100 A 100	14.10.22
82.4	(Supplementary notes) (P1)
	$\int y'' = f(x) \text{for} 0 < x < 1$
Example	$\begin{cases} y'' = \beta(x) \\ y(0) = \alpha, y(1) = \beta \end{cases}$
OPTION 1	: DECOMPOSITION : $u_1'' = f(x)$, $u_1(0) = 0 = u_1(1)$
S	Seek $U_1(x), U_2(x)$ 5.t. $\begin{cases} U_1'' = f(x), U_1(0) = \emptyset \\ U_2'' = 0, U_2(0) = \emptyset, U_2(1) = \emptyset \end{cases}$
	so that $\int u_1$ solves the homog. BVP
S	that u, soives is a particular integral u2 is a particular integral
N. C.	t is straightforward to show that
	$u_{i}(x) = \sum_{k=1}^{\infty} c_{k} y_{k}(x)$ where $c_{k} = -\langle f, w_{k} \rangle$
	AR YGRIWR /
	$= -\frac{2}{8^{2}\pi^{2}} \int_{0}^{1} f(x) \sin(k\pi x) dx$
	$U_2(x) = \alpha + (\beta - \alpha) x$
	$\Rightarrow \text{full solution}: y(x) = \sum_{k} \tilde{C}_{k} y_{k}(x) + \alpha + (\beta - \alpha)x$
	U ₂ (α)
OPTION	2 : NO DECOMPOSITION
	$y(x) = \sum C_k y_k(x)$
	where (after some algebra)
	$C_{R} = -\frac{2}{R^{2}\pi^{2}} \int \int (\alpha) \sin(k\pi \alpha) d\alpha + \frac{2}{R\pi} \left(\alpha - (-1)^{R}\beta\right)$
	Ĉ _K

Scanned with Swift**Scan**

CLAIM:
$$U_{2}(x) = \alpha + (\beta - \alpha)x = \sum_{k} \frac{2}{k\pi} \left(\alpha - (-1)^{k}\beta\right) \operatorname{Sin}(k\pi x)$$

Proof Let:
$$\alpha + (\beta - \alpha)x = \sum_{k} A_{k} \operatorname{Sin}(k\pi x)$$

$$\Rightarrow A_{k} \int_{0}^{1} \operatorname{Sin}^{2}(k\pi x) dx = \int_{0}^{1} \left(\alpha + (\beta - \alpha)x\right) \operatorname{Sin}(k\pi x) dx$$

$$= \frac{\alpha}{k\pi} \left[-\operatorname{cosk}\pi x \right]^{1} + \frac{(\beta - \alpha)}{k\pi} \left[-\operatorname{xcosk}\pi x \right]^{1}$$

$$+ \frac{(\beta - \alpha)}{(k\pi)^{2}} \left[\operatorname{Sink}\pi x \right]^{1}$$

$$\Rightarrow A_{k} = \frac{\alpha}{k\pi} \left(1 - (-1)^{k} \right) - \frac{(\beta - \alpha)}{k\pi} \left(-1 \right)^{k}$$

$$\Rightarrow A_{k} = \frac{2}{k\pi} \left(\alpha - (-1)^{k}\beta \right), \text{ as claimed}$$

Scanned with SwiftScan