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In the last lecture

Lebesgue spaces.

Duals of Lebesgue spaces.

L2 as a Hilbert space.

Density of simple functions for Lebesgue spaces.
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This lecture

Weak and weak* convergence in Lebesgue spaces.

Continuity property of translation operators in Lp.

Convolution. Young’s inequality.

Differentiation rule for convolution.

Approximation of identity in Lebesgue spaces.

Density by smooth functions.
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Weak and weak* convergence in Lp

Definition
Let X be a normed vector space and X ∗ its dual.

(i) We say that a sequence (xn) in X converges weakly to some
x ∈ X if Txn → Tx for all T ∈ X ∗. We write xn ⇀ x .

(ii) We say that a sequence (Tn) in X ∗ converges weakly* to some
T ∈ X ∗ if Tnx → Tx for all x ∈ X . We write Tn ⇀

∗ T .
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Weak sequential compactness

Theorem (Weak sequential compactness in reflexive
Banach spaces)

Every bounded sequence in a reflexive Banach space has a weakly
convergent subsequence.

Corollary

Assume that 1 < p <∞ and (fk) is bounded in Lp(E ). Then there is
a subsequence fkj which converges weakly in Lp. In other words, there
exists a function f ∈ Lp such that∫

E

fkjg →
∫
E

fg for all g ∈ Lp
′
(E ).
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Weak* sequential compactness

Theorem (Helly’s theorem on weak* sequential
compactness in duals of separable Banach spaces)

Every bounded sequence in the dual of a separable Banach space has
a weakly* convergent subsequence.

Corollary

Assume that (fk) is bounded in L∞(E ). Then there is a subsequence
fkj which converges weakly* in L∞. In other words, there exists a
function f ∈ L∞ such that∫

E

fkjg →
∫
E

fg for all g ∈ L1(E ).
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A summary

Dual Reflexivity Separability Sequential
compactness

of B(0, 1)

Lp Lp
′

Yes Yes Weak and weak*
1 < p <∞

L1 L∞ No Yes Neither
L∞ ) L1 No No Weak*
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Continuity of translation operators

Translation operators: For a h ∈ Rn and a measurable function
f : Rn → R, define τhf by

(τhf )(x) = f (x + h) for all x ∈ Rn.

Then τh : Lp(Rn)→ Lp(Rn) is a bounded linear transformation for
1 ≤ p ≤ ∞. In fact it is an isometric isomorphism.

Theorem (Continuity in Lp)

If f ∈ Lp(Rn) for some 1 ≤ p <∞, then

lim
|h|→0
‖τhf − f ‖Lp(Rn) = 0.
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Continuity of translation operators

In other words, for 1 ≤ p <∞, for every fixed f ∈ Lp(Rn), the
map h 7→ τhf is a continuous map from Rn into Lp(Rn).

The theorem is false for p =∞, e.g. with f = χQ with Q being
the unit cube.

The theorem does ***NOT*** assert that the maps h 7→ τh is a
continuous map from Rn into L (Lp(Rn), Lp(Rn)). In fact,

‖τh − Id‖L (Lp(Rn),Lp(Rn)) ≥ 21/p when h 6= 0.

? Let r = |h|/4 and let f = cnr
−n/pχBr (0) where cn is chosen such

that ‖f ‖Lp = 1.
? Then τhf and f has disjoint support. So

‖τhf − f ‖Lp =
{
‖τhf ‖pLp + ‖f ‖pLp

}1/p
= 21/p.
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Continuity of translation operators

Proof:

Let A denote the set of functions f in Lp such that
‖τhf − f ‖Lp → 0 as |h| → 0.

It is clear that if f , g ∈ A then f + g ∈ A , and λf ∈ A for any
λ ∈ R. So A is a vector subspace of Lp.

We claim that A is closed in Lp, i.e. if (fk) ⊂ A and fk → f in
Lp, then f ∈ A . Indeed, by Minkowski’s inequality, we have

‖τhf − f ‖Lp ≤ ‖τhfk − fk‖Lp + ‖τhfk − τhf ‖Lp + ‖fk − f ‖Lp
= ‖τhfk − fk‖Lp + 2‖fk − f ‖Lp .

Now, if one is given an ε > 0, one can first select large k such
that ‖fk − f ‖Lp ≤ ε/3, and then select δ > 0 such that
‖τhfk − fk‖Lp ≤ ε/3 for all |h| ≤ δ, so that

‖τhf − f ‖Lp ≤ ε for all |h| ≤ δ.
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Continuity of translation operators

So A is a closed vector subspace of Lp.

Now, observe that if Q is a cube in Rn, then
‖τhχQ − χQ‖Lp → 0 as |h| → 0, by e.g. Lebesgue’s dominated
convergence theorem (or a direct estimate).

So A contains all finite linear combinations of characteristic
functions of cubes. In particular, it contains all finite rational
linear combinations of characteristic functions of cubes
belonging to a fixed class of dyadic cubes. As this latter set is
dense in Lp and A is closed, we thus have A = Lp, as desired.
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Convolution

Definition
Let f and g be measurable functions on Rn. The convolution f ∗ g of
f and g is defined by

(f ∗ g)(x) =

∫
Rn

f (y)g(x − y) dy

wherever the integral converges.
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Young’s convolution inequality

Theorem (Young’s convolution inequality)

Let p, q and r satisfy 1 ≤ p, q, r ≤ ∞ and

1

p
+

1

q
=

1

r
+ 1.

If f ∈ Lp(Rn) and g ∈ Lq(Rn), then f ∗ g ∈ Lr (Rn) and

‖f ∗ g‖Lr (Rn) ≤ ‖f ‖Lp(Rn)‖g‖Lq(Rn).
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Young’s convolution inequality

Proof: We will only deal with the case q = 1 and r = p. We are thus
given f ∈ Lp, g ∈ L1. We need to show that f ∗ g ∈ Lp and
‖f ∗ g‖Lp ≤ ‖f ‖Lp ‖g‖L1 .

Observe that |f ∗ g | ≤ |f | ∗ |g |. We may thus assume without
loss of generality in the proof that f , g ≥ 0.

Case 1: p = 1.

? Consider the integral

I =

∫
Rn×Rn

f (y)g(x − y) dx dy .

This integral is well-defined as f , g ≥ 0 and the function
G (x , y) = g(x − y) is measurable as a function from Rn × Rn

into R.
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Young’s convolution inequality

Case 1: p = 1.

? Consider I =
∫
Rn×Rn f (y)g(x − y) dx dy .

? By Tonelli’s theorem, we have

I =

∫
Rn

{∫
Rn

f (y) g(x − y) dy
}
dx =

∫
Rn

(f ∗ g)(x) dx

= ‖f ∗ g‖L1 .

I =

∫
Rn

f (y)
{∫

Rn

g(x − y) dx
}
dy =

∫
Rn

f (y)‖g‖L1 dy

= ‖f ‖L1‖g‖L1 .

? So ‖f ∗ g‖L1 = ‖f ‖L1‖g‖L1 .
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Young’s convolution inequality

Case 2: p =∞. This case is easy, as

(f ∗ g)(x) =

∫
Rn

f (y) g(x − y) dy

≤
∫
Rn

‖f ‖L∞ g(x − y) dy = ‖f ‖L∞ ‖g‖L1 .

Case 3: 1 < p <∞.

? We start by writing

|(f ∗ g)(x)| =

∫
Rn

[f (y)g(x − y)
1
p ][g(x − y)

1
p′ ] dy

and applying Hölder’s inequality to the above.
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Young’s convolution inequality

Case 3: 1 < p <∞.

? |(f ∗ g)(x)| =
∫
Rn [f (y)g(x − y)

1
p ][g(x − y)

1
p′ ] dy .

? So

|(f ∗ g)(x)| ≤
{∫

Rn

f (y)pg(x − y)] dy
}1/p{∫

Rn

g(x − y) dy
}1/p′

= [(f p ∗ g)(x)]1/p‖g‖1/p′

L1 .

? It follows that

‖f ∗ g‖Lp =
{∫

Rn

|(f ∗ g)(x)|p dx
}1/p

≤
{∫

Rn

(f p ∗ g)(x) dx
}1/p
‖g‖1/p′

L1

= ‖f p ∗ g‖1/p
L1 ‖g‖

1/p′

L1
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Young’s convolution inequality

Case 3: 1 < p <∞.

? ‖f ∗ g‖Lp ≤ ‖f p ∗ g‖
1/p
L1 ‖g‖

1/p′

L1 .
? So by Case 1,

‖f ∗ g‖Lp ≤
[
‖f p‖L1‖g‖L1

]1/p
‖g‖1/p′

L1

= ‖f ‖Lp‖g‖L1 .
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Some notations

If α = (α1, . . . , αn) ∈ Nn is a multi-index, we write
|α| = α1 + . . . + αn.

If f is a function and α = (α1, . . . , αn) is a multi-index, we write
∂αf = ∂α1

x1
. . . ∂αn

xn f .

For k ≥ 0, C k(Rn) =
{

continuous f : Rn →

R such that ∂αf exists and is continuous whenever|α| ≤ k
}

.

C k
c (Rn) =

{
f ∈ C k(Rn) which has compact support

}
. Recall

that, for a continuous function f ,

Supp(f ) = Support of f = {f (x) 6= 0}.
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Convolution with a function in C 0
c (Rn)

Lemma
If f ∈ Lp(Rn), 1 ≤ p ≤ ∞, and g ∈ C 0

c (Rn), then f ∗ g ∈ C 0(Rn).

Proof:

Fix some x ∈ Rn. We need to show that
f ∗ g(x + z)− f ∗ g(x)→ 0 as z → 0.

We compute

f ∗ g(x + z)− f ∗ g(x)

=

∫
Rn

f (y)g(x + z − y) dy −
∫
Rn

f (y)g(x − y) dy

=

∫
Rn

f (y)[g(x + z − y)− g(x − y)] dy .
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Convolution with a function in C 0
c (Rn)

Proof:
f ∗ g(x + z)− f ∗ g(x) =

∫
Rn f (y)[g(x + z − y)− g(x − y)] dy .

Since g ∈ C 0
c (Rn), g ≡ 0 outside of some big ball BR centered

at 0. Then, for |z | < R ,

f ∗g(x+z)−f ∗g(x) =

∫
|x−y |≤2R

f (y)[g(x+z−y)−g(x−y)] dy .

Note that as g is continuous, it is uniformly continuous on B̄3R .
Thus, for any given ε > 0, there exists small δ ∈ (0,R) such that

|g(x + z − y)− g(x − y)| ≤ ε

whenever|z | ≤ δ and |x − y | ≤ 2R .

So when |z | ≤ δ, we have

|f ∗ g(x + z)− f ∗ g(x)| ≤ ε

∫
|x−y |≤2R

|f (y)| dy .
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Convolution with a function in C 0
c (Rn)

Proof:

So when |z | ≤ δ, we have

|f ∗ g(x + z)− f ∗ g(x)| ≤ ε‖f ‖L1({|x−y |≤2R})

≤ ε‖f ‖Lp(Rn)‖1‖Lp′ ({|x−y |≤2R})

= CnR
n/p′‖f ‖Lpε.

Since the right side can be made arbitrarily small, this precisely
means that f ∗ g(x + z)− f ∗ g(x)→ 0 as z → 0, i.e. f ∗ g is
continuous.
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Differentiation rule for convolution

Lemma

If f ∈ Lp(Rn), 1 ≤ p ≤ ∞, and g ∈ C k
c (Rn) for some k ≥ 1, then

f ∗ g ∈ C k(Rn) and

Dα(f ∗ g)(x) = (f ∗ Dαg)(x) for all multi-index α with |α| ≤ k .

Proof

We will only consider the case k = 1. The general case can be
proved by applying the case k = 1 repeatedly.
Suppose that g ∈ C 1

c (Rn). Fix a point x and consider
∂x1(f ∗ g)(x). We need to show that

lim
t→0

(f ∗ g)(x + te1)− f ∗ g(x)

t︸ ︷︷ ︸
=:D.Q.(x ,t)

= (f ∗ ∂x1g)(x).
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Differentiation rule for convolution

Proof

We have

D.Q.(x , t) =

∫
Rn

f (y)
g(x − y + te1)− g(x − y)

t
dy .

As t → 0, the integrand converges to f (y)∂x1g(x − y). We
would like to show that the above integral converges to∫

Rn

f (y)∂x1g(x − y) dy = (f ∗ ∂x1g)(x).
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Differentiation rule for convolution

Proof

As before, if the support of g is contained in BR , then, for
|t| < R ,

D.Q.(x , t) =

∫
|x−y |≤2R

f (y)
g(x − y + te1)− g(x − y)

t
dy .

When |x − y | ≤ 2R and |t| < R , we have |x − y + te1| ≤ 3R .
Hence

|g(x − y + te1)− g(x − y)|
|t|

≤ max
B̄3R

|∂x1g | =: M .

So the integrand above satisfies

|integrand| ≤ M |f (y)|.
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Differentiation rule for convolution

Proof

So we have, for |t| ≤ R ,

D.Q.(x , t) =

∫
|x−y |≤2R

f (y)
g(x − y + te1)− g(x − y)

t
dy

where
? integrand→ f (y)∂x1g(x − y) as t → 0.
? |integrand| ≤ M|f (y)|, which belongs to L1({|x − y | ≤ 2R}), as

f ∈ Lp(Rn).

By Lebesgue’s dominated convergence theorem, we thus have

lim
t→0

D.Q.(x , t) =

∫
|x−y |≤2R

f (y)∂x1g(x − y) dy

=

∫
Rn

f (y)∂x1g(x − y) dy = (f ∗ ∂x1g)(x).
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Differentiation rule for convolution

Proof

We conclude that ∂x1(f ∗ g) exists and is equal to f ∗ ∂x1g .

By the previous lemma, we have that f ∗ ∂x1g is continuous. So
∂x1(f ∗ g) is continuous. Applying this to all partial derivatives,
we conclude that f ∗ g ∈ C 1(Rn).
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Approximation of identity

A family of “kernels” {%ε : Rn → R}ε>0 is called an
approximation of identity if

f ∗ %ε“→ ”f as ε→ 0,

where the meaning of the convergence depends on the context.

Loosely speaking, it means that the operators Tε defined by
Tεf = f ∗ %ε “approximates” the identity operator.
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Approximation of identity in continuous settings

Theorem (Approximation of identity)

Let % be a non-negative function in C∞c (Rn) such that
∫
Rn % = 1. For

ε > 0, let

%ε(x) =
1

εn
%
(x
ε

)
.

If f ∈ C (Rn), then f ∗ %ε converges uniformly on compact subsets of
Rn to f .

More on terminologies:

A family (%ε) as in the statement is called a family of ‘mollifiers’.

The family (f ∗ %ε) is called a regularization of f by mollification.
Note that since %ε ∈ C∞c (Rn), we have that f ∗ %ε ∈ C∞(Rn).
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Approximation of identity in continuous settings

Proof:

Let us first consider pointwise convergence, i.e. for every x there
holds:

(f ∗ %ε)(x) =

∫
Rn

f (y)%ε(x − y) dy
ε→0−→ f (x).

The idea is to convert f (x) into an integral as well. For this we
use the identity∫

Rn

%ε(x − y) dy =

∫
Rn

%ε(z) dz =

∫
Rn

%(w) dw = 1.

Hence

f (x) =

∫
Rn

f (x)%ε(x − y) dy .
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Approximation of identity in continuous settings

Proof:

So we need to show∫
Rn

[f (x)− f (y)]%ε(x − y) dy
ε→0−→ 0.

By hypotheses, % vanishes outside of some ball BR centered at
the origin. So %ε(x − y) = 0 when |x − y | ≥ εR . It follows that∣∣∣ ∫

Rn

[f (x)− f (y)]%ε(x − y) dy
∣∣∣

≤ sup
{y :|x−y |≤εR}

|f (x)− f (y)|
∫
|x−y |≤εR

%ε(x − y) dy

= sup
{y :|x−y |≤εR}

|f (x)− f (y)| ε→0−→ 0.
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Approximation of identity in continuous settings

Proof:

Now we turn to prove the uniform convergence on compact sets,
i.e. for every given compact set K , we need to show

sup
x∈K

∣∣∣(f ∗ %ε)(x)− f (x)
∣∣∣ ε→0−→ 0.

As before, this is equivalent to

sup
x∈K

∣∣∣ ∫
Rn

[f (x)− f (y)]%ε(x − y) dy
∣∣∣ ε→0−→ 0,

which can be turned into

sup
x∈K

∣∣∣ ∫
{y :|x−y |≤εR}

[f (x)− f (y)]%ε(x − y) dy
∣∣∣ ε→0−→ 0,
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Approximation of identity in continuous settings

Proof:

We need to show

Aε := sup
x∈K

∣∣∣ ∫
{y :|x−y |≤εR}

[f (x)− f (y)]%ε(x − y) dy
∣∣∣ ε→0−→ 0,

In the same way as before, we have

Aε ≤ sup
x∈K

sup
{y :|x−y |≤εR}

|f (x)− f (y)|.

Note that if K ⊂ BR′ , ε ≤ 1, x ∈ K and |x − y | ≤ εR , then
? |x | ≤ R ′ ≤ R + R ′,
? |y | ≤ |x |+ |y − x | ≤ R + R ′.

So
Aε ≤ sup

{|x |,|y |≤R+R′,|x−y |≤εR}
|f (x)− f (y)| ε→0−→ 0,

in view of the uniform continuity of f on BR+R′ .
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Approximation of identity in Lipschitz settings

Theorem (Approximation of identity)

Let % be a non-negative function in C∞c (Rn) such that
∫
Rn % = 1. For

ε > 0, let

%ε(x) =
1

εn
%
(x
ε

)
.

If f ∈ C 0,1(Rn), i.e. there exists L ≥ 0 such that

|f (x)− f (y)| ≤ L|x − y | for all x , y ∈ Rn,

then, for some constant C > 0 depending only on the choice of %,

sup
x∈Rn
|f ∗ %ε(x)− f (x)| ≤ CLε.

Luc Nguyen (University of Oxford) C4.3 – Lectures 3-4 MT 2022 34 / 50



Approximation of identity in Lipschitz settings

Proof: Following the same argument as before, we have

sup
x∈Rn

∣∣∣(f ∗ %ε)(x)− f (x)| = sup
x∈Rn

∣∣∣ ∫
Rn

[f (x)− f (y)]%ε(x − y) dy
∣∣∣

≤ sup
x∈Rn

sup
{y :|x−y |≤εR}

|f (x)− f (y)|

≤ sup
x∈Rn

sup
{y :|x−y |≤εR}

L|x − y |

≤ LεR .
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Approximation of identity in Lp settings

Theorem (Approximation of identity)

Let % be a non-negative function in L1(Rn) such that
∫
Rn % = 1. For

ε > 0, let

%ε(x) =
1

εn
%
(x
ε

)
.

If f ∈ Lp(Rn) for some 1 ≤ p <∞, then

lim
ε→0
‖f ∗ %ε − f ‖Lp(Rn) = 0.
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f ∗ %ε 6→ f in L∞

Remark
There exist f ∈ L∞(Rn) and % ∈ C∞c (B1(0)) such that f ∗ %ε does
not converge to f in L∞.

Take f = χB1(0).

Then

f ∗ %ε(x) =

∫
B1(0)

%ε(x − y) dy

=

∫
B1(x)

%ε(z) dz

=

∫
B1(x)∩Bε(0)

%ε(z) dz .
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f ∗ %ε 6→ f in L∞

f ∗ %ε(x) =
∫
B1(x)∩Bε(0)

%ε(z) dz .

|x | < 1− ε |x | > 1 + ε |x | = 1

ε

0 1x

ε

0 1x

ε

0 1x

f ∗ %ε(x) = 1 f ∗ %ε(x) = 0 f ∗ %ε(x) ∈ [0, 1]
→ 1

2
in symmetry,

i.e. % = %(|x |)
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f ∗ %ε 6→ f in L∞

We now take some % of the form %(x) = %(|x |) such that, in
addition to the condition ‖%‖L1 = 1, we have∫

B1/4(p)

%(z) dz = c0 ∈ (0, 1) for all |p| = 1/2.

Consider 1 < |x | < 1 + ε/4.

ε

0 1x

? B1(x) ∩ Bε(0) contains a ball
Bε/4(pε) with |pε| = ε/2.

? So f ∗ %ε(x) ≥
∫
Bε/4(pε)

%ε(z) dz =

c0 ∈ (0, 1).

? As f (x) = 0 here, we thus have

‖f ∗ %ε − f ‖L∞ ≥ c0 6→ 0.
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Approximation of identity in Lp settings

Theorem (Approximation of identity)

Let % be a non-negative function in L1(Rn) such that
∫
Rn % = 1. For

ε > 0, let

%ε(x) =
1

εn
%
(x
ε

)
.

If f ∈ Lp(Rn) for some 1 ≤ p <∞, then

lim
ε→0
‖f ∗ %ε − f ‖Lp(Rn) = 0.
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Approximation of identity in Lp settings

Proof

Let fε(x) := f ∗ %ε(x). Then

fε(x) := f ∗%ε(x) =

∫
Rn

f (y)%ε(x−y) dy=

∫
Rn

f (x − y)%ε(y) dy .

Recall that, as
∫
Rn %ε = 1, we have

f (x) =

∫
Rn

f (x)%ε(y) dy .

Hence

|fε(x)− f (x)|≤
∫
Rn

|f (x − y)− f (x)||%ε(y)|dy

=

∫
Rn

|f (x − y)− f (x)||%ε(y)|
1
p |%ε(y)|

1
p′ dy .
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Approximation of identity in Lp settings

Proof

|fε(x)− f (x)| ≤
∫
Rn |f (x − y)− f (x)||%ε(y)|

1
p |%ε(y)|

1
p′ dy .

Applying Hölder’s inequality, the above is less than or equal to

≤
{∫

Rn

|f (x − y)− f (x)|p|%ε(y)| dy
} 1

p
{∫

Rn

|%ε(y)| dy
} 1

p′

=
{∫

Rn

|f (x − y)− f (x)|p|%ε(y)| dy
} 1

p
.

Integrating and using Tonelli’s theorem,

‖fε − f ‖pLp≤
∫
Rn

∫
Rn

|f (x − y)− f (x)|p|%ε(y)| dy dx

=

∫
Rn

|%ε(y)|
{∫

Rn

|f (x − y)− f (x)|p dx
}
dy .
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Approximation of identity in Lp settings

Proof

‖fε − f ‖pLp ≤
∫
Rn |%ε(y)|

{∫
Rn |f (x − y)− f (x)|p dx

}
dy .

In other words,

‖fε − f ‖pLp ≤
∫
Rn

|%ε(y)|‖τ−y f − f ‖pLpdy .

If we had that Supp(%) ⊂ BR , then Supp(%ε) ⊂ BεR , and so

‖fε − f ‖pLp ≤ sup
|y |≤εR

‖τ−y f − f ‖pLp
∫
BεR

|%ε(y)|dy

= sup
|y |≤εR

‖τ−y f − f ‖pLp
ε→0−→ 0,

in view of the theorem on the continuity of the translation
operator in Lp.
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Approximation of identity in Lp settings

Proof

‖fε − f ‖pLp ≤
∫
Rn |%ε(y)|‖τ−y f − f ‖pLpdy .

In the general case where % may or may not have compact
support, we argue as follows: For every fixed R̂ > 0,∫

|y |≤εR̂
|%ε(y)|‖τ−y f − f ‖pLpdy

≤ sup
|y |≤εR̂

‖τ−y f − f ‖pLp
∫
BεR̂

|%ε(y)|dy

≤ sup
|y |≤εR̂

‖τ−y f − f ‖pLp
ε→0−→ 0.
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Approximation of identity in Lp settings

Proof
‖fε − f ‖pLp ≤

∫
Rn |%ε(y)|‖τ−y f − f ‖pLpdy .

∀ R̂ , limε→0

∫
|y |≤εR̂ |%ε(y)|‖τ−y f − f ‖pLpdy = 0.

On the other hand,∫
|y |≥εR̂

|%ε(y)|‖τ−y f − f ‖pLpdy

≤
∫
|y |≥εR̂

|%ε(y)|(‖τ−y f ‖Lp + ‖f ‖Lp)pdy

= 2p‖f ‖pLp
∫
|y |≥εR̂

|%ε(y)|dy= 2p‖f ‖pLp
∫
|z|≥R̂

|%(z)|dz .

As % ∈ L1(Rn), we have by Lebesgue’s dominated convergence
theorem that

lim
R̂→∞

∫
|z|≥R̂

|%(z)|dz = 0.
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Approximation of identity in Lp settings

Proof

‖fε − f ‖pLp ≤
∫
Rn |%ε(y)|‖τ−y f − f ‖pLpdy .

∀ R̂ , limε→0

∫
|y |≤εR̂ |%ε(y)|‖τ−y f − f ‖pLpdy = 0.

∀ ε, limR̂→∞
∫
|y |≥εR̂ |%ε(y)|‖τ−y f − f ‖pLpdy = 0.

We are ready to wrap up the proof: Fix some η > 0 and select
some large R̂ so that∫

|y |≥εR̂
|%ε(y)|‖τ−y f − f ‖pLpdy ≤ η/2.

Then we select small ε0 such that, for all ε < ε0,∫
|y |≤εR̂

|%ε(y)|‖τ−y f − f ‖pLpdy ≤ η/2.
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Approximation of identity in Lp settings

Proof

For ε < ε0,

‖fε − f ‖pLp ≤
∫
Rn

|%ε(y)|‖τ−y f − f ‖pLpdy ≤ η.

As η is arbitrary, we conclude that ‖fε − f ‖Lp(Rn) → 0 as ε→ 0.
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C∞c (Rn) = Lp(Rn)

Theorem

For 1 ≤ p <∞, the space C∞c (Rn) is dense in Lp(Rn).

Proof

Fix f ∈ Lp(Rn). We need to produce fk ∈ C∞c (Rn) such that
fk → f in Lp.

If f has compact support, say Supp(f ) ⊂ BR , this follows from
the previous theorem:
? Take a smooth non-negative function % ∈ C∞c (B1) with∫

Rn % = 1 and define the mollifiers %ε(x) = 1
εn %(x/ε).

? Then fk := f ∗ %1/k ∈ C∞ and fk → f in Lp.
? Recall that fk(x) =

∫
Rn f (y)%1/k(x − y) dy , and observe that

for |x | > R + 1/k , then, by triangle inequality, |y | > R or
|x − y | > 1/k . So f (y)%1/k(x − y) ≡ 0 for those x . So
Supp(fk) ⊂ BR+1/k , and fk ∈ C∞c (Rn).
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C∞c (Rn) = Lp(Rn)

Proof

In general, we produce fk ∈ C∞c (Rn) with ‖fk − f ‖Lp ≤ 1/k as
follows:

? Note that, as R →∞, f χBR
→ f in Lp by Lebesgue’s

dominated convergence theorem.
? So we can pick large Rk such that ‖f χBRk

− f ‖Lp ≤ 1
2k .

? Now f χBRk
has compact support, so by the previous

consideration, there exists a function fk ∈ C∞c (Rn) such that
‖f χBRk

− fk‖Lp ≤ 1
2k .

? Then ‖fk − f ‖Lp ≤ 1/k and so fk → f in Lp as wanted.
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C∞(E ) ∩ Lp(E ) = Lp(E )

Let C∞(E ) =
{
f |E : f ∈ C∞(Rn)

}
.

Theorem

For 1 ≤ p <∞, the space C∞(E ) ∩ Lp(E ) is dense in Lp(E ).

Proof

Fix f ∈ Lp(E ). We will produce functions
fk ∈ C∞(Rn) ∩ Lp(Rn) such that fk |E → f in Lp(E ).

Extend f to f̃ : Rn → R by setting f̃ = 0 in Rn \ E . Then
f̃ ∈ Lp(Rn). By the previous theorem, there exist
fk ∈ C∞c (Rn) ⊂ C∞(Rn) ∩ Lp(Rn) such that fk → f̃ in Lp(Rn).

Now, ∫
E

|fk − f |p dx ≤
∫
Rn

|fk − f̃ |p dx → 0,

and so fk |E → f in Lp(E ).
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