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What is this course about?

We will be concerned with linear elliptic equations of the form

Lu := −∂i(aij∂ju) + l .o.t. = f in Ω. (†)

? Ω: a domain in Rn,
? u : Ω→ R is the unknown,
? f : Ω→ R is a given source,
? aij : Ω→ R are given coefficients with aij = aji .
? repeated indices are summed from 1 to n, i.e.

∂i (aij∂ju) =
n∑

i ,j=1

∂i (aij∂ju).

Linearity: L is linear in the sense that L(αu + v) = αLu + Lv .

Ellipticity: L is elliptic in the sense that the coefficient matrix
(aij)

n
i ,j=1 is positive definite.

Boundary condition: ignored at the moment.
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What is this course about?

Lu := −∂i(aij∂ju) + l .o.t. = f in Ω. (†)

We will deal with the functional analytic aspects of (†):

? In what functional space should one look for the solutions u?
? In what functional space should one give the sources f ?
? In those spaces, is (†) solvable?
? In those spaces, what other properties of solutions does one

have?

We will NOT be concerned with

? Solving for solutions of (†) in closed form.
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Example 1: The Poisson equation in 2D

−∆u := −∂2
xu − ∂2

yu = f in the unit disk D ⊂ R2. (?)

Classical solutions:

? u ∈ C 2(D): u has continuous second derivative in D.
? f ∈ C (D): f is continuous in D.
? ∆ : C 2(D)→ C (D).
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Example 1: The Poisson equation in 2D

−∆u := −∂2
xu − ∂2

yu = f in the unit disk D ⊂ R2. (?)

Issue 1: Non-existence. The Poisson equation (?) has no
classical solutions for some f ∈ C (D) , e.g.

f (x , y) =
x2 − y 2

x2 + y 2

5− 4 log(x2 + y 2)

(1− log(x2 + y 2))3/2
.

For this function f , all ‘reasonable’ solutions are of the form

u(x , y) = (x2 − y 2)(1− log(x2 + y 2))1/2 + an analytic function.

These do not have continuous second derivative at (0, 0).
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Example 1: The Poisson equation in 2D

−∆u := −∂2
xu − ∂2

yu = f in the unit disk D ⊂ R2. (?)

Issue 2: In some applications, such as heat or electricity
conduction on a plate, the source f is not continuous. For
example, heat may be supplied only on part of the plate D. In
such cases, f is at best piecewise continuous. Naturally the
solutions u are no longer in C 2.
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Example 2: An equation from material sciences

Lu := −div(a∇u) = f in Ω ⊂ R3. (??)

A composite material occupies a region Ω = Ω1 ∪ Ω2, where
each subregion models a different constituent material. The
coefficient a thus assumes different values on these subregions,
say

a(x) =

{
1 if x ∈ Ω1,
k 6= 1 if x ∈ Ω2.

Ω1

a = 1

Ω2

a = k 6= 1
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Example 2: An equation from material sciences

Lu := −div(a∇u) = f in Ω ⊂ R3. (??)

Ω1

a = 1

Ω2

a = k 6= 1

Issue 1: As a is discontinuous, IF u is smooth, the vector a∇u
does not have to be continuous and thus the meaning of
div(a∇u) is not clear.

Issue 2: If we instead requires that a∇u be continuous, then ∇u
may be discontinuous, and so u may not be twice differentiable.
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Conclusion

Lu := −∂i(aij∂ju) + l .o.t. = f in Ω. (†)

There is a need to consider (generalised/weak) solutions which
are not twice differentiable.

There is a need to consider functions whose (generalised/weak)
derivatives are discontinuous.

GOAL: Treat (†) in Sobolev spaces W 1,p, i.e. space of functions
which has first derivatives belonging to Lp.

Agenda: Lp spaces  W 1,p spaces  Treatment of (†).
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Tentative plan

Lebesgue spaces (Chapter 1): Lectures 1-4

Sobolev spaces (Chapter 2): Lectures 5-7.

Embedding theorems (Chapter 3): Lecture 8-10.

Linear elliptic equations in divergence form (Chapter 4): Lecture
11-16.
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General expectation

This course warms up rather casually with Lp theory which many
of you are familiar with if you took Part A integration or the
equivalence elsewhere, but the pace picks up quickly around end
of W3 onwards. I’ll try to be as inclusive as possible.

Do read ahead the lecture notes.

Though most of the materials in the lecture notes will be
discussed in lectures, I may decide occasionally to go over
certain topics rather briefly and use the lecture time to discuss
something else which is not in the lecture notes. Those either
complement what’s in the lecture notes, or along the line of
exam questions, etc.

It’s highly recommended to consult the various texts given in the
lecture notes.
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Outline for the rest of the lecture

Definition of Lebesgue spaces Lp(E ).

Hölder’s and Minkowski’s inequalities.

Completeness of Lebesgue spaces – Riesz-Fischer’s theorem.

Converse to Hölder’s inequality.

Duals of Lebesgue spaces.

L2 as a Hilbert space.

Density of simple functions for Lebesgue spaces.

Separability of Lebesgue spaces.
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Lebesgue spaces Lp(E ) with 1 ≤ p <∞

E : a measurable subset of Rn,

1 ≤ p <∞, define

Lp(E ) =
{
f : E → R

∣∣ f is measurable on E

and

∫
E

|f |p dx <∞
}
.

Define Lp(E ) as Lp(E )/ ∼ where

f ∼ g if f = g a.e. in E .
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Lebesgue spaces L∞(E )

E : a measurable subset of Rn,

For a measurable f : E → R, define the essential supremum of f
on E by

ess sup
E

f = inf{c > 0 : f ≤ c a.e. in E}.

When ess supE |f | <∞, we say f is essentially bounded on E .

L∞(E ) is defined as the set of all essentially bounded
measurable functions on E .

L∞(E ) is defined as L∞(E )/ ∼.
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Some conventions

Unless otherwise stated, our functions are real-valued.

When E is clear, we will simply write Lp in place of Lp(E ).

For simplicity, we will frequently refer to elements of Lp(E ) as
functions rather than equivalent classes of functions. When
there is a need to speak of a representative in an equivalent class
of functions, we will make it clear.

We will use Lploc(E ) to refer to the set of functions f such that,
for every compact subset K of E , the restriction of f to K
belongs to Lp(K ).
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Lp(E ) is a normed vector space for 1 ≤ p ≤ ∞

The following results were proven in Integration:

The space Lp(E ) is a vector space.

If we define

‖f ‖Lp(E) =
{∫

E

|f |p dx
}1/p

for 1 ≤ p <∞,

and
‖f ‖L∞(E) = ess sup

E
|f |,

then Lp(E ) is a normed vector space with these norms for
1 ≤ p ≤ ∞.
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Recap

Recall that (X , ‖ · ‖) is a normed vector space if

? X is a vector space

? ‖ · ‖ maps X into [0,∞) and satisfies

. ‖x‖ = 0 if and only if x = 0.

. ‖λx‖ = |λ|‖x‖ for all λ ∈ R, x ∈ X .

. ‖x + y‖ ≤ ‖x‖+ ‖y‖ for all x , y ∈ X .
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Lp(E ) is a normed vector space for 1 ≤ p ≤ ∞

The following results were proven in Integration:

In particular, we have

Theorem (Minkowski’s inequality)

If 1 ≤ p ≤ ∞, then ‖f + g‖Lp(E) ≤ ‖f ‖Lp(E) + ‖g‖Lp(E).

The proof of the above uses the following important inequality:

Theorem (Hölder’s inequality)

If 1 ≤ p, p′ ≤ ∞ are such that 1
p

+ 1
p′

= 1, then

‖fg‖L1(E) ≤ ‖f ‖Lp(E)‖g‖Lp′ (E).
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Lp(E ) is a Banach space 1 ≤ p ≤ ∞

The following result was touched upon in Integration:

Theorem (Riesz-Fischer’s theorem)

If 1 ≤ p ≤ ∞, then Lp(E ) is a Banach space with norm ‖ · ‖Lp(E).

Recall that a normed vector space is a Banach space if it is complete
with respect to its norm, i.e. all Cauchy sequences converge.
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Proof of Riesz-Fischer’s theorem

Suppose that (fk) is a Cauchy sequence in Lp. We need to show
that fk converges in Lp to some f ∈ Lp.

Case 1: p =∞.

? For every k ,m, there exists a set Zk,m of zero measure such that

|fk − fm| ≤ ‖fk − fm‖L∞ in E \ Zk,m.

? Let Z = ∪k,mZk,m. Then Z has zero measure and

|fk − fm| ≤ ‖fk − fm‖L∞ in E \ Z for all k and m.

? So fk converges uniformly in E \ Z to some measurable function
f : E \ Z → R. Extend f to all of E by letting f = 0 in Z .
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Proof of Riesz-Fischer’s theorem

Case 1: p =∞...

? So fk converges uniformly in E \ Z to some measurable function
f : E \ Z → R. Extend f to all of E by letting f = 0 in Z .

? Now, for any k , we have

|fk − f | ≤ sup
m≥k
‖fk − fm‖L∞ in E \ Z .

? As Z has measure zero, this means

‖fk − f ‖L∞ ≤ sup
m≥k
‖fk − fm‖L∞ .

? Since fk ∈ L∞, it follows from Minkowski’s inequality that
f ∈ L∞. Also, sending k →∞ in the above inequality also
shows that ‖fk − f ‖L∞ → 0, i.e. fk converges to f in L∞.
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Proof of Riesz-Fischer’s theorem

Case 2: 1 ≤ p <∞.

? We have

|{x ∈ E : |fk(x)− fm(x)| > ε}| ≤ 1

εp

∫
E
|fk(x)− fm(x)|p

=
1

εp
‖fk(x)− fm(x)‖pLp

k,m→∞−→ 0.

This means that the sequence (fk) is Cauchy in measure.
? A result from Integration then asserts that (fk) converges in

measure, and hence it has a subsequence, say (fkj ), which
converges a.e. in E to some function f . To conclude, we show
that f ∈ Lp and fk → f in Lp.
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Proof of Riesz-Fischer’s theorem

Case 2: 1 ≤ p <∞...

? Fix some δ > 0, then, for large k and j ,∫
E
|fkj − fk |p dx = ‖fkj − fk‖pLp ≤ δ

p.

? Sending j →∞ and using Fatou’s lemma, we get∫
E
|f − fk |p dx ≤ lim inf

j→∞

∫
E
|fkj − fk |p dx ≤ δp.

? So we have ‖f − fk‖Lp ≤ δ for large k . By Minkowski’s
inequality, this implies that f ∈ Lp. As δ is arbitrary, this also
gives fk → f in Lp, as desired.
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Dual space of Lp(E )

Recall that for a (real) normed vector space X , the dual of X ,
denoted as X ∗, is the Banach space of bounded linear functional
T : X → R, equipped with the dual norm

‖T‖∗ = sup
‖x‖≤1

‖Tx‖.

Theorem (Riesz’ representation theorem)

Let E be measurable, 1 ≤ p <∞ and p′ = p
p−1

. Then there is an

isometric isomorphism π : (Lp(E ))∗ → Lp
′
(E ) such that

Tg =

∫
E

π(T )g dx for all g ∈ Lp(E ) and T ∈ (Lp(E ))∗.
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Dual space of Lp(E )

Theorem (Riesz’ representation theorem)

Let E be measurable, 1 ≤ p <∞ and p′ = p
p−1

. Then there is an

isometric isomorphism π : (Lp(E ))∗ → Lp
′
(E ) such that

Tg =

∫
E

π(T )g dx for all g ∈ Lp(E ) and T ∈ (Lp(E ))∗.

Note the similarity of the above and Riesz’ representation
theorem for Hilbert spaces. In particular, observe the connection
when p = 2.
The theorem is false for p =∞. The dual of L∞(E ) is
strictly bigger than L1(E ). In other words, there exists a linear
functional T on L∞(E ) for which there is no f ∈ L1(E ) satisfying

Tg =

∫
E

fg dx for all g ∈ L∞(E ).
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(L∞(R))∗ 6= L1(R)
Recall that for a (real) normed vector space X , the dual of X ,
denoted as X ∗, is the Banach space of bounded linear functional
T : X → R, equipped with the dual norm

‖T‖∗ = sup ‖Tx‖.

(Lp(E ))∗ = Lp
′
(E ) for 1 ≤ p <∞.

Consider p =∞. Let Tk ∈ (L∞(R))∗ given by Tkg = 1
k

∫ k

0
g dx .

Then, for every g ∈ L∞(R), (Tkg) ∈ `∞.

Let L ∈ (`∞)∗ be such that

L((xk)) = lim
k→∞

xk provided (xk) is convergent.

Such L exists by the Hahn-Banach theorem.

Define Tg = L((Tkg)) for all g ∈ L∞(R). It is easy to check
that T ∈ (L∞(R))∗.
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(L∞(R))∗ 6= L1(R)
We claim that there is no f ∈ L1(R) such that

Tg =

∫
R
fg dx for all g ∈ L∞(R).

Suppose by contradiction that such f exists. Fix some m > 0
and let g1(x) = sign(f (x))χ(0,m)(x). Then, as |g1| ≤ χ(0,m), we
have for k > m that |Tkg1| ≤ m

k
. It follows that∫ m

0

|f | dx = Tg1 = L((Tkg1)) = lim
k→∞

m

k
= 0.

As m is arbitrary, we thus have f = 0 a.e. in (0,∞).

On the other hand, with g2 = χ(0,∞), we have Tkg2 = 1 and so

0 =

∫ ∞
0

f dx = Tg2 = L((Tkg2)) = lim
k→∞

1 = 1,

which is absurd.
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Converse to Hölder’s inequality

Proposition (Converse to Hölder’s inequality)

Let E be measurable, and f be measurable on E . If 1 ≤ p ≤ ∞ and
1
p

+ 1
p′

= 1, then

‖f ‖Lp(E) = sup
{∫

E

fg dx : g ∈ Lp
′
(E ), ‖g‖Lp′ (E) ≤ 1

and fg is integrable on E
}
.

Note: We do not presume that f ∈ Lp(E ).
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Proof of Converse to Hölder’s inequality

Will only present the case 1 < p <∞. The cases p = 1 and
p =∞ need some justification; see notes.

Let

α = sup
{∫

E

fg dx : ‖g‖Lp′ ≤ 1, fg ∈ L1(E )
}
∈ [0,∞].

By Hölder’s inequality, we have α ≤ ‖f ‖Lp . So it suffices to
show α ≥ ‖f ‖Lp .

If ‖f ‖Lp = 0, we are done. Assume henceforth that ‖f ‖Lp > 0.
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Proof of Converse to Hölder’s inequality

Case 1: 0 < ‖f ‖Lp <∞.
In this case, we test the definition of α using

g0(x) =
sign(f (x))|f (x)|p−1

‖f ‖p−1
Lp

.

? We have, as p′ = p
p−1 ,∫

E
|g0|p

′
dx =

1

‖f ‖pLp

∫
E
|f |p dx = 1.

? Next, ∫
E
|f | |g0| dx =

1

‖f ‖p−1
Lp

∫
E
|f |p dx <∞.

? So by the definition of α,

α ≥
∫
E
f g0 dx =

1

‖f ‖p−1
Lp

∫
E
|f |p dx = ‖f ‖Lp .
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Proof of Converse to Hölder’s inequality

Case 2: ‖f ‖Lp =∞.
In this case, we need to show that α =∞.
? Consider a truncation of |f | given by

fk(x) =

{
min(|f |(x), k) if x ∈ E and |x | ≤ k ,
0 otherwise.

Note that we are truncating both in the domain and in the
range: fk(x) = min(|f |(x), k)χE∩{|x |≤k}(x).

? It is clear that fk ∈ Lp(E ). Also, by Lebesgue’s monotone
convergence theorem,

‖fk‖pLp =

∫
E
|fk |p dx →

∫
E
|f |p dx =∞.

In addition, by Case 1,

‖fk‖Lp = sup
{∫

E
fk g dx : ‖g‖Lp′ ≤ 1, fkg ∈ L1(E )

}
.
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Proof of Converse to Hölder’s inequality

Case 2: ‖f ‖Lp =∞...
? In fact, the proof in Case 1 shows that the function

gk = |fk |p−1

‖fk‖p−1
Lp
≥ 0 satisfies ‖gk‖Lp′ = 1, fkgk ∈ L1(E ) and

‖fk‖Lp =

∫
E
fk gk dx .

? As |f | ≥ fk ≥ 0, It follows that, as∫
E
|f |gk dx ≥

∫
E
fk gk dx = ‖fk‖Lp →∞.

? Letting g̃k(x) = sign(f (x))gk(x), we then have ‖g̃k‖Lp′ = 1,
f g̃k ∈ L1(E ) and so

α ≥
∫
E
f g̃k dx =

∫
E
|f | gk dx →∞.

So α =∞, as desired.
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L2(E ) as a Hilbert space

Theorem
The space L2(E ) is a (real) Hilbert space with inner product

〈f , g〉 =

∫
E

fg .

This means

(Banach) L2(E ) is a Banach space.

(Inner product) The map (f , g) 7→ 〈f , g〉 from L2(E )× L2(E )
into R satisfies
? (Linearity) 〈λf1 + f2, g〉 = λ〈f1, g〉+ 〈f2, g〉 for all
λ ∈ R, f1, f2, g ∈ L2(E ),

? (Symmetry) 〈f , g〉 = 〈g , f 〉 for all f , g ∈ L2(E ),
? (Positivity) 〈f , f 〉 = ‖f ‖2

L2(E). Hence 〈f , f 〉 ≥ 0 for all

f ∈ L2(E ) and 〈f , f 〉 = 0 if and only if f = 0.
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Density results for Lp via simple functions

We will show that the following sets are dense in Lp:

Set of simple functions, for 1 ≤ p ≤ ∞.

Set of ‘rational and dyadic’ simple functions, for 1 ≤ p <∞.
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Density results for Lp via simple functions

Simple function:

N∑
i=1

αiχAi
where αi is a constant and Ai is measurable.

Theorem

Let 1 ≤ p ≤ ∞. The set of all p-integrable simple functions is dense
in Lp(E ).
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Density results for Lp via simple functions

Proof:

Take f ∈ Lp(E ). We need to construct a sequence (fk) of
p-integrable simple function such that ‖fk − f ‖Lp → 0.

Using the splitting f = f + − f −, we may assume without loss of
generality that f is non-negative.

Fact from Integration: If f is a non-negative measurable
function, then there exist non-negative simple functions fk such
that fk ↗ f a.e.
Furthermore, if p <∞, then

? |fk |p ≤ |f |p and so fk ∈ Lp;
? As |fk − f |p ≤ |f |p ∈ L1, and so by Lebesgue dominated

convergence theorem,
∫
E |fk − f |p dx → 0. So fk → f in Lp.
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Density results for Lp via simple functions

When p =∞, the above proof doesn’t work as seen. Let us take
the proof one step further by recalling how such a sequence fk
can be constructed.
? For each k, one partition the range [0,∞] into 22k + 1 intervals:

J
(k)
1 = [0, 2−k), J

(k)
2 = [2−k , 2× 2−k), . . . ,

J
(k)

22k = [(22k − 1)× 2−k , 22k × 2−k) and J
(k)

22k+1
= [2k ,∞].

? fk is then defined by fk(x) = (`− 1)× 2−k if {f (x) ∈ J
(k)
` } for

1 ≤ ` ≤ 22k + 1.

1

2

3
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Density results for Lp via simple functions

When p =∞...

? Aside from the fact that fk ↗ f , this construction has the
property that, in the set {f (x) < 2k}, i.e. outside of the set

{f (x) ∈ J
(k)

22k+1
}, it holds that

|fk − f | ≤ 2−k .

? Now as p =∞, f is essentially bounded, i.e. there is an M and
a set Z of zero measure such that f < M in Rn \ Z . We then
redefine f on Z to be zero, i.e. we work with the representative
in the ‘equivalent class f ’ which is bounded everywhere by M.

? After this redefinition, we see that {f (x) ∈ J
(k)

22k+1
} = ∅ for large

k , and so we have |fk − f | ≤ 2−k everywhere for all large k.
This means that fk → f in L∞.
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Density results for Lp via simple functions

Theorem

Let 1 ≤ p <∞. The set F of all finite rational linear combinations
of characteristic functions of cubes belonging to a fixed class of
dyadic cubes is dense in Lp(Rn).

C1 C2 C3

F =
{
g =

N∑
i=1

riχQi
where ri ∈ Q,Qi ∈

∞⋃
j=1

Cj

}
.
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Density results for Lp via simple functions

Proof:

We know that the set of p-integrable simple functions is dense in
Lp. We also know that Q is dense in R.
Thus we only need to show that χE ∈ F .
By the construction of the Lebesgue measure, every open subset
U of Rn can be written as a countable union of cubes in ∪Ci ,
say U = ∪∞i=1Qi . Then

N∑
i=1

χQi
→ χU in Lp, and so χU ∈ F .

Now, for every measurable set E of finite measure, the outer
regularity of the Lebesgue measure implies that there exist open
Uk , Uk ⊃ E such that |Uk \ E | → 0. Then

χUk
→ χE in Lp, and so χE ∈ F .
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Application: Separability of Lp

Theorem

For 1 ≤ p <∞, the space Lp(E ) is separable, i.e. it has a countable
dense subset.

Proof:

When E = Rn, the result follows from the previous theorem, as
F is countable.

For general E , let F̃ be the set of restrictions to E of functions
in F . Then F̃ is countable. We will now show that F̃ is dense
in Lp(E ).

? Take f ∈ Lp(E ). Set f = 0 in Rn \ E . Then f ∈ Lp(Rn) and so
there exist fk ∈ F such that fk → f in Lp(Rn).

? Let f̃k = fk |E ∈ F̃ . Then ‖f̃k − f ‖Lp(E) ≤ ‖fk − f ‖Lp(E) → 0, so
we are done.

Luc Nguyen (University of Oxford) C4.3 – Lectures 1-2 MT 2022 41 / 41


