

C4.3 Functional Analytic Methods for PDEs Lectures 3-4

Luc Nguyen luc.nguyen@maths

University of Oxford

MT 2022

- Lebesgue spaces.
- Duals of Lebesgue spaces.
- L^2 as a Hilbert space.
- Density of simple functions for Lebesgue spaces.

- Weak and weak* convergence in Lebesgue spaces.
- Continuity property of translation operators in L^p.
- Convolution. Young's inequality.
- Differentiation rule for convolution.
- Approximation of identity in Lebesgue spaces.
- Density by smooth functions.

Definition

Let X be a normed vector space and X^* its dual.

- **(**) We say that a sequence (x_n) in X converges weakly to some $x \in X$ if $Tx_n \to Tx$ for all $T \in X^*$. We write $x_n \rightharpoonup x$.
- We say that a sequence (T_n) in X^* converges weakly* to some $T \in X^*$ if $T_n x \to Tx$ for all $x \in X$. We write $T_n \rightharpoonup^* T$.

Theorem (Weak sequential compactness in reflexive Banach spaces)

Every bounded sequence in a reflexive Banach space has a weakly convergent subsequence.

Corollary

Assume that $1 and <math>(f_k)$ is bounded in $L^p(E)$. Then there is a subsequence f_{k_j} which converges weakly in L^p . In other words, there exists a function $f \in L^p$ such that

$$\int_E f_{k_j}g o \int_E$$
 fg for all $g \in L^{p'}(E).$

Theorem (Helly's theorem on weak* sequential compactness in duals of separable Banach spaces)

Every bounded sequence in the dual of a separable Banach space has a weakly* convergent subsequence.

Corollary

Assume that (f_k) is bounded in $L^{\infty}(E)$. Then there is a subsequence f_{k_j} which converges weakly* in L^{∞} . In other words, there exists a function $f \in L^{\infty}$ such that

$$\int_E f_{k_j}g o \int_E fg ext{ for all } g \in L^1(E).$$

	Dual	Reflexivity	Separability	Sequential
				compactness
				of $\overline{B(0,1)}$
Lp	$L^{p'}$	Yes	Yes	Weak and weak*
1				
L^1	L^{∞}	No	Yes	Neither
L^{∞}	$\supset L^1$	No	No	Weak*

Translation operators: For a $h \in \mathbb{R}^n$ and a measurable function $f : \mathbb{R}^n \to \mathbb{R}$, define $\tau_h f$ by

$$(\tau_h f)(x) = f(x+h)$$
 for all $x \in \mathbb{R}^n$.

Then $\tau_h : L^p(\mathbb{R}^n) \to L^p(\mathbb{R}^n)$ is a bounded linear transformation for $1 \le p \le \infty$. In fact it is an isometric isomorphism.

Theorem (Continuity in L^p)

If $f \in L^p(\mathbb{R}^n)$ for some $1 \leq p < \infty$, then

$$\lim_{|h|\to 0} \|\tau_h f - f\|_{L^p(\mathbb{R}^n)} = 0.$$

Continuity of translation operators

- In other words, for $1 \le p < \infty$, for every fixed $f \in L^p(\mathbb{R}^n)$, the map $h \mapsto \tau_h f$ is a continuous map from \mathbb{R}^n into $L^p(\mathbb{R}^n)$.
- The theorem is false for $p = \infty$, e.g. with $f = \chi_Q$ with Q being the unit cube.
- The theorem does ***NOT*** assert that the maps h → τ_h is a continuous map from ℝⁿ into ℒ(L^p(ℝⁿ), L^p(ℝⁿ)). In fact,

$$\|\tau_h - Id\|_{\mathscr{L}(L^p(\mathbb{R}^n), L^p(\mathbb{R}^n))} \ge 2^{1/p}$$
 when $h \neq 0$.

- * Let r = |h|/4 and let $f = c_n r^{-n/p} \chi_{B_r(0)}$ where c_n is chosen such that $||f||_{L^p} = 1$.
- \star Then $\tau_h f$ and f has disjoint support. So

$$\|\tau_h f - f\|_{L^p} = \left\{ \|\tau_h f\|_{L^p}^p + \|f\|_{L^p}^p \right\}^{1/p} = 2^{1/p}.$$

Continuity of translation operators

Proof:

- Let \mathscr{A} denote the set of functions f in L^p such that $\|\tau_h f f\|_{L^p} \to 0$ as $|h| \to 0$.
- It is clear that if $f, g \in \mathscr{A}$ then $f + g \in \mathscr{A}$, and $\lambda f \in \mathscr{A}$ for any $\lambda \in \mathbb{R}$. So \mathscr{A} is a vector subspace of L^p .
- We claim that \mathscr{A} is closed in L^p , i.e. if $(f_k) \subset \mathscr{A}$ and $f_k \to f$ in L^p , then $f \in \mathscr{A}$. Indeed, by Minkowski's inequality, we have

$$\begin{aligned} \|\tau_h f - f\|_{L^p} &\leq \|\tau_h f_k - f_k\|_{L^p} + \|\tau_h f_k - \tau_h f\|_{L^p} + \|f_k - f\|_{L^p} \\ &= \|\tau_h f_k - f_k\|_{L^p} + 2\|f_k - f\|_{L^p}. \end{aligned}$$

Now, if one is given an $\varepsilon > 0$, one can first select large k such that $||f_k - f||_{L^p} \le \varepsilon/3$, and then select $\delta > 0$ such that $||\tau_h f_k - f_k||_{L^p} \le \varepsilon/3$ for all $|h| \le \delta$, so that

$$| au_h f - f||_{L^p} \leq \varepsilon$$
 for all $|h| \leq \delta$.

- So \mathscr{A} is a closed vector subspace of L^p .
- Now, observe that if Q is a cube in ℝⁿ, then ||τ_hχ_Q − χ_Q ||_{L^p} → 0 as |h| → 0, by e.g. Lebesgue's dominated convergence theorem (or a direct estimate).
- So A contains all finite linear combinations of characteristic functions of cubes. In particular, it contains all finite rational linear combinations of characteristic functions of cubes belonging to a fixed class of dyadic cubes. As this latter set is dense in L^p and A is closed, we thus have A = L^p, as desired.

Definition

Let f and g be measurable functions on \mathbb{R}^n . The convolution f * g of f and g is defined by

$$(f*g)(x) = \int_{\mathbb{R}^n} f(y)g(x-y) \, dy$$

wherever the integral converges.

Theorem (Young's convolution inequality)

Let p, q and r satisfy $1 \leq p, q, r \leq \infty$ and

$$\frac{1}{p} + \frac{1}{q} = \frac{1}{r} + 1.$$

If $f \in L^p(\mathbb{R}^n)$ and $g \in L^q(\mathbb{R}^n)$, then $f * g \in L^r(\mathbb{R}^n)$ and

 $\|f * g\|_{L^{r}(\mathbb{R}^{n})} \leq \|f\|_{L^{p}(\mathbb{R}^{n})} \|g\|_{L^{q}(\mathbb{R}^{n})}.$

Proof: We will only deal with the case q = 1 and r = p. We are thus given $f \in L^p, g \in L^1$. We need to show that $f * g \in L^p$ and $||f * g||_{L^p} \leq ||f||_{L^p} ||g||_{L^1}$.

- Observe that |f ∗ g| ≤ |f| ∗ |g|. We may thus assume without loss of generality in the proof that f, g ≥ 0.
- Case 1: *p* = 1.
 - \star Consider the integral

$$I = \int_{\mathbb{R}^n \times \mathbb{R}^n} f(y) g(x - y) \, dx \, dy.$$

This integral is well-defined as $f, g \ge 0$ and the function G(x, y) = g(x - y) is measurable as a function from $\mathbb{R}^n \times \mathbb{R}^n$ into \mathbb{R} .

* Consider
$$I = \int_{\mathbb{R}^n \times \mathbb{R}^n} f(y) g(x - y) \, dx \, dy$$
.

★ By Tonelli's theorem, we have

$$I = \int_{\mathbb{R}^n} \left\{ \int_{\mathbb{R}^n} f(y) g(x - y) \, dy \right\} dx = \int_{\mathbb{R}^n} (f * g)(x) \, dx$$

= $\|f * g\|_{L^1}$.
$$I = \int_{\mathbb{R}^n} f(y) \left\{ \int_{\mathbb{R}^n} g(x - y) \, dx \right\} dy = \int_{\mathbb{R}^n} f(y) \|g\|_{L^1} \, dy$$

= $\|f\|_{L^1} \|g\|_{L^1}$.

* So
$$||f * g||_{L^1} = ||f||_{L^1} ||g||_{L^1}$$
.

• Case 2: $p = \infty$. This case is easy, as

$$(f * g)(x) = \int_{\mathbb{R}^n} f(y) g(x - y) dy$$

 $\leq \int_{\mathbb{R}^n} \|f\|_{L^{\infty}} g(x - y) dy = \|f\|_{L^{\infty}} \|g\|_{L^1}.$

• Case 3: 1 .

★ We start by writing

$$|(f * g)(x)| = \int_{\mathbb{R}^n} [f(y)g(x-y)^{\frac{1}{p}}][g(x-y)^{\frac{1}{p'}}] dy$$

and applying Hölder's inequality to the above.

• Case 3:
$$1 .
* $|(f * g)(x)| = \int_{\mathbb{R}^n} [f(y)g(x - y)^{\frac{1}{p}}][g(x - y)^{\frac{1}{p'}}] dy$.
* So
 $|(f * g)(x)| \le \left\{ \int_{\mathbb{R}^n} f(y)^p g(x - y) dy \right\}^{1/p} \left\{ \int_{\mathbb{R}^n} g(x - y) dy \right\}^{1/p'}$
 $= [(f^p * g)(x)]^{1/p} ||g||_{L^1}^{1/p'}.$$$

★ It follows that

$$\begin{split} \|f * g\|_{L^{p}} &= \Big\{ \int_{\mathbb{R}^{n}} |(f * g)(x)|^{p} dx \Big\}^{1/p} \\ &\leq \Big\{ \int_{\mathbb{R}^{n}} (f^{p} * g)(x) dx \Big\}^{1/p} \|g\|_{L^{1}}^{1/p'} \\ &= \|f^{p} * g\|_{L^{1}}^{1/p} \|g\|_{L^{1}}^{1/p'} \end{split}$$

• Case 3:
$$1 .
* $||f * g||_{L^p} \le ||f^p * g||_{L^1}^{1/p} ||g||_{L^1}^{1/p'}$.
* So by Case 1,
 $||f * g||_{L^p} \le \left[||f^p||_{L^1} ||g||_{L^1} \right]^{1/p} ||g||_{L^1}^{1/p'}$
 $= ||f||_{L^p} ||g||_{L^1}$.$$

Some notations

- If $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{N}^n$ is a multi-index, we write $|\alpha| = \alpha_1 + \dots + \alpha_n$.
- If f is a function and $\alpha = (\alpha_1, \ldots, \alpha_n)$ is a multi-index, we write $\partial^{\alpha} f = \partial_{x_1}^{\alpha_1} \ldots \partial_{x_n}^{\alpha_n} f$.
- For k ≥ 0, C^k(ℝⁿ) = {continuous f : ℝⁿ → ℝ such that ∂^αf exists and is continuous whenever|α| ≤ k}.
 C^k_c(ℝⁿ) = {f ∈ C^k(ℝⁿ) which has compact support}. Recall that, for a continuous function f,

$$Supp(f) =$$
Support of $f = \overline{\{f(x) \neq 0\}}$.

Convolution with a function in $C_c^0(\mathbb{R}^n)$

Lemma

If $f \in L^p(\mathbb{R}^n)$, $1 \le p \le \infty$, and $g \in C^0_c(\mathbb{R}^n)$, then $f * g \in C^0(\mathbb{R}^n)$.

Proof:

• Fix some $x \in \mathbb{R}^n$. We need to show that $f * g(x + z) - f * g(x) \rightarrow 0$ as $z \rightarrow 0$.

• We compute

$$f * g(x + z) - f * g(x)$$

= $\int_{\mathbb{R}^n} f(y)g(x + z - y) dy - \int_{\mathbb{R}^n} f(y)g(x - y) dy$
= $\int_{\mathbb{R}^n} f(y)[g(x + z - y) - g(x - y)] dy.$

Convolution with a function in $C_c^0(\mathbb{R}^n)$

Proof:

f * g(x + z) - f * g(x) = ∫_{ℝⁿ} f(y)[g(x + z - y) - g(x - y)] dy.
Since g ∈ C⁰_c(ℝⁿ), g ≡ 0 outside of some big ball B_R centered at 0. Then, for |z| < R,

$$f * g(x+z) - f * g(x) = \int_{|x-y| \le 2R} f(y) [g(x+z-y) - g(x-y)] dy.$$

 Note that as g is continuous, it is uniformly continuous on B
_{3R}. Thus, for any given ε > 0, there exists small δ ∈ (0, R) such that

$$ert g(x+z-y) - g(x-y) ert \leq arepsilon$$
 whenever $ert z ert \leq \delta$ and $ert x-y ert \leq 2R$.

• So when $|z| \leq \delta$, we have

$$|f * g(x+z) - f * g(x)| \leq \varepsilon \int_{|x-y| \leq 2R} |f(y)| \, dy.$$

Proof:

• So when $|z| \leq \delta$, we have

$$\begin{aligned} |f * g(x + z) - f * g(x)| &\leq \varepsilon ||f||_{L^1(\{|x-y| \leq 2R\})} \\ &\leq \varepsilon ||f||_{L^p(\mathbb{R}^n)} ||1||_{L^{p'}(\{|x-y| \leq 2R\})} \\ &= C_n R^{n/p'} ||f||_{L^p} \varepsilon. \end{aligned}$$

• Since the right side can be made arbitrarily small, this precisely means that $f * g(x + z) - f * g(x) \rightarrow 0$ as $z \rightarrow 0$, i.e. f * g is continuous.

Differentiation rule for convolution

Lemma

If $f \in L^p(\mathbb{R}^n)$, $1 \le p \le \infty$, and $g \in C_c^k(\mathbb{R}^n)$ for some $k \ge 1$, then $f * g \in C^k(\mathbb{R}^n)$ and

 $D^{\alpha}(f * g)(x) = (f * D^{\alpha}g)(x)$ for all multi-index α with $|\alpha| \leq k$.

Proof

- We will only consider the case k = 1. The general case can be proved by applying the case k = 1 repeatedly.
- Suppose that $g \in C_c^1(\mathbb{R}^n)$. Fix a point x and consider $\partial_{x_1}(f * g)(x)$. We need to show that

$$\lim_{t\to 0} \underbrace{\frac{(f\ast g)(x+te_1)-f\ast g(x)}{t}}_{=:D.Q.(x,t)} = (f\ast \partial_{x_1}g)(x).$$

Proof

We have

$$D.Q.(x,t) = \int_{\mathbb{R}^n} f(y) \frac{g(x-y+te_1)-g(x-y)}{t} \, dy.$$

As $t \to 0$, the integrand converges to $f(y)\partial_{x_1}g(x-y)$. We would like to show that the above integral converges to

$$\int_{\mathbb{R}^n} f(y) \partial_{x_1} g(x-y) \, dy = (f * \partial_{x_1} g)(x).$$

Differentiation rule for convolution

Proof

• As before, if the support of g is contained in B_R , then, for |t| < R,

$$D.Q.(x,t) = \int_{|x-y| \le 2R} f(y) \frac{g(x-y+te_1) - g(x-y)}{t} \, dy.$$

• When $|x - y| \le 2R$ and |t| < R, we have $|x - y + te_1| \le 3R$. Hence

$$\frac{|g(x-y+te_1)-g(x-y)|}{|t|} \leq \max_{\bar{B}_{3R}} |\partial_{x_1}g| =: M.$$

So the integrand above satisfies

$$||integrand| \leq M|f(y)|.$$

Differentiation rule for convolution

Proof

• So we have, for
$$|t| \leq R$$
,

$$D.Q.(x,t) = \int_{|x-y| \le 2R} f(y) \frac{g(x-y+te_1) - g(x-y)}{t} \, dy$$

where

* integrand
$$\rightarrow f(y)\partial_{x_1}g(x-y)$$
 as $t \rightarrow 0$.

- * $|\text{integrand}| \le M|f(y)|$, which belongs to $L^1(\{|x-y| \le 2R\})$, as $f \in L^p(\mathbb{R}^n)$.
- By Lebesgue's dominated convergence theorem, we thus have

$$\lim_{t\to 0} D.Q.(x,t) = \int_{|x-y| \le 2R} f(y) \partial_{x_1} g(x-y) \, dy$$
$$= \int_{\mathbb{R}^n} f(y) \partial_{x_1} g(x-y) \, dy = (f * \partial_{x_1} g)(x).$$

Proof

- We conclude that $\partial_{x_1}(f * g)$ exists and is equal to $f * \partial_{x_1}g$.
- By the previous lemma, we have that f * ∂_{x1}g is continuous. So ∂_{x1}(f * g) is continuous. Applying this to all partial derivatives, we conclude that f * g ∈ C¹(ℝⁿ).

• A family of "kernels" $\{\varrho_{\varepsilon}: \mathbb{R}^n \to \mathbb{R}\}_{\varepsilon>0}$ is called an approximation of identity if

$$f * \varrho_{\varepsilon}$$
" \rightarrow " f as $\varepsilon \rightarrow 0$,

where the meaning of the convergence depends on the context.

• Loosely speaking, it means that the operators T_{ε} defined by $T_{\varepsilon}f = f * \varrho_{\varepsilon}$ "approximates" the identity operator.

Theorem (Approximation of identity)

Let ρ be a non-negative function in $C_c^{\infty}(\mathbb{R}^n)$ such that $\int_{\mathbb{R}^n} \rho = 1$. For $\varepsilon > 0$, let

$$\varrho_{\varepsilon}(x) = \frac{1}{\varepsilon^n} \varrho\left(\frac{x}{\varepsilon}\right).$$

If $f \in C(\mathbb{R}^n)$, then $f * \varrho_{\varepsilon}$ converges uniformly on compact subsets of \mathbb{R}^n to f.

More on terminologies:

- A family (ρ_{ε}) as in the statement is called a family of 'mollifiers'.
- The family (f * ρ_ε) is called a regularization of f by mollification. Note that since ρ_ε ∈ C[∞]_c(ℝⁿ), we have that f * ρ_ε ∈ C[∞](ℝⁿ).

Proof:

• Let us first consider pointwise convergence, i.e. for every *x* there holds:

$$(f * \varrho_{\varepsilon})(x) = \int_{\mathbb{R}^n} f(y) \varrho_{\varepsilon}(x-y) \, dy \stackrel{\varepsilon \to 0}{\longrightarrow} f(x).$$

• The idea is to convert f(x) into an integral as well. For this we use the identity

$$\int_{\mathbb{R}^n} \varrho_{\varepsilon}(x-y) \, dy = \int_{\mathbb{R}^n} \varrho_{\varepsilon}(z) \, dz = \int_{\mathbb{R}^n} \varrho(w) \, dw = 1.$$

Hence

$$f(x) = \int_{\mathbb{R}^n} f(x) \varrho_{\varepsilon}(x-y) \, dy.$$

Proof:

• So we need to show

$$\int_{\mathbb{R}^n} [f(x) - f(y)] \varrho_{\varepsilon}(x - y) \, dy \xrightarrow{\varepsilon \to 0} 0.$$

 By hypotheses, ρ vanishes outside of some ball B_R centered at the origin. So ρ_ε(x − y) = 0 when |x − y| ≥ εR. It follows that

$$\begin{split} \left| \int_{\mathbb{R}^n} [f(x) - f(y)] \varrho_{\varepsilon}(x - y) \, dy \right| \\ &\leq \sup_{\{y: |x - y| \leq \varepsilon R\}} |f(x) - f(y)| \int_{|x - y| \leq \varepsilon R} \varrho_{\varepsilon}(x - y) \, dy \\ &= \sup_{\{y: |x - y| \leq \varepsilon R\}} |f(x) - f(y)| \stackrel{\varepsilon \to 0}{\longrightarrow} 0. \end{split}$$

Proof:

• Now we turn to prove the uniform convergence on compact sets, i.e. for every given compact set *K*, we need to show

$$\sup_{x\in K} \left| (f*\varrho_{\varepsilon})(x) - f(x) \right| \stackrel{\varepsilon\to 0}{\longrightarrow} 0.$$

As before, this is equivalent to

$$\sup_{x\in K} \left| \int_{\mathbb{R}^n} [f(x) - f(y)] \varrho_{\varepsilon}(x-y) \, dy \right| \stackrel{\varepsilon \to 0}{\longrightarrow} 0,$$

which can be turned into

$$\sup_{x\in K} \Big| \int_{\{y:|x-y|\leq \varepsilon R\}} [f(x) - f(y)] \varrho_{\varepsilon}(x-y) \, dy \Big| \xrightarrow{\varepsilon \to 0} 0,$$

Proof:

• We need to show

$$A_{\varepsilon} := \sup_{x \in K} \Big| \int_{\{y: |x-y| \leq \varepsilon R\}} [f(x) - f(y)] \varrho_{\varepsilon}(x-y) \, dy \Big| \xrightarrow{\varepsilon \to 0} 0,$$

• In the same way as before, we have

$$A_{\varepsilon} \leq \sup_{x \in K} \sup_{\{y:|x-y| \leq \varepsilon R\}} |f(x) - f(y)|.$$

• Note that if $K \subset B_{R'}$, $\varepsilon \leq 1$, $x \in K$ and $|x - y| \leq \varepsilon R$, then * $|x| \leq R' \leq R + R'$, * $|y| \leq |x| + |y - x| \leq R + R'$. So $A_n \leq \sup |f(x) - f(y)| \stackrel{\varepsilon \to 0}{\longrightarrow} 0$

$$A_{\varepsilon} \leq \sup_{\{|x|,|y|\leq R+R',|x-y|\leq \varepsilon R\}} |f(x)-f(y)| \stackrel{\varepsilon \to 0}{\longrightarrow} 0,$$

in view of the uniform continuity of f on $\overline{B_{R+R'}}$.

Theorem (Approximation of identity)

Let ρ be a non-negative function in $C_c^{\infty}(\mathbb{R}^n)$ such that $\int_{\mathbb{R}^n} \rho = 1$. For $\varepsilon > 0$, let

$$\varrho_{\varepsilon}(x) = \frac{1}{\varepsilon^n} \varrho\left(\frac{x}{\varepsilon}\right).$$

If $f \in C^{0,1}(\mathbb{R}^n)$, i.e. there exists $L \ge 0$ such that

$$|f(x) - f(y)| \leq L|x - y|$$
 for all $x, y \in \mathbb{R}^n$,

then, for some constant C > 0 depending only on the choice of ρ ,

$$\sup_{x\in\mathbb{R}^n}|f*\varrho_{\varepsilon}(x)-f(x)|\leq CL\varepsilon.$$

Proof: Following the same argument as before, we have

$$\begin{split} \sup_{x \in \mathbb{R}^n} \left| (f * \varrho_{\varepsilon})(x) - f(x) \right| &= \sup_{x \in \mathbb{R}^n} \left| \int_{\mathbb{R}^n} [f(x) - f(y)] \varrho_{\varepsilon}(x - y) \, dy \right| \\ &\leq \sup_{x \in \mathbb{R}^n} \sup_{\{y: |x - y| \le \varepsilon R\}} |f(x) - f(y)| \\ &\leq \sup_{x \in \mathbb{R}^n} \sup_{\{y: |x - y| \le \varepsilon R\}} L|x - y| \\ &\leq L \varepsilon R. \end{split}$$

Theorem (Approximation of identity)

Let ρ be a non-negative function in $L^1(\mathbb{R}^n)$ such that $\int_{\mathbb{R}^n} \rho = 1$. For $\varepsilon > 0$, let

$$\varrho_{\varepsilon}(x) = \frac{1}{\varepsilon^n} \varrho\left(\frac{x}{\varepsilon}\right).$$

If $f \in L^p(\mathbb{R}^n)$ for some $1 \le p < \infty$, then

$$\lim_{\varepsilon\to 0} \|f*\varrho_{\varepsilon}-f\|_{L^p(\mathbb{R}^n)}=0.$$

 $f * \varrho_{\varepsilon} \not\rightarrow f \text{ in } L^{\infty}$

Remark

There exist $f \in L^{\infty}(\mathbb{R}^n)$ and $\varrho \in C_c^{\infty}(B_1(0))$ such that $f * \varrho_{\varepsilon}$ does not converge to f in L^{∞} .

• Take $f = \chi_{B_1(0)}$.

Then

$$f * \varrho_{\varepsilon}(x) = \int_{B_{1}(0)} \varrho_{\varepsilon}(x - y) \, dy$$
$$= \int_{B_{1}(x)} \varrho_{\varepsilon}(z) \, dz$$
$$= \int_{B_{1}(x) \cap B_{\varepsilon}(0)} \varrho_{\varepsilon}(z) \, dz.$$

 $f * \varrho_{\varepsilon} \not\rightarrow f \text{ in } L^{\infty}$

•
$$f * \varrho_{\varepsilon}(x) = \int_{B_{1}(x) \cap B_{\varepsilon}(0)} \varrho_{\varepsilon}(z) dz.$$

 $|x| < 1 - \varepsilon$ $|x| > 1 + \varepsilon$ $|x| = 1$
• $f * \varrho_{\varepsilon}(x) = 1$ $f * \varrho_{\varepsilon}(x) = 0$ $f * \varrho_{\varepsilon}(x) \in [0, 1]$
 $\rightarrow \frac{1}{2}$ in symmetry,
i.e. $\varrho = \varrho(|x|)$

$f * \varrho_{\varepsilon} \not\rightarrow f$ in L^{∞}

• We now take some ρ of the form $\rho(x) = \rho(|x|)$ such that, in addition to the condition $\|\rho\|_{L^1} = 1$, we have

$$\int_{B_{1/4}(p)} \varrho(z) \, dz = c_0 \in (0,1) \text{ for all } |p| = 1/2.$$

• Consider $1 < |x| < 1 + \varepsilon/4$.

0

* $B_1(x) \cap B_{\varepsilon}(0)$ contains a ball $B_{\varepsilon/4}(p_{\varepsilon})$ with $|p_{\varepsilon}| = \varepsilon/2$. * So $f * \varrho_{\varepsilon}(x) \ge \int_{B_{\varepsilon/4}(p_{\varepsilon})} \varrho_{\varepsilon}(z) dz = c_0 \in (0, 1)$. * As f(x) = 0 here, we thus have

$$\|f*\varrho_{\varepsilon}-f\|_{L^{\infty}}\geq c_{0}\not\rightarrow 0.$$

Theorem (Approximation of identity)

Let ρ be a non-negative function in $L^1(\mathbb{R}^n)$ such that $\int_{\mathbb{R}^n} \rho = 1$. For $\varepsilon > 0$, let

$$\varrho_{\varepsilon}(x) = \frac{1}{\varepsilon^n} \varrho\left(\frac{x}{\varepsilon}\right).$$

If $f \in L^p(\mathbb{R}^n)$ for some $1 \le p < \infty$, then

$$\lim_{\varepsilon\to 0} \|f*\varrho_{\varepsilon}-f\|_{L^p(\mathbb{R}^n)}=0.$$

Proof

• Let
$$f_{\varepsilon}(x) := f * \varrho_{\varepsilon}(x)$$
. Then

$$f_{\varepsilon}(x) := f * \varrho_{\varepsilon}(x) = \int_{\mathbb{R}^n} f(y) \varrho_{\varepsilon}(x-y) \, dy = \int_{\mathbb{R}^n} f(x-y) \varrho_{\varepsilon}(y) \, dy.$$

• Recall that, as $\int_{\mathbb{R}^n} arrho_arepsilon = 1$, we have

$$f(x) = \int_{\mathbb{R}^n} f(x) \varrho_{\varepsilon}(y) \, dy.$$

Hence

$$egin{aligned} |f_arepsilon(x)-f(x)|&\leq \int_{\mathbb{R}^n} |f(x-y)-f(x)||arepsilon_arepsilon(y)|dy\ &=\int_{\mathbb{R}^n} |f(x-y)-f(x)||arepsilon_arepsilon(y)|^rac{1}{p}|arepsilon_arepsilon(y)|^rac{1}{p'}dy. \end{aligned}$$

Proof

•
$$|f_{\varepsilon}(x) - f(x)| \leq \int_{\mathbb{R}^n} |f(x - y) - f(x)| |\varrho_{\varepsilon}(y)|^{\frac{1}{p}} |\varrho_{\varepsilon}(y)|^{\frac{1}{p'}} dy.$$

• Applying Hölder's inequality, the above is less than or equal to

$$\leq \left\{ \int_{\mathbb{R}^n} |f(x-y) - f(x)|^p |\varrho_{\varepsilon}(y)| \, dy \right\}^{\frac{1}{p}} \left\{ \int_{\mathbb{R}^n} |\varrho_{\varepsilon}(y)| \, dy \right\}^{\frac{1}{p'}} \\ = \left\{ \int_{\mathbb{R}^n} |f(x-y) - f(x)|^p |\varrho_{\varepsilon}(y)| \, dy \right\}^{\frac{1}{p}}.$$

• Integrating and using Tonelli's theorem,

$$\begin{split} \|f_{\varepsilon}-f\|_{L^{p}}^{p} &\leq \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} |f(x-y)-f(x)|^{p} |\varrho_{\varepsilon}(y)| \, dy \, dx \\ &= \int_{\mathbb{R}^{n}} |\varrho_{\varepsilon}(y)| \Big\{ \int_{\mathbb{R}^{n}} |f(x-y)-f(x)|^{p} \, dx \Big\} dy. \end{split}$$

Proof

•
$$||f_{\varepsilon}-f||_{L^p}^p \leq \int_{\mathbb{R}^n} |\varrho_{\varepsilon}(y)| \Big\{ \int_{\mathbb{R}^n} |f(x-y)-f(x)|^p dx \Big\} dy.$$

• In other words,

$$\|f_{\varepsilon}-f\|_{L^p}^p\leq \int_{\mathbb{R}^n}|\varrho_{\varepsilon}(y)|\|\tau_{-y}f-f\|_{L^p}^pdy.$$

• If we had that $Supp(\varrho) \subset B_R$, then $Supp(\varrho_{\varepsilon}) \subset B_{\varepsilon R}$, and so

$$\begin{split} \|f_{\varepsilon} - f\|_{L^{p}}^{p} &\leq \sup_{|y| \leq \varepsilon R} \|\tau_{-y} f - f\|_{L^{p}}^{p} \int_{B_{\varepsilon R}} |\varrho_{\varepsilon}(y)| dy \\ &= \sup_{|y| \leq \varepsilon R} \|\tau_{-y} f - f\|_{L^{p}}^{p} \xrightarrow{\varepsilon \to 0} 0, \end{split}$$

in view of the theorem on the continuity of the translation operator in L^{p} .

Luc Nguyen (University of Oxford)

Proof

•
$$\|f_{\varepsilon}-f\|_{L^p}^p\leq \int_{\mathbb{R}^n}|\varrho_{\varepsilon}(y)|\|\tau_{-y}f-f\|_{L^p}^pdy.$$

• In the general case where ρ may or may not have compact support, we argue as follows: For every fixed $\hat{R} > 0$,

$$\begin{split} &\int_{|y|\leq \varepsilon \hat{R}} |\varrho_{\varepsilon}(y)| \|\tau_{-y}f - f\|_{L^{p}}^{p} dy \\ &\leq \sup_{|y|\leq \varepsilon \hat{R}} \|\tau_{-y}f - f\|_{L^{p}}^{p} \int_{B_{\varepsilon \hat{R}}} |\varrho_{\varepsilon}(y)| dy \\ &\leq \sup_{|y|\leq \varepsilon \hat{R}} \|\tau_{-y}f - f\|_{L^{p}}^{p} \stackrel{\varepsilon \to 0}{\longrightarrow} 0. \end{split}$$

Proof

- $\|f_{\varepsilon} f\|_{L^p}^p \leq \int_{\mathbb{R}^n} |\varrho_{\varepsilon}(y)| \|\tau_{-y}f f\|_{L^p}^p dy.$ • $\forall \hat{P} \lim_{t \to \infty} \int_{\mathbb{R}^n} |\varrho_{\varepsilon}(y)| \|\tau_{-y}f - f\|_{L^p}^p dy.$
- $\forall \hat{R}, \lim_{\varepsilon \to 0} \int_{|y| \le \varepsilon \hat{R}} |\varrho_{\varepsilon}(y)| \|\tau_{-y}f f\|_{L^{p}}^{p} dy = 0.$
- On the other hand,

$$egin{aligned} &\int_{|y|\geqarepsilon\hat{\mathcal{R}}}|arrho_arepsilon(y)|\| au_{-y}f-f\|_{L^p}^pdy\ &\leq\int_{|y|\geqarepsilon\hat{\mathcal{R}}}|arrho_arepsilon(y)|(\| au_{-y}f\|_{L^p}+\|f\|_{L^p})^pdy\ &=2^p\|f\|_{L^p}^p\int_{|y|\geqarepsilon\hat{\mathcal{R}}}|arrho_arepsilon(y)|dy\!=2^p\|f\|_{L^p}^p\int_{|z|\geq\hat{\mathcal{R}}}|arrho(z)|dz. \end{aligned}$$

As *ρ* ∈ *L*¹(ℝⁿ), we have by Lebesgue's dominated convergence theorem that

$$\lim_{\hat{R}\to\infty}\int_{|z|\geq\hat{R}}|\varrho(z)|dz=0.$$

Proof

- $\|f_{\varepsilon} f\|_{L^p}^p \leq \int_{\mathbb{R}^n} |\varrho_{\varepsilon}(y)| \|\tau_{-y}f f\|_{L^p}^p dy.$
- $\forall \hat{R}$, $\lim_{\varepsilon \to 0} \int_{|y| \le \varepsilon \hat{R}} |\varrho_{\varepsilon}(y)| ||\tau_{-y}f f||_{L^p}^p dy = 0.$
- $\forall \varepsilon$, $\lim_{\hat{R}\to\infty} \int_{|y|\geq\varepsilon\hat{R}} |\varrho_{\varepsilon}(y)| \|\tau_{-y}f f\|_{L^{p}}^{p} dy = 0.$
- We are ready to wrap up the proof: Fix some $\eta > 0$ and select some large \hat{R} so that

$$\int_{|y|\geq \varepsilon \hat{R}} |\varrho_{\varepsilon}(y)| \|\tau_{-y}f - f\|_{L^{p}}^{p} dy \leq \eta/2.$$

• Then we select small ε_0 such that, for all $\varepsilon < \varepsilon_0$,

$$\int_{|y|\leq \varepsilon \hat{R}} |\varrho_{\varepsilon}(y)| \|\tau_{-y}f - f\|_{L^{p}}^{p} dy \leq \eta/2.$$

Proof

• For $\varepsilon < \varepsilon_0$,

$$\|f_{\varepsilon}-f\|_{L^p}^p\leq \int_{\mathbb{R}^n}|arrho_{\varepsilon}(y)|\| au_{-y}f-f\|_{L^p}^pdy\leq \eta.$$

• As η is arbitrary, we conclude that $\|f_{\varepsilon} - f\|_{L^{p}(\mathbb{R}^{n})} \to 0$ as $\varepsilon \to 0$.

 $C^{\infty}_{c}(\mathbb{R}^{n}) = L^{p}(\mathbb{R}^{n})$

Theorem

For $1 \leq p < \infty$, the space $C_c^{\infty}(\mathbb{R}^n)$ is dense in $L^p(\mathbb{R}^n)$.

Proof

- Fix $f \in L^{p}(\mathbb{R}^{n})$. We need to produce $f_{k} \in C_{c}^{\infty}(\mathbb{R}^{n})$ such that $f_{k} \to f$ in L^{p} .
- If f has compact support, say $Supp(f) \subset B_R$, this follows from the previous theorem:
 - * Take a smooth non-negative function $\varrho \in C_c^{\infty}(B_1)$ with $\int_{\mathbb{R}^n} \varrho = 1$ and define the mollifiers $\varrho_{\varepsilon}(x) = \frac{1}{\varepsilon^n} \varrho(x/\varepsilon)$.
 - * Then $f_k := f * \varrho_{1/k} \in C^{\infty}$ and $f_k \to f$ in L^p .
 - * Recall that $f_k(x) = \int_{\mathbb{R}^n} f(y) \varrho_{1/k}(x-y) dy$, and observe that for |x| > R + 1/k, then, by triangle inequality, |y| > R or |x-y| > 1/k. So $f(y) \varrho_{1/k}(x-y) \equiv 0$ for those x. So $Supp(f_k) \subset B_{R+1/k}$, and $f_k \in C_c^{\infty}(\mathbb{R}^n)$.

 $C^{\infty}_{c}(\mathbb{R}^{n}) = L^{p}(\mathbb{R}^{n})$

Proof

- In general, we produce $f_k \in C_c^{\infty}(\mathbb{R}^n)$ with $||f_k f||_{L^p} \leq 1/k$ as follows:
 - ★ Note that, as $R \to \infty$, $f \chi_{B_R} \to f$ in L^p by Lebesgue's dominated convergence theorem.
 - * So we can pick large R_k such that $||f\chi_{B_{R_k}} f||_{L^p} \leq \frac{1}{2k}$.
 - * Now $f\chi_{B_{R_k}}$ has compact support, so by the previous consideration, there exists a function $f_k \in C_c^{\infty}(\mathbb{R}^n)$ such that $\|f\chi_{B_{R_k}} f_k\|_{L^p} \leq \frac{1}{2k}$.
 - * Then $\|f_k f\|_{L^p} \leq 1/k$ and so $f_k \to f$ in L^p as wanted.

$$\frac{C^{\infty}(E) \cap L^{p}(E)}{\text{Let } C^{\infty}(E) = \left\{ f|_{E} : f \in C^{\infty}(\mathbb{R}^{n}) \right\}}.$$

Theorem

For $1 \le p < \infty$, the space $C^{\infty}(E) \cap L^{p}(E)$ is dense in $L^{p}(E)$.

Proof

Fix f ∈ L^p(E). We will produce functions f_k ∈ C[∞](ℝⁿ) ∩ L^p(ℝⁿ) such that f_k|_E → f in L^p(E).
Extend f to f̃ : ℝⁿ → ℝ by setting f̃ = 0 in ℝⁿ \ E. Then f̃ ∈ L^p(ℝⁿ). By the previous theorem, there exist f_k ∈ C[∞]_c(ℝⁿ) ⊂ C[∞](ℝⁿ) ∩ L^p(ℝⁿ) such that f_k → f̃ in L^p(ℝⁿ).
Now,

$$\int_{E} |f_k - f|^p \, dx \leq \int_{\mathbb{R}^n} |f_k - \tilde{f}|^p \, dx \to 0,$$

and so $f_k|_E \to f$ in $L^p(E)$.