. There is an obvious

component to consider firstRt̃r which implies

∂t̃β = 0 . (6.20)

If we now take the t̃ derivative of Rθθ and use the above condition we find

∂t̃∂rα = 0 , (6.21)
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and therefore we have

β = β(r) , α = f(r) + g(t̃) . (6.22)

The first term in the metric is then

−e2f(r)+2g(t̃)dt̃2 , (6.23)

and by a redefinition of t̃ we can se

eg(t̃)dt̃ = dt , (6.24)

and we end up with the metric

ds2 = −e2f(r)dt2 + e2β(r)dr2 + r2ds2(S2) , (6.25)

and it remains to solve the remaining Einstein equations. Note that the metric is now inde-

pendent of t, this naturally comes out of the Einstein equations, we did not impose this! This

implies that any spherically symmetric vacuum metric possesses a timelike Killing vector. A

metric with this property is called stationary, in fact the Schwarzschild metric is also static

we will come back to this shortly.

We can now remove all t̃ derivatives and exchange α→ f in the Ricci tensor components

and where we se t̃ replace with just t. We are free to add components and so we take the

combination

0 = e2β−2f(r)Rtt +Rrr =
2

r

(
∂rf(r) + ∂rβ

)
. (6.26)

We then have

f(r) = −β(r) + const , (6.27)

but we may rescale the time coordinate to set the constant to 0. Plugging this into Rθθ we

find

e2f(r)
(
2r∂rf(r) + 1

)
= 1 ⇔ ∂r

(
re2f(r)

)
= 1 , (6.28)

which has solution

e2f(r) = 1− RS

r
, (6.29)

with RS an undetermined constant which we will set to be RS = 2GNM . There is no

remaining freedom except to set RS to a certain value so the remaining components must

vanish, and it turns out that they do, so we have solved Einstein’s equations and derived the

Schwarzschild solution.
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Stationary vs Static There are two different meanings to time independence that we can

use.

A spacetime is stationary if it admits an everywhere timelike Killing vector field K. We

typically normalise it so that asymptotically K2 → −1.

A spacetime is static if, in addition to being stationary, it is invariant under t → −t,
where t is the coordinate along the integral curves of K. This rules out dtdx cross terms in

the metric with x any other coordinate except t.

Birkhoff’s theorem tells us that spherical symmetry implies that the spacetime is neces-

sarily static.

6.1.2 Geodesics

We now want to consider the geodesics of the Schwarzschild metric. We have computed

the Christoffel symbols above and could just substitute this into the geodesic equation (4.79)

however if one did not already have the Christoffel symbols this is not necessarily the quickest

method. Instead one should use the Euler–Lagrange equations for the Lagrangian

L =
√
−gµν ẋµẋν , (6.30)

and use an affine parameter. With the choice of an affine parameter we can then compute

the Euler–Lagrange equations of L2 instead and obtain the same equations of motion. We

take

L = gµν
∂xµ

∂λ

∂xν

∂λ

= −
(
1− 2GNM

r

)
ṫ2 +

(
1− 2GNM

r

)−1

ṙ2 + r2θ̇2 + r2 sin2 θϕ̇2 ,

(6.31)

with •̇ ≡ d•
dλ . Since we are using an affine parameter this is equal to a constant ϵ which we

may take to be −1 for time-like geodesics, 0 for null and 1 for space-like geodesics.

Before we start with a brute force computation we should consider the conserved quan-

tities. Ignorable coordinates, ones which do not appear explicitly, give rise to conserved

quantities since from the Euler–Lagrange equations we find

dL
dλ

= 0 ⇒ d

dλ

dL
dλ

= 0 . (6.32)
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The action has two such ignorable coordinates t and ϕ: giving

2l =
dL
dϕ̇

= 2r2 sin2 θϕ̇ ,

−2E =
dL
dṫ

= −2

(
1− 2GNM

r

)
ṫ .

(6.33)

Of course these should be identified with the angular momentum and energy respectively.

Next consider the equation for θ, we find

d

dλ
(r2θ̇) = r2 sin θ cos θϕ̇2 . (6.34)

Recall that in computing the motion in Newtonian gravity we noted that if we started the

particle at θ = π
2 with θ̇ = 0 then it remained in the plane, the same is true here and so we

can without loss of generality set θ = π
2 .

We can now plug this into (6.31) and equate with our constant parameter ϵ giving

ϵ = −
(
1− 2GNM

r

)−1

E2 +

(
1− 2GNM

r

)−1

ṙ2 + r−2l2 . (6.35)

Rearranging we have
1

2
ṙ2 + Veff(r) =

E2

2
, (6.36)

with

Veff(r) = − ϵ
2
+
ϵGNM

r
+

l2

2r2
− l2GNM

r3
, (6.37)

we should contrast this with the equivalent Newtonian expression in (2.80) for a massive

particle which was

VN (r) = −GNM

r
+

l2

2r2
. (6.38)

We see that General relativity leads to additional corrections to the potential. The first term

is simply a constant shift and so does not play much of a role since we can absorb it into a

redefinition of the energy, the r−3 term is completely new however and changes the Newtonian

potential at small distances. Note that the effective potential vanishes at r = 2GNM which

is the Schwarzschild radius.

Let us reinstate the speed of light in the potential, we have

Veff(r) = −ϵc
2

2
+
ϵGNM

r
+

l2

2r2
− l2GNM

r3c2
, (6.39)

then the equation for ṙ is
1

2
ṙ2 + Veff(r) =

1

2

E2

c2
. (6.40)
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Potential for goedesics of Massive particles

(a) Plots of the potential for massive

particles, ϵ = −1 and for GNM = 1.

The different plots correspond to in-

creasing l.
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Potential for goedesics of Massless particles

(b) Plots of the potential for massless particles, ϵ =

0 and for GNM = 1. The different plots correspond

to increasing l. Note the maximum at 3 = 3GNM

in the massless case for all l.

Figure 15: Plots of the potential for massive and massless particles. Note that the plots

tends to − ϵ
2 as r → ∞. Moreover the potentials both vanish at 2 = 2GNM which is the

Schwarzschild radius.

We now want to analyse the different forms of trajectories that are possible. In figure 25

we have plotted the potential for various values of l, with fixed mass M .

Circular orbits will be at points where the potential has a turning point. Then we are

stuck in a circular orbit, which is stable if it corresponds to a minimum of the potential and

unstable if it corresponds to a maximum. Differentiating the potential we have

V ′
eff(r) =

1

r4

(
3GN l

2M − l2r −GNMϵr2
)

(6.41)

which potentially has two zeroes at

rc = − l
2 ±

√
l4 + 12GN l2Mϵ

2GNMϵ
, (6.42)

for ϵ ̸= 0 and

rc = 3GNM , (6.43)

for ϵ = 0.

For the massless photon the orbit is at a maximum and is therefore unstable. However a

photon can orbit in a circular orbit forever around the black hole, but any perturbation will

send it flying off to either r = 0 or r = ∞. It is known as the photon sphere. The focussing

effects mean that much of the light emitted from an accretion disc around a non-rotating

black hole emerges from the photon sphere. In practice, it seems likely that the photographs

by the Event Horizon Telescope does not have the required resolution to see this.
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For massive particles there are different regimes depending on the angular momentum.

For large l there will be two circular orbits, one stable and one unstable. In the l → ∞ regime

they are at

rc =
( l2

GNM
, 3GNM

)
. (6.44)

The stable circular orbit gets further away while the unstable orbit approaches 3GNM . As we

decrease l the two orbits come together and coincide when the discriminant of the quadratic

in (6.41) vanishes. This is at

l =
√
12GNM , (6.45)

which gives

rc = 6GNM . (6.46)

For smaller l there are no circular orbits and so 6GNM is the smallest possible radius of a

stable circular orbit of the Schwarzschild metric.

We have found that the Schwarzschild solution possesses stable circular orbits for r >

6GNM and unstable circular orbits for 3GNM < r < 6GNM . We should comment that

these are the motions of geodesics. For an accelerating observer such as a rocket ship, there

is nothing stopping them from dipping below r = 3GNM and then reemerging, so long as

they stay away from r = 2GNM .

Most experimental test of general relativity involve the motion of test particles in the

solar system. More recently, with the advancements in technology, using gravitational waves

to test general relativity has also become possible. We will concentrate on three particular

tests: the precession of perihelia, the bending of light and gravitational red-shift.

Perihelion precession We saw when we consider the orbits in Newtonian gravity that the

non-circular orbits were closed ellipses. Observation of the orbit of Mercury showed that the

closed elliptic orbits of Newtonian gravity were not realised, instead the orbit precessed. A

non-trivial check of General Relativity is then to show that the orbits of the planets precess.

We can approximate the metric of the sun to be Schwarzschild and take the planet to follow

a geodesic of a massive particle.

The strategy is to describe the evolution of the radial coordinate r as a function of ϕ. If

the orbit is a perfect ellipse r(ϕ) should be periodic with period 2π, for which the perihelion

occurs at the same point every orbit. Instead for a non-closed ellipse the perihelion is shifted

after every orbit. We will see that General Relativity gives a slight modification of the

Newtonian result such that the orbit precesses. First consider the radial equation of motion
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for a massive particle, (6.36), setting ϵ = −1. To get an equation for dr
dϕ we can us the chain

rule and multiply the equation by (dϕ
dλ

)−2
=
r4

l2
, (6.47)

yielding ( dr
dϕ

)2
+
r4

l2
− 2GNM

l2
r3 + r2 − 2GNMr =

E2r4

l2
(6.48)

We first define a new variable

x =
l2

GNMr
, (6.49)

which for x = 1 gives rise to the Newtonian circular orbit. The equation of motion becomes(dx
dϕ

)2
+

l2

G2
NM

2
− 2x+ x2 −

2G2
NM

2x3

l2
=

E2l2

G2
NM

2
. (6.50)

Next differentiate with respect to ϕ to obtain

d2x

dϕ2
− 1 + x =

3G2
NM

2x2

l2
. (6.51)

In the Newtonian calculation the last term would be absent and we could solve for x exactly.

Here we will treat this as a perturbation around the Newtonian result.

We expand x into a Newtonian solution plus a small deviation

x = x0 + x1 , (6.52)

where the zeroth order part satisfies

d2x0
dϕ2

− 1 + x0 = 0 , (6.53)

leading to the equation for the first order part

d2x1
dϕ2

+ x1 =
3G2

NM
2

l2
x20 . (6.54)

A solution to the zeroth order equation is (see (2.86))

x0 = 1 + e cosϕ , (6.55)

which recall describes a perfect ellipse with eccentricity e, e = 1− b2

a2
with a the semi-major

axis, the distance from the centre to the farthest point on the ellipse and the semi-minor axis

b the distance from the centre to the closest point. Plugging in the Newtonian solution into

the first order equation of motion we find

d2x1
dϕ2

+ x1 =
3G2

NM
2

l2
(1 + e cosϕ)2 . (6.56)
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A solution is given by

x1 =
3G2

NM
2

l2

[(
1 +

e2

2

)
+ eϕ sinϕ− 1

6
e2 cos 2ϕ

]
. (6.57)

The first term is just a constant displacement while the third oscillates around 0. The

important effect is contained within the second term which accumulates over successive orbits.

Combining this term only with the zeroth-order solution we have

x = 1 + e cosϕ+
3G2

NM
2e

l2
ϕ sinϕ . (6.58)

We should emphasise that this is not a full solution, it is an approximation but it encapsulates

the part we are interested in. We may write

x = 1 + e cos
(
(1− α)ϕ

)
, (6.59)

where

α =
3G2

NM
2

l2
. (6.60)

where one should view this as a series expansion around α = 0. It follows that during each

orbit the perihelion advances by an angle

∆ϕ = 2πα =
6πG2

NM
2

l2
. (6.61)

We may replace the angular momentum in favour of the eccentricity by looking at the New-

tonian solution. An ordinary ellipse satisfies

r =
(1− e2)a

1 + e cosϕ
, (6.62)

with a the semi-major axis. This leads us to identify

l2 ∼ GNM(1− e2)a , (6.63)

for the Newtonian orbit. Plugging this in and restoring the speed of light we find

∆ϕ =
6πGNM

c2(1− e2)a
. (6.64)

historically the precession of mercury was the first test of GR. The apparent discrepancy

between observation and Newtonian gravity was known long before the advent of GR, and
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a number of solutions had been proposed including additional planets. For the motion of

Mercury around the sun we have

GNM⊙
c2

= 1.48× 103m,

a = 5.79× 1010m,

e = 0, 2056 .

(6.65)

This gives

∆ϕMercury = 5.01× 10−7radians/orbit = 0.103”/orbit (6.66)

with ” denoting arcseconds. Mercury orbits once every 88 days and therefore

∆ϕMercury = 43.0”/century . (6.67)

The major axis of Mercury’s orbit precesses at a rate of 43.0 arcseconds every 100 years.

The observed value is 5601 arcseconds/100 years. Much of that is due to the precession of

equinoxes in our geocentric coordinate system: 5025 arcseconds/100 years. The. gravitational

perturbations of the other planets contributes an additional 532 arcseconds/100 years leaving

a 43 arcseconds/100 years to be explained by GR which is does quite well.

Bending of light We can now extend these results for null geodesics. We have seen that

there is an unstable circular orbit for light. What about other orbits? The fate of other

light rays depends on the relative value of their energy E to their angular momentum l. The

maximum value of the potential is

Vnull(r∗) =
l2

54G2
NM

2
, (6.68)

and therefore the physics depends on how this compares with the right-hand side of (6.36).

There are two possibilities we need to consider

• E < l√
27GNM

. The energy of the light is lower than the angular momentum barrier.

This means that light emitted from r < r∗ cannot escape to infinity; it will orbit the

star before falling back towards the origin. For light coming from infinity it will not fall

into the star but will instead bounce off the angular momentum barrier and return to

infinity: the light will be scattered.

• E > l√
27GNM

. The energy of light is greater than the angular momentum barrier.

Light can be emitted from r < r∗ and escape to infinity (this is only true for Rs < r.

Meanwhile light coming from infinity is captured by the star/black hole.
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Let us once again use the inverse parameter u = 1
r . The equation of motion becomes(du

dϕ

)2
+ u2

(
1− 2GNMu

)
=
E2

l2
. (6.69)

Differentiating again we find
d2u

dϕ2
+ u = 3GNMu2 . (6.70)

We may once again work perturbatively. At zeroth order we can ignore the GNM term on

the right-hand-side. Then to leading order we have

d2u

dϕ2
+ u = 0 , ⇒ u =

1

b
sinϕ , (6.71)

for b a constant. Reinstating r we have r sinϕ = b: which is the equation of a horizontal

straight line, a distance b above the origin, see 16. The distance b is known as the impact

parameter.

b

r

ϕ = 0ϕ = π

ϕ

Figure 16: Light bending in the Schwarzschild metric. The dashed line at the top is the

constant line r sinϕ = b. The curved line is the geodesic.

With the zeroth order solution we can now solve (6.70) in an expansion around GNM
b = β.

We have

u = u0 + βu1 + .... (6.72)

At first order we need to solve

d2u1
dϕ2

+ u1 =
3 sin2 ϕ

b
=

3(1− cos 2ϕ)

2b
. (6.73)
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The general solution is

u1 = A cosϕ+B sinϕ+
1

2b
(3 + cos 2ϕ) , (6.74)

where the first two parts are the solutions of the homogeneous part and A,B two integration

constants. We should choose them so that the initial trajectory at ϕ = π agrees with the

straight line u0. For this to hold we must take A = 2
b and B = 0 so that u1 → 0 as ϕ → π.

To leading order in β the solution is

u =
1

b
sinϕ+

GNM

2b2
(3 + 4 cosϕ+ cos 2ϕ) . (6.75)

What angle does the particle escape to r = ∞ ⇔ u = 0. Before the correction this was at

ϕ = 0, within our perturbative approach we can approximate sinϕ ∼ ϕ and cosϕ ∼ 1 to find

that the particle escapes at

ϕ ∼ −4GNM

b
. (6.76)

This bending of light is known as gravitational lensing.

For the sun, GNM⊙
c2

∼ 1.48 km. If the light rays just graze the surface of the sun, then

the impact parameter is the radius of the sun R⊙ ∼ 7 × 105 km. This gives a scattering

angle of ϕ ∼ 8.6× 10−5 radians or ϕ ∼ 1.8”. The Newtonian prediction gives only half of this

contribution.

There is a difficulty in testing this prediction since things behind the sun are rarely

visible. By a sheer coincide, the size of the moon in the sky is about the same size of the

sun. This means that during a solar eclipse the light from the sun is blocked allowing for the

measurement of stars whose light passes nearby the Sun. This can then be compared with

the usual positions of these stars.

The first measurement was carried out in 1919 by two expeditions lead by Arthur Ed-

dington (we will see this name again shortly). Since then our evidence of the bending of light

is more impressive. Clusters of galaxies have been seen to distort the light from a background

source often revealing a distinct ring-like pattern of multiple copies of the light source. See

figure 17.

Gravitational red shift Let us consider an observer with four velocity Uµ who is stationary

in Schwarzschild coordinates, i.e. U i = 0.23 The four-velocity is normalised so that UµU
µ = 1,

23We could allow for the observer to be moving, however the difference is just to superimpose the usual

Doppler shift on top of the gravitational effect and therefore we consider the simpler example.
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Figure 17: A diagram of light lensing picked up by the Hubble telescope. Notice that there

are four copies of the distant quasar in the picture obtained by Hubble. Image credited to

NASA, ESA and STScl.

which for our stationary observer in a Schwarzschild background implies

U0 =

(
1− 2GNM

r

)−1/2

. (6.77)

Such an observer measures the frequency of a photon following a null geodesic xµ(λ) to be

ω = −gµνUµdx
ν

dλ
. (6.78)

We have

ω =

(
1− 2GNM

r

)1/2 dt

dλ

=

(
1− 2GNM

r

)−1/2

E ,

(6.79)

where E was defined to be the conserved quantity associated to time translations when we

worked out the geodesics. Since E is conserved it follows that ω will have different values

when measured at different radial distances. For a photon emitted at r1 and an observer at

r2, the observed frequencies will be related by

ω2

ω1
=

√
1− 2GNM/r1
1− 2GNM/r2

. (6.80)

This is the exact result for the frequency shift, in the limit r ≫ 2GNM we have

ω2

ω1
=1− GNM

r1
+
GNM

r2

= 1 + Φ(r1)− Φ(r2) ,

(6.81)
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with Φ = −GNM/r the Newtonian potential.

We see that the frequency goes down as Φ increases which happens as we climb out of

a gravitational field, leading to a red-shift. On the other hand photons which fall towards

the gravitating body are blue shifted. Gravitational red-shift was first detected in 1960 by

Pound and Rebka using gamma rays travelling a distance of 72-feet (about 22m) which was

the height of the physics building at Harvard. Increasingly precise tests have found excellent

agreement with GR.

There is a cosmological counterpart to this, where light is red-shifted in an expanding

universe.

Time delay Since the temporal component of the metric is

g00(x) = 1 + 2Φ(x) , (6.82)

we see that there is a connection between time and gravity. Let us once again use the

Schwarzschild solution. An observer sitting at a fixed distance r from the origin will measure

a time interval

dτ2 = −g00dt2 =
(
1− 2GNM

r

)
dt2 . (6.83)

For an asymptotic observer at r → ∞ who measures a time t, an observer at r will measure

the time T

T (r) = t

√
1− 2GNM

r
. (6.84)

It follows that time goes slower in the presence of a massive gravitating object. Notice that

at r = rS that time seems to stop for the observer at rs. We will come back to this later.

We can make this more quantitive by considering two observers: Alice and Bob. Bob

has gone up in a hot air balloon while Alice is on the surface of the earth at rA. Bob is at a

distance rB = rA +∆r. The time measured by Bob is

TB = t

√
1− 2GNM

(rA +∆r)
∼ t

√
1− 2GNM

ra
+

2GNM∆r

r2A

∼ t

√
1− 2GNM

rA

(
1 +

GNM∆r

r2A

)
= TA

(
1 +

GNM∆r

r2A

)
.

(6.85)

A double expansion has been utilised where we assume ∆r ≪ rA and 2GNM
rA

≪ 1. If the hot

air balloon flies a distance ∆r = 1000m above Alice then taking the radius of the Earth to

be rA ≈ 6000km the difference in times is about 10−12 and therefore over the whole day Bob

ages by an extra 10−18 seconds or so. Clearly this is a small amount, in the vicinity of a black
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hole this can be more pronounced. Recall that the smallest stable orbit was at r = 3GNM

and such a person experiences time at a rate of T = 3−1/2t ≈ 0.6t compared to an asymptotic

observer at r → ∞. For more dramatic results one would need to fly closer to the horizon

and then return to asymptotic infinity.

This also gives a different perspective on the gravitational redshift. Bob doesn’t like

Alice and wants to ruin her day so he hovers above Alice and chucks peanuts at her. He

throws peanuts at time intervals ∆TB. Alice, wise to Bob’s antics, opens up an umbrella.

The peanuts hit the umbrella at time intervals ∆TA where as above

∆TA = ∆TB

√
1 + 2Φ(rA)

1 + 2Φ(rB)
≈
(
1 + Φ(rA)− Φ(rB)

)
∆TB . (6.86)

We have that rA < rB and therefore Φ(rA) < Φ(rB) < 0 and hence ∆TA < ∆TB. Alice

receives the peanuts at a higher frequency than Bob threw them.

Having seen the peanuts hitting the umbrella Bob decides to instead shine a light down

at Alice with a frequency ωB ∼ ∆T−1
B . Alice will then receive the light at a frequency ωA

where

ωA ≈
(
1 + Φ(rA)− Φ(rB)

)−1
ωB . (6.87)

This is a higher frequency ωA > ωB and therefore a shorter wave-length. The light is therefore

blue-shifted. In contrast if Alice retaliates and shines a light up to Bob then the frequency

decreases and the light is redshifted.

6.2 Schwarzschild solution as a black hole

We have now studied some geodesics for the Schwarzschild solution and some phenomena.

Each time we have carefully avoided the Schwarzschild radius rc = 2GNM and also r = 0. At

both of these points something funky happens with the metric, at least one of the components

of the metric diverges or vanishes. The interpretation of the singularity is different for the

two cases. The divergence at r = 0 is a singularity. General relativity breaks down here and

we need a theory of quantum gravity. GR predicts its own death!

In contrast the divergence at r = 2GNM is a result of our choice of coordinates. This

surface is referred to as the event horizon or simply the horizon. Many of the surprising

properties of a black hole happen here.

There is a simple way to check whether a divergence is due to a singularity or a poor choice

of coordinates. We can build scalar quantities, these are then independent of coordinates,

if they diverge in one coordinate system they diverge in all and the spacetime is sick at
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this point. One the other hand if it does not diverge we cannot say much, one would have to

consider all possible scalar quantities to concretely say it is just a coordinate singularity. Since

the Einstein equations in a vacuum set Rµν = 0 it follows that the simplest scalar quantities

one can construct R and RµνR
µν both vanish. The next simplest is the Kretschmann scalar

RµνρσRµνρσ. For the Schwarzschild metric we find

RµνρσRµνρσ =
48G2

NM
2

r6
. (6.88)

There is no pathology at r = 2GNM while there is at r = 0 where it diverges.

One way to understand the geometry of spacetime is to explore its causal structure as

defined by light cones. We therefore consider radial null curves, i.e. those with constant θ, ϕ

and ds2 = 0, such that they satisfy

ds2 = 0 = −
(
1− 2GNM

r

)
dt2 +

(
1− 2GNM

r

)−1

dr2 , (6.89)

which gives
dt

dr
= ±

(
1− 2GNM

r

)−1

. (6.90)

This measures the slope of the light cones on a spacetime diagram of the t-r plane. For

large r the slope is ±1 as it would be for flat spacetime. On the other hand as we approach

r = 2GNM we get dt
dr → ±∞ and the light cones close up, see figure 18. Thus a light ray

which approaches r = 2GNM never seems to get there, at least in this coordinate system.

This apparent inability to get to r = 2GNM is actually an illusion and an artefact of a bad

choice of coordinates. An in-falling light ray or massive particle has no trouble reaching this

radius. On the other hand an observer far away would never be able to tell. If we all hovered

outside a black hole and one of your class mates jumped in the black hole sending back signals

the whole way down we would simply see the signals reach us less frequently, see figure 19.

The fact that we never see them reach r = 2GNM is a meaningful statement but the

fact that their trajectory in the t-r plane never reaches there is not: it is highly dependent

on our coordinate system. We want to change coordinates to some that are better behaved

at r = rS . Note that we can solve (6.90) by introducing the tortoise coordinate r∗

r∗ = r + 2GNM log

(
r − 2GNM

2GNM

)
, (6.91)

then

t = ±r∗ + constant , (6.92)
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2GN M

Δτ1
Δτ1

Δτ2

Δτ′ 2 > Δτ2

r

t

2GN M r

t

Figure 18: In Schwarzschild coordinates the light cones appear to close up as we approach

the horizon. We will see that this is not quite correct.

2GN M

Δτ1
Δτ1

Δτ2

Δτ′ 2 > Δτ2

r

t

2GN M

Figure 19: A beacon freely falling into a black hole emits signals at intervals of proper time

∆τ1. An observer at fixed r receives these signals at a successively longer time intervals ∆τ2.

and we see that this is well adapted to null radial geodesics. The plus sign corresponds

to out-going geodesics and the negative to in-going geodesics24. The metric with this new

24The quick way to see this is to note that as r → ∞ we have r∗ → ∞ and therefore we need the plus sign

for out-going geodesics so that the radial direction increases with time.
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coordinate becomes

ds2 =

(
1− 2GNM

r

)
(−dt2 + dr2∗) + r2ds2(S2) . (6.93)

Next we introduce a pair of null coordinates further adapted to the null geodesics:

v = t+ r∗ , u = t− r∗ . (6.94)

We first consider the metric in (v, r) coordinates and then in (u, r) coordinates before biting

the bullet and using (v, u) coordinates.

Ingoing Eddington–Finkelstein coordinates Eliminating t via t = v − r∗(r) we find

ds2 = −
(
1− 2GNM

r

)
dv2 + 2dvdr + r2ds2(S2) . (6.95)

This is the Schwarzschild solution in ingoing Eddington–Finkelstein coordinates. Even though

the metric coefficient gvv vanishes at r = 2GNM there is no real degeneracy. The determinant

of the metric is

det g = det


−
(
1− 2GNM

r

)
1 0 0

1 0 0 0

0 0 r2 0

0 0 0 r2 sin2 θ

 = −r4 sin2 θ . (6.96)

The cross terms stops the metric from being degenerate at the horizon. The metric is still

degenerate at r = 0 and θ = 0, π however the latter are just the usual pole problems of the

S2 and nothing to worry about. This is the benefit of the Eddington–Finkelstein coordinates,

the radial coordinate can be extended beyond the horizon.

To build further intuition we can look at the behaviour of light rays. We saw that the

null radial geodesics were given by (6.92). The outgoing geodesics are

u = t− r∗ = const . (6.97)

Eliminating t in favour of v we have that the outgoing geodesics satisfy v = 2r∗ +const. The

solutions of this equation have a different behaviour depending on whether they are inside

the horizon or outside. For r > 2GNM we can use the original definition of r∗ in (6.91) to

get

v = 2r + 4GNM log

(
r − 2GNM

2GNM

)
+ const . (6.98)
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The Log term goes bad when r < 2GNM , however we can simply modify the coordinate to

take the norm of the argument of the log, so that

r∗ = r + 2GNM log

∣∣∣∣r − 2GNM

2GNM

∣∣∣∣ . (6.99)

This means that r∗ is multi-valued. Outside the horizon it takes values r∗ ∈ (−∞,∞) while

inside the horizon it takes values r∗ ∈ (−∞, 0). The singularity sits at r∗ = 0. Outgoing

geodesics inside the horizon obey

v = 2r + 4GNM log

(
2GNM − r

2GNM

)
+ const . (6.100)

Finally note that r = 2GNM is itself a null geodesic. This information can be captured in

a Finkelstein diagram. It is designed so that ingoing null rays travel at 45◦. This is simple

to do if we label the coordinates of the diagram by t and r∗, however since r∗ is not single

valued we use r instead. We define a new temporal coordinate t∗ by the requirement

v = t+ r∗ = t+ ∗+ r . (6.101)

Thus ingoing null rays travel at 45◦ in the (t∗, r)-plane. See figure 20

The outgoing null geodesics that sit outside the horizon tend to infinity, whereas those

inside the horizon don’t actually go out, but rather go towards the singularity at r = 0. Each

hits the singularity at some finite t∗. We can draw lightcones on the Finekstein diagram.

These are regions which are bounded by the in-going and out-going future pointing null

geodesics. Any massive particle must follow a timelike path and this must then sit within

these lightcones. We see that the lights cones get tipped as we get closer to the horizon,

and then once inside the horizon there is no way of getting back out. The causal structure

of spacetime prevents this. The term black hole really refers to this area inside the horizon

r < 2GNM , any observer outside the horizon can never known what is happening inside the

black hole.

We can also see what happens if we watch someone fall into a black hole. The person

falls through the horizon without realising anything is wrong. However as they fall the light

signals that come back to us take longer and longer to reach us. The actions of the in-falling

person become increasingly slowed as they approach the horizon. In this way we continue to

see the person forever, but we know nothing about their fate past the horizon. Since the light

returns to us from a deeper and deeper gravitational well it appears increasingly red-shifted

to us.
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t* = v − r

r = 2GN M

r

Figure 20: The Finkelstein diagram in in-going coordinates. The ingoing null geodesics are

in red while the outgoing are in blue. Inside the horizon the outgoing geodesics never go past

the horizon.

Out-going Eddington–Finkelstein coordinates We can also extend the exterior of the

Schwarzschild black hole by replacing the time coordinate with the null coordinate

u = t− r∗ . (6.102)

Surfaces of constant u correspond to outgoing radial null geodesics. After the change of

coordinates we have

ds2 = −
(
1− 2GNM

r

)
du2 − 2dudr + r2ds2(S2) . (6.103)

This is the Schwarzschild solution in out-going Eddington–Finkelstein coordinates. The only

difference is in the sign of the cross term. This seemingly trivial modification changes the

interpretation drastically.

As before the metric is smooth at the horizon and we can continue the metric down to

the singularity at r = 0. However the region r < 2GNM now describes a different part of

spacetime from the analogous region in ingoing Eddington–Finkelstein coordinates.
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We again look at the ingoing and outgoing null radial geodesics. This time we pick

coordinates so that the outgoing geodesics travel at 45◦. This means that we take r and

t∗ = u+ r to be the axes.

t* = v − r

r = 2GN M

r

t* = u + r

r = 2GN M

r

Figure 21: The Finkelstein diagram in out-going coordinates. The ingoing null geodesics

are in red while the outgoing are in blue. Inside the horizon the ingoing geodesics never go

past the horizon.

This time the ingoing null geodesics have the interesting property. Those which start

outside are unable to reach the singularity, instead they pile up at the horizon. Those that

start behind the horizon move towards the horizon, once again piling up there. What hap-

pens to massive particles that sit inside the horizon? Their trajectories must lie inside the

future pointing light-cones. They cannot stay inside the horizon and the causal structure of

spacetime requires them to be ejected outside of the horizon. This is a white hole, an object

which expels matter. This is the time reversal of a black hole indeed the difference is purely

a minus sign. Moreover if we flip white-hole upside down we get the black hole.

White holes are perfectly acceptable solutions of general relativity. Indeed they are

implied by the time reversal invariance of Einstein’s equations. However white holes are not
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physically relevant since in contrast to a black hole they cannot be formed by collapsing

matter.

6.2.1 Kruskal spacetime

We have seen that we can extend the r ∈ (2GNM,∞) coordinate in two ways so that we

gain the region r ∈ (0, 2GNM ] which corresponds to two different parts of spacetime. We can

write the Schwarzschild metric using both null (u, v)-coordinates, the metric is

ds2 = −
(
1− 2GNM

r

)
dudv + r2ds2(S2) , (6.104)

where r is a function of u−v. In these coordinates the metric is again degenerate at r = 2GNM

so we need to perform another change of coordinates. We can introduce the Kruskal-Szekeres

coordinates,

U = − exp
(
− u

4GNM

)
, V = exp

( v

4GNM

)
. (6.105)

Both are null coordinates. The Schwarzschild black hole is parametrised by U < 0 and V > 0.

Outside the horizon they satisfy

UV = − exp
( r∗
2GNM

)
=

2GNM − r

2GNM
exp

( r

2GNM

)
, (6.106)

and similarly
U

V
= − exp

(
− t

2GNM

)
. (6.107)

The metric is then

ds2 = −32(GNM)3

r
e
− r
2GNM dUdV + r2ds2(S2) , (6.108)

with r(U, V ) defined by inverting (6.106). The original Schwarzschild metric covers just U < 0

and V > 0 however there is no obstruction to extending U, V ∈ R. Nothing bad happens at

r = 2GNM , the metric is smooth and non-degenerate. The Kruskal spacetime is the maximal

extension of the Schwarzschild solution.

The Kruskal Diagram To find the location of the horizon in the new coordinates we can

use equation (6.106). We see that this is at

r = 2GNM ⇒ U = 0 or V = 0 . (6.109)

The horizon is not just one null surface but 2 which intersect at U = V = 0. On the other

hand the singularity is at

r = 0 ⇒ UV = 1 . (6.110)
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This hyperbola has two disconnected, one with U, V > 0 and the other with U, V < 0. The

former corresponds to the singularity of the black hole and the latter the singularity of the

white hole, see figure 22 We can define T = 1
2(U + V ) and X = 1

2(V −U) as the vertical and

Figure 22: The Kruskal diagram. The U and V axes have been rotated 45◦. They are the

locations of the horizons at r = 2GNM and the red lines are the singularities at r = 0. Lines

of constant r are in green and lines of constant t are in blue.

horizontal lines respectively. Lines of constant r are given by UV =constant while lines of

constant t are U/V =constant.

We see that the singularity is spacelike. Once you pass through the horizon the singularity

lies in your future. You cannot avoid the singularity once you cross the horizon. Similarly

the singularity of the white hole lies in the past, one could think of this as the singularity of

the Big Bang.

We can understand three quadrants of the four. The right quadrant is the exterior of the

black hole, the top quadrant is the black hole interior and the bottom quadrant is the interior

of the white hole. The left hand quadrant is in fact another copy of the black hole exterior,
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it is just covered by U > 0 and V < 0. To see this write

U = +exp
(
− u

4GNM

)
, V = − exp

( v

4GNM

)
. (6.111)

Undoing all the coordinate transformations we see that this is precisely the metric of the

Schwarzschild solution again.

Our spacetime contains two asymptotically flat regions joined by a black hole. Note that

it is not possible for an observer to cross from one to the other, nor to send a signal from one

region to the other. The causal structure of spacetime forbids this.

One could ask what the spatial geometry that connects the two regions is. Fix the t = 0

slice of Kruskal spacetime (U = V = 0). In our original Schwarzschild solution the spatial

geometry is

ds2 =

(
1− 2GNM

r

)−1

dr2 + r2ds2(S2) , (6.112)

which is valid for r > 2GNM . There is another copy of this that describes the geometry of

the left-hand side and we can glue these two together at r = 2GNM , giving a worm-hole

like geometry. This is known as the Einstein–Rosen bridge. Before getting excited about

travelling through the black hole you cannot travel through the worm-hole as the paths are

space-like not time-like.

7 Cosmology

We have only considered one solution of Einstein’s equations so far in these lectures, we will

consider another which describes the evolution of the universe. The basic idea behind this

model is that the universe is pretty much the same everywhere. Since we inhabit an orbit

close, in cosmological terms, to a star we do not see the similarity between our situation

and the desolate cold of deep space and this assumption may seem somewhat crazy. This

assumption is applied to the very largest scales, where local variations in density are averaged

over. There are a number of observations which support this assumption. The most clear way

of seeing this is by looking at the Cosmic Background Radiation (CMB), see figure 23. The

microwave background radiation is not perfectly smooth but the deviations from regularity

are of the order 10−15 or less. The radiation is consistent with that of a blackbody spectrum

radiated in all directions. The spectrum has been redshifted due to the expansion of the

universe and today the average temperature is 2.725K.
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Figure 23: The anisotropies of the CMB as observed by Planck. It is a snapshot of the

oldest light in the universe, coming from when the universe was just 380000 years old. It

shows tiny temperature fluctuations that correspond to regions of slightly different densities

and it is these regions which were the seeds for the stars and galaxies we see today. (Credit

ESA for the picture).

7.1 FRW metric

We want to formalise this notion of the same everywhere in a more mathematical way. A

manifold may have the properties of being isotropic and/or homogeneous: these are the

necessary mathematical concepts which formalise our “same in every direction” comment.

Homogeneous A spacetime is spatially homogeneous if there exist a one-parameter family

of space-like hypersurfaces Σt foliating spacetime, such that for each t and for any points

p, q ∈ Σt there exists an isometry of the spacetime metric gµν which takes p into q.

Isotropic A spacetime is isotropic at the point p if, for each pair of unit tangent vectors

X,Y ∈ Tp(M) there is an isometry which maps X to Y .

A spacetime can be isotropic around a point without being homogeneous. Conversely a

spacetime can be homogenous without being isotropic (R × S2 for example). If, however, a

spacetime is isotropic around every point then it is homogeneous. Likewise if it is isotropic

around any point, and homogeneous then it is isotropic everywhere.

Since there is ample observational data for isotropy (recall this is data about a point) and

we are not so self-centred to think we are the centre of the universe we should assume that it

is also homogeneous. The utility of these assumptions relies on the fact that a space which is

both isotropic and homogeneous is maximally symmetric. (Think of isotropy as generalised

rotations and homogeneity as generalised translations). This implies that the space has the
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maximal number of Killing vectors. Now spacetime itself should not be maximally symmetric,

we want it to evolve, instead we want spatial slices to be maximally symmetric.

For a maximally symmetric space with metric gµν the Riemann tensor takes the form

Rµνρσ = κ(gµρgνσ − gµσgνρ) , (7.1)

where κ is a normalised measure of the Ricci scalar

κ =
R

n(n− 1)
, (7.2)

which must be constant. These spaces are classified and for us the difference will arise in the

sign of κ, either positive, negative or 0. We will consider our spacetime to be of the form

R× Σ with metric

ds2 = −dt2 + a2(t)ds2(Σ) , (7.3)

with t a time-like coordinate and a(t) a function known as the scale factor. The metric used

here which is free of cross terms with dt is known as co-moving coordinates. An observer who

stays at fixed coordinate in Σ is said to be a comoving observer. Only a comoving observer

sees the universe as isotropic. On Earth we are not quite comoving due to our motion around

the sun.

We want a maximally symmetric 3d space, we can write the metric in the form

ds2(Σ) =
dr2

1− kr2
+ r2

(
dθ2 + sin2 θdϕ2

)
, (7.4)

with k = {−1, 0,+1}.25 The case k = −1 gives a constant negative curvature metric and is

sometimes called open. The k = 0 case corresponds to no curvature on Σ and is sometimes

called flat, while the case k = +1 corresponds to positive curvature and is sometimes called

closed. Note that the k = 1 case is the only one which is compact (unless one makes certain

identifications of the coordinates). We then have the metric

ds2 = −dt2 + a2(t)
[ dr2

1− kr2
+ r2

(
dθ2 + sin2 θdϕ2

)]
. (7.5)

This is the Friedmann–Robertson–Walker metric (FRW).

To understand why a(t) is called a scale factor consider the distance between two ob-

servers, one at r = 0 and another at r = r0. Then the spatial distance between them is

dprop =

∫ r0

0

√
grrdr = a(t)

∫ r0

0

dr√
1− kr2

≡ a(t)f(r0) . (7.6)

25Different values can be reduced to one of these three cases by redefining the radial coordinate r.
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We see that the distance depends on the scale factor. We can look at the relative speed at

which distance is changing with respect to time, we have

ḋprop(t) = ȧ(t)f(r0) =
ȧ

a
dprop(t) ≡ H(t)dprop(t) , (7.7)

with

H(t) =
ȧ(t)

a(t)
, (7.8)

the Hubble parameter. The value of the Hubble parameter at present is the Hubble constant

H0. Current measurements give H0 = 70 ± 10 km/sec/Mpc. (Mpc is a megaparsec, ∼
3.09× 1022m). Cosmology took off as a subject when the relative motions of the galaxies was

first measured. We cannot actually determine the relative velocities of the galaxies now, i.e.

at the same cosmological time, since we only have information about them at the time that

the light left them. We are therefore not deducing a(t) as it is now but rather as it was in

the past. By looking at galaxies further away we can deduce the past history of a(t).

7.1.1 Cosmological red-shift

Cosmological red-shift has a different origin to the gravitational red-shift we saw previously,

however we can work it out in a similar manner. Assume that the light reaching us is on

purely radial geodesics. Then we have

0 = −dt2 +
a(t)2

1− kt2
dr2 , (7.9)

and therefore
dt

a(t)
= − dr√

1− kr2
, (7.10)

where we picked the − sign for the incoming radial geodesic (paths of decreasing r). The

time emission t1 and reception t0 of the photon are given by∫ t1

t0

dt

a(t)
= −

∫ 0

r0

dr√
1− kr2

≡ f(r0) . (7.11)

Suppose that the next wave crest is emitted at time t1 + δt1 and received at t0 + δt0. Then

since t is the proper time of stationary observers δt1 = ω−1
1 and δt0 = ω−1

0 , with ωi the

frequency. Since the second photon leaves from r0 and arrives at r = 0 it must also satisfy∫ t0+δt0

t1+δt1

dt

a(t)
= f(r0) . (7.12)

If δti are small then

f(r0) =

∫ t0+δt0

t1+δt1

dt

a(t)
=

(∫ t0

t1

+

∫ t0+δt0

t0

−
∫ t1+δt1

t1

)
dt

a(t)
∼
∫ t0

t1

dt

a(t)
+

δt0
a(t0)

− δt1
a(t1)
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= f(r0) +
δt0
a(t0)

− δt1
a(t1)

. (7.13)

Therefore we have
δt0
a(t0)

∼ δt1
a(t1)

⇒ ω0 ∼
a(t1)

a(t0)
ω1 . (7.14)

The change in frequency is directly given by the ratio of the scale factors from when the

light was emitted and when the light was received. The standard cosmologists definition of

red-shift is through

z =
ω1

ω0
− 1 =

a(t0)

a(t1)
− 1 . (7.15)

Red shift is a direct measure of the change in separation of galaxies during the time the

photon has taken to reach us. If a galaxy is at redshift 5 for example then it is 6 times further

away than when the photon was emitted. Red shift does not give any direct information

about the distance of the source, nor does it need to be faithful indicator of distance. Sources

at different distances can have the same or similar red-shifts. If there was a period of time

where the scale factor was essentially constant then any photons emitted during this period

would appear to have the same red-shift. Similarly if there was a period of the scale factor

decreasing then increasing again then sources at very different distances could give the same

red-shift factor.

7.2 The Friedmann equations

Note that the Christoffel symbol Γi
tt = 0 and therefore the paths x⃗ =const are geodesics.

The role of a(t) is to change distances over time. There is a redundancy in the metric. If we

rescale the coordinates as a → λa, r → λ and k → λ−2k we leave the metric invariant. Of

course now we are no longer fixed to take k ∈ {−1, 0, 1}. The non-zero components of the

Ricci tensor are

Rtt = −3
ä

a
,

Rrr =
aä+ 2ȧ2 + 2κ

1− kr2
,

Rθθ = r2(aä+ 2ȧ2 + 2κ) ,

Rϕϕ = r2 sin2 θ(aä+ 2ȧ2 + 2κ) . (7.16)

It follows that the Ricci scalar is then

R = 6

[
ä

a
+
( ȧ
a

)2
+

κ

a2

]
. (7.17)
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The FRW metric is determined by the behaviour of a(t). We want to plug this into

Einstein’s equations to derive the so called Friedmann equations which relates the scale factor

to the energy-momentum of the universe. We choose to model the matter as a perfect fluid.

If a fluid is isotropic in one frame and leads to an isotropic metric then it must be that the

fluid is a rest in co-moving coordinates. The four-velocity is then

Uµ = (1, 0, 0, 0) , (7.18)

and the energy momentum tensor is

Tµν = (ρ+ p)UµUν + pgµν . (7.19)

With one index raised this becomes

Tµ
ν = diag(−ρ, p, p, p) , (7.20)

and the trace is

T = Tµ
µ = −ρ+ 3p . (7.21)

Before plugging into Einstein’s equations it is useful to consider the conservation of the

energy momentum tensor, in particular for the first component. We have

0 = ∇µT
µ
0

= −ρ̇− 3
ȧ

a
(ρ+ p) . (7.22)

7.2.1 Equation of state

To make progress we choose an equation of state, that is a relationship between p and ρ. The

perfect fluids relevant to cosmology satisfy

p = wρ , (7.23)

with w a constant independent of time. The conservation of energy becomes

ρ̇

ρ
= −3(1 + w)

ȧ

a
. (7.24)

When w is constant this can be integrated to give

ρ ∝ a−3(1+w) . (7.25)

For the vacuum to be stable26 we need to pick |w| ≤ 1. The two most popular cosmological

fluids are known as matter and radiation.
26This is beyond the scope of the course but one can read about this in Carroll chapter 4.
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Matter is any set of collision-less non-relativistic particles which have zero pressure pM =

0, i.e. w = 0. Examples include stars and galaxies for which the pressure is negligible. Matter

also goes by the name of dust and universe whose energy density is mostly due to matter are

known as matter-dominated universes. The energy density of matter falls off as

ρM ∝ a−3 , (7.26)

which is just interpreted as the decrease in number density of particles as the universe expands.

For matter the energy density is dominated by the rest-energy which is proportional to the

number density.

Radiation may be used to describe actual electromagnetic radiation or massive particles

moving at relativistic velocities, close to the speed of light. The trace of the energy-momentum

tensor of the electromagnetic field vanishes and therefore this fixes

pR =
1

3
ρR ⇒ w =

1

3
. (7.27)

In a radiation dominated universe the energy density falls off as

ρR ∝ a−4 . (7.28)

Thus the energy density of photons falls off slightly faster than that of matter. To understand

why observe that the number density of photons decreases in the same way as for the slow

moving massive particles, but in addition they lose energy due to cosmological red-shift of

the previous section. When a is small radiation will dominate, while as a increases dust will

dominate.

Vacuum energy also takes the form of a perfect fluid, that is a cosmological constant. In

this case pΛ = −ρΛ and the energy density is constant,

ρΛ ∝ a0 . (7.29)

Since the energy density of both matter and radiation decreases as the universe expands if

there is a non-zero vacuum energy it tends to dominate over the long term so long as the

universe does not start contracting. If the vacuum energy begins to dominate then we say

that the universe becomes vacuum-dominated. Examples of this are the maximal symmetric

spaces de Sitter and anti-de Sitter.

7.2.2 Deriving the Friedmann equations

We can now substitute this into the Einstein equations

Rµν −
1

2
Rgµν − Λgµν = 8πGNTµν . (7.30)

127



The µν = 00 components give

3ȧ2

a2
+

3k

a2
− Λ = 8πGNρ, , (7.31)

while the µν = ij components give

2ä

a
+
( ȧ
a

)2
+

k

a2
− Λ = −8πGNp . (7.32)

There is only one distinct condition from the spatial part because of our isotropic assumption.

From a linear combination of the two equations we find

ä

a
=

Λ

3
− 4πGN

3
(ρ+ 3p) . (7.33)

Note that the conservation of the energy momentum tensor,

ρ̇+ 3
ȧ

a
(ρ+ p) = 0 , (7.34)

can be obtained from these two equations.

Equations (7.31) and (7.33) are known as the Friedmann equations and metrics of the

form (7.5) satisfying these equations are FRW universes. If we know the dependence of ρ on

a then the first can be solved.

7.3 Cosmological solutions

Let us consider some solutions. Before trying to solve anything let us analyse the behaviour

of the function. With our equation of state the Friedmann equation becomes

ȧ2 =
Λa2

3
− k +

8πGN

3
ρa2

=
Λa2

3
− k +

C

a1+3w
, (7.35)

where C is a constant such that 8πGNρ = Ca−3(1+w).

We now want to analyse the form of a(t). Note that qualitatively there is very little

difference between dust and radiation, radiation is a little more dominant for small a but

otherwise the overall structure is the same.

• For small a ȧ2 is dominated by the term Ca−3(1+w) and therefore |ȧ| → ∞ as a → 0.

This is then a period of rapid expansion or contraction. We have

ȧ2 ∼ a−3(1+w) , ⇒ ȧ ∼ ±
√
Ca−

1+3w
2 , (7.36)
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which can be solved to give

a(t) ∼ constant|t|
2

3(1+w) . (7.37)

In both cases a(t) will expand from zero to finite size, or collapse from finite size to 0

in finite time.

• For large a the behaviour depends on the sign of Λ and if this vanishes then on k.

We can now consider in more detail various cases.

7.3.1 Solutions with k = 0

Let us set k = 0. This is the most likely value for the current universe.

We can now distinguish the different behaviours depending on the sign of Λ, see figure

24.

a(t)

·a2 Λ > 0

Λ = 0

Λ < 0

Figure 24: A plot of ȧ2 for k = 0. Note the unphysical region for Λ < 0.

Λ > 0 For Λ > 0 ȧ2 is never negative and therefore ȧ must always be positive or negative. For

ȧ > 0 a starts off small with a rapid expansion which slows down to a minimum rate of

expansion and then the rate of expansion increases again. See figure 25a.

For ȧ < 0 then the evolution is the opposite. a starts off large, collapsing quickly before

the rate of collapse slows to a minimum before speeding up once again until the universe

collapses again. See figure 25b.
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Λ = 0 As before ȧ2 is always positive so ȧ cannot change sign. For ȧ > 0 the universe starts

off at zero size expands rapidly before the rate of expansion decreases, tending to zero

but never reaching it. The opposite sign for ȧ is the time reversal of this. See figure

25c.

Λ < 0 In this case there is a critical value a = ac wt which ȧ = 0. One can show that at this

point ä < 0 and therefore if a is initially increasing it slows until it reaches ac and then

starts to decrease. The universe begins expanding before reaching a critical size before

contracting again, all in finite time. See figure 25d.

 

a(t)

·a2 Λ > 0

Λ = 0

Λ < 0

t

a(t)

t

a(t)
(a) For Λ > 0 with an initial increasing

scale factor.

 

a(t)

·a2 Λ > 0

Λ = 0

Λ < 0

t

a(t)

t

a(t)

(b) For Λ > 0 with an initial decreasing scale factor. 

t

a(t)

t

a(t)

(c) For Λ = 0 with an initial increasing

scale factor.

 

t

a(t)

t

a(t)

(d) For Λ < 0, notice that the universe ends in a

big crunch.

Figure 25: various plots of the scale factor for k = 0 and different choices of the cosmological

constant.

We can in fact explicitly solve for a(t). For dust, w = 0 we find

a(t) =



(
3C
Λ

)1/3
sinh2/3

(√
3Λ
2 t

)
Λ > 0 ,(

3
√
C

2

)2/3
t2/3 Λ = 0 ,(

− 3C
Λ

)1/3
sin2/3

(√
−3Λ
2 t

)
Λ < 0 .

(7.38)
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For radiation, w = 1
3 we have

a(t) =



(
3C
Λ

)1/4
sinh1/2

(√
3Λ
2 t

)
Λ > 0 ,√

2
√
Ct1/2 Λ = 0 ,(

− 3C
Λ

)1/4
sin1/2

(√
−3Λ
2 t

)
Λ < 0 .

(7.39)

7.3.2 Solutions with Λ = 0

We can now consider keeping k free, (well we can arrange for k ∈ {−1, 0, 1} without loss of

generality) and set the cosmological constant to vanish. We can again plot the qualitative

features of a(t).

• We have that for k = 1 there is a maximum value of a for which ȧ2 is positive or zero

and so we end up with an initial phase of expansion before reaching the critical value

and then a subsequent contraction.

• If k = 0 or k = −1 then the universe continues to expand, but at different rates. For

a→ ∞ we have that when k = −1 we have ȧ2 → 1 while for k = 0 we have ȧ→ 0.

We have plotted ȧ2 in figure 26a while a is plotted in figure 26b.

 

t

a(t)

k = 1

k = 0
k = − 1

a(t)

·a2(t)

k = 1

k = 0

k = − 1

(a) Plot of ȧ2 as a function of a(t).

 

t

a(t)

k = 1

k = 0
k = − 1

a(t)

·a2(t)

k = 1

k = 0

k = − 1

(b) Plot of a as a function of t for the various choices

of k.

One can again find full solutions to these equations however they are somewhat tedious

to work out and best expressed in terms as parametric functions, for this reason we omit this.

7.3.3 The Big Bang

All of the solutions we have constructed have a region where a = 0. One can show that this

is a generic feature of the Friedmann equations. From (7.33) we see that if the matter obeys

the strong energy condition

ρ+ 3p ≥ 0 , (7.40)
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then there is a singularity at a finite time tBB where a(tBB) = 0. This follows since the

acceleration is necessarily negative. The universe is therefore decelerating, meaning it must

have been accelerating faster at some point. If ä = 0 then a(t) = H0t+ const.

Suppose that ä = 0, then a(t) = H0t+ const. This is the dotted line shown in figure 27.

If this is the case then the Big bang occurs at t0 − tBB = H−1
0 . The strong energy condition

ensures that ä ≤ 0 and so the dashed line provides an upper bound on the scale factor. In

such a universe the Big Bang must occur at t0 − tBB ≤ H−1
0 .

t0
t

a(t)

H−10

tBB

Figure 27: A plot of the scale factor showing the inevitability of the Big Bang.

The Big Bang refers to the creation of the universe from a singular state, not an explosion

of matter into a pre-existing spacetime. One may wonder whether this singularity is an

artefact of our choice of initial assumptions however it has been shown (by Hawking in his

PhD thesis) that a singularity is a necessity even in the absence of such assumptions, given

the strong energy condition.

The strong energy condition is obeyed by all conventional matter, including dust and

radiation. However there are substances which violate it, leading to an accelerating universe.

The single component pieces above still have a big bang however the above argument cannot

rule out the possibility of more complicated solutions which avoid the Big Bang. In fact the

leading theory at the moment is that in the very first moments after the Big Bang there was

a period of exponential expansion.
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All of the cosmological models we use predict a time in the past where the scale factor

vanishes. The Big bang is a point in time not in space, it happens everywhere in space. We

can get an estimate for the age of the universe by Taylor expanding a(t) and truncating to

linear order. Recall that we fixed a(t0) = 1 then

a(t) ∼ 1 +H0(t− t0) . (7.41)

This gives the estimate

t0 − tBB = H−1
0 ∼ 4.4× 1017s ∼ 1.4× 1010 years . (7.42)

This is close to the 13.8 billion years which is widely accepted to be the age of the universe.

Strictly speaking we should not trust the solution at a(tBB) = 0 since the metric is singular

there. Any matter in the universe will be squeezed into an infinite density object. In such

a regime our classical equations are no longer any good and we need a quantum theory of

gravity. Despite much effort such a theory of quantum gravity is lacking and so we are

unable to answer many questions. Did time begin at tBB? Was there a previous phase of a

contracting universe and we are another bounce?

7.3.4 Cosmological horizon

The existence of a special time tBB means that there is a limit as to how far back we can

look into the past. Let us set tBB = 0 in the following.

The speed of light sets an upper bound on the local propagation velocity of any signal so

at a given time t an observer at r = 0 can receive signals emitted at time t1 only from radial

coordinates r < r1 where r1 is the radial coordinate from which light signals emitted at time

t1 would just reach r = 0 at time t. We can determine r1 as∫ r1

0

dr√
1− kr2

=

∫ t

t1

dt′

a(t′)
. (7.43)

If the t′ integral diverges as t1 → 0 then it is in principle possible to receive signals emitted

at sufficiently early times from any comoving particle in the universe. On the other hand if

the t′-integral converges at t1 → 0 then our vision is limited by a so-called particle horizon:

it is possible to receive signals from a comoving particles that lie within the radial coordinate

rH(t) defined by ∫ rH(t)

0

dr√
1− kr2

=

∫ t

t1

dt′

a(t′)
. (7.44)
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The proper distance is

dH(t) = a(t)

∫ rH(t)

0

dr√
1− kr2

= a(t)

∫ t

t1

dt′

a(t′)
. (7.45)

From (7.31) if ρ grows faster than a−2−ϵ as a→ 0 then there will be a particle horizon.

We can play a similar game and ask if there are regions we will never see even if we wait

long enough. If the t′ integral diverges as t → ∞ then in principle it is possible to receive

signals from any event in the universe if we wait long enough. On the other hand if this is

finite then it is only possible to receive signals for which∫ r1

0

dr√
1− kr2

≤
∫ tmax

t1

dt′

a(t′)
. (7.46)

Here tmax can either be ∞ or the value of the next contraction to a(tmax) = 0. This is known

as an event horizon. It behaves in a similar way to falling inside the event horizon of a black

hole, we will never be able to communicate with someone beyond the even-horizon.

This leads to some problems. We have assumed an isotropic universe, this is despite

widely separated points being completely outside the event horizon of other points. Distinct

patches of the CMB sky were causally disconnected. How then did they know ahead of time

to coordinate their evolution (so that the CMB background looks isotropic) in the right way

even though they were never in causal contact? One way of fixing this is by considering a

period of inflation: an era of acceleration ä > 0 in the very early universe, which is driven by

some component other than matter or radiation.
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