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In the last lecture

Lebesgue spaces.

°
@ Duals of Lebesgue spaces.
@ [? as a Hilbert space.

°

Density of simple functions for Lebesgue spaces.
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This lecture

Weak and weak* convergence in Lebesgue spaces.
Continuity property of translation operators in LP.

Convolution. Young's inequality.

°
°

°

o Differentiation rule for convolution.

@ Approximation of identity in Lebesgue spaces.
°

Density by smooth functions.
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Weak and weak™* convergence in LP

Let X be a normed vector space and X* its dual.

@ We say that a sequence (x,) in X converges weakly to some
x € X if Tx, — Tx forall T € X*. We write x, — x.

@ We say that a sequence (T,) in X* converges weakly* to some
T e X*if T,x — Tx for all x € X. We write T, —~* T.
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Weak sequential compactness

Theorem (Weak sequential compactness in reflexive

Banach spaces)

Every bounded sequence in a reflexive Banach space has a weakly
convergent subsequence.

Corollary

Assume that 1 < p < oo and (fx) is bounded in LP(E). Then there is
a subsequence fi; which converges weakly in LP. In other words, there
exists a function f € LP such that

/fkjg—> / fg for all g € L”'(E).
E E
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Weak* sequential compactness

Theorem (Helly's theorem on weak* sequential

compactness in duals of separable Banach spaces)

Every bounded sequence in the dual of a separable Banach space has
a weakly* convergent subsequence.

Corollary

| \

Assume that (fy) is bounded in L>°(E). Then there is a subsequence
fi, which converges weakly* in L>. In other words, there exists a
function f € L*> such that

/ fig — / fg for all g € L*(E).
E E
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A summary

Dual | Reflexivity | Separability Sequential
compactness
of B(0,1)
LP LP Yes Yes Weak and weak*
l<p<oo
Lt [ No Yes Neither
L oLt No No Weak*
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Continuity of translation operators

Translation operators: For a h € R” and a measurable function
f:R" — R, define 7,f by

(thf)(x) = f(x + h) for all x € R".

Then 75, : LP(R™) — LP(R") is a bounded linear transformation for
1 < p < 0. In fact it is an isometric isomorphism.

Theorem (Continuity in LP)

If f € LP(R") for some 1 < p < oo, then

li f—f n = 0.
s |75 | Lo ()
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Continuity of translation operators

@ In other words, for 1 < p < oo, for every fixed f € LP(R"), the
map h — 7,f is a continuous map from R” into LP(R").

@ The theorem is false for p = o0, e.g. with f = y o with Q being
the unit cube.

@ The theorem does ***NOT*** assert that the maps h— 74 is a
continuous map from R” into .Z(LP(R"), LP(R")). In fact,

HTh - Ing(Lp(RnLLp(Rn)) Z 21/p when h 7§ 0.
* Let r=1h|/4 and let f = c,,r*”/pXBr(o) where ¢, is chosen such

that ||f]|,» = 1.
* Then 7,f and f has disjoint support. So

1/p
I7af = Fllio = {mnf 15 + I1F15 ) = 247,
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Continuity of translation operators

Proof:
@ Let &/ denote the set of functions f in LP such that
\|thf — fl||,» — 0 as |h| — 0.
@ ltisclear thatif f,g € o/ then f + g € &/, and Af € &/ for any
A € R. So 7 is a vector subspace of LP.
@ We claim that <7 is closed in LP, i.e. if (fx) C o/ and fy — f in
LP, then f € /. Indeed, by Minkowski's inequality, we have

I7hf — flle < lITnfc — fille + (|70 — Tnf|le + [ — e
= ||Thfk — kaLp + 2||fk — f”Lp.

Now, if one is given an € > 0, one can first select large k such
that ||fx — f|.r < /3, and then select 6 > 0 such that
HThfk — kaLp < 6/3 for all |h| < (5, so that

| 7nf — f||» < & for all |A| < 6.
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Continuity of translation operators

@ So &7 is a closed vector subspace of LP.

@ Now, observe that if Q is a cube in R”, then
IThxo — Xollr — 0 as |h| — 0, by e.g. Lebesgue's dominated
convergence theorem (or a direct estimate).

@ So &/ contains all finite linear combinations of characteristic
functions of cubes. In particular, it contains all finite rational
linear combinations of characteristic functions of cubes
belonging to a fixed class of dyadic cubes. As this latter set is
dense in LP and &7 is closed, we thus have .o/ = LP, as desired.
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Convolution

Definition
Let f and g be measurable functions on R"”. The convolution f x g of
f and g is defined by

(f*xg)(x) = / f(y)g(x —y)dy

wherever the integral converges.
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Young's convolution inequality

Theorem (Young's convolution inequality)
Let p, q and r satisfy 1 < p,q,r < oo and

If f € LP(R") and g € LY(R"), then f x g € L"(R") and

| *gllr@wey < N llern)l| &1 Lo(rn)-
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Young's convolution inequality

Proof: We will only deal with the case g =1 and r = p. We are thus
given f € LP, g € L'. We need to show that f x g € L? and
1« gllee < [If]ler [0
@ Observe that |f x g| < |f| % |g|. We may thus assume without
loss of generality in the proof that f,g > 0.
o Case1: p=1.
* Consider the integral

1= [ el y)dedy.
R xR

This integral is well-defined as f, g > 0 and the function
G(x,y) = g(x — y) is measurable as a function from R"” x R"
into R.
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Young's convolution inequality

@ Case 1: p=1.

* Consider | = [, pn F(y)g(x — y) dx dy.
* By Tonelli's theorem, we have

1= [ { [ fmetx-narfac= [ (Fre)0ox

= [If * gl

=[] [ e-nacdar = [ ilelay

= [IFllellgll e

* So [[fx gl = lIfllllgll
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Young's convolution inequality

o Case 2: p = oo. This case is easy, as
(F # g)(x) = / Fy) g(x — y) dy
< / 1l g(x — y) dy = |Flli= g

o Case 3: 1 < p < .
* We start by writing

(7= )1 = [ [F)elx =) llec )7 1 dy

and applying Holder's inequality to the above.
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Young's convolution inequality

o Case 3: 1 < p < 0.

< ()1 ol F)8(x = y)?1lg(x — )7 ] dy.

I(f * g)(x)| < / f(y x—y)]dy}l/p{/Rng(x—y)dy}l/pl
[(F7 = ) ()P g1

* It follows that

Il ={ [ 167+ g)00p o}

<{ [ orad el

1
— |17« g|1Plgl P
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Young's convolution inequality

o Case 3: 1 < p < .

1 1/p’
« |IFxglle < |1FP* gl 2P llelli?

* So by Case 1,

1/p 1/p’
I« gl < [IFellalaln] el

= [[flleellgllpr-

Luc Nguyen (University of Oxford) C4.3 — Lectures 3-4 MT 2022 18/



Some notations

o If = (av,...,a,) € N"is a multi-index, we write
la] = a1+ ...+ ap.
e If fis a function and a = («, . .., @,) is a multi-index, we write

9°F = 0 9ot
e For k>0, CK(R") = {continuous f:R"—

R such that 0*f exists and is continuous whenever|a| < k}.

o CKR") = {f € C*(R") which has compact support}. Recall
that, for a continuous function f,

Supp(f) = Support of f = {f(x) # 0}.
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Convolution with a function in C°(IR")

Iff € LlP(R"), 1< p< oo, and g € CO(R"), then f x g € CO(R").

Proof:

@ Fix some x € R". We need to show that
frxg(x+z)—fxg(x)—>0asz—0.

@ We compute
fxg(x+2z)—fxg(x)
= /n fly)gx+z—y) dy—/n f(y)g(x —y)dy

=L fy)le(x+z—y)—g(x—y)ldy.
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Convolution with a function in C°(IR")

Proof:
o frg(x+2z)—frg(x)= [pf(Vgx+z—y)—gx—y)dy.
e Since g € CX(R"), g = 0 out5|de of some big ball Br centered
at 0. Then, for |z] < R,
Frglcrs)~Fog() = [ f0lalerzy) sl
x—y|<2R

o Note that as g is continuous, it is uniformly continuous on Bsg.
Thus, for any given £ > 0, there exists small 6 € (0, R) such that

[g(x+z-y)—glx—y) <e
whenever|z| < § and |x — y| < 2R.

@ So when |z| < §, we have

\f*g<x+z)—f*g<x)\s6/ ()] dy.

[x—y|<2R
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Convolution with a function in C°(IR")

Proof:
@ So when |z| < 4§, we have

If * g(x +2z) — f*g(x)| < ellfllgx—yl<2ry)
< e[| o(n)

U e (1x—y1<2r))
= C,R"P'||f||oe.

@ Since the right side can be made arbitrarily small, this precisely
means that f x g(x +z) — f*xg(x) > 0asz—0,ie fxgis
continuous.
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Differentiation rule for convolution

If f € LP(R"),

1< p<oo, and g € CK(R") for some k > 1, then
fxge CKR") and
) =

D(f x g)(x

Proof
@ We will only consider the case k = 1. The general case can be
proved by applying the case k = 1 repeatedly.

@ Suppose that g € C}(R"). Fix a point x and consider
Oy, (f % g)(x). We need to show that

m (f xg)(x + ter) — f x g(x)
t—0 t
:ZD.Z?,.(X,f)

(f x D“g)(x) for all multi-index v with || < k.

= (f % 0x8)(x).

s
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Differentiation rule for convolution

Proof
o We have

D.Q.(x.t) = / f(y)g(x -y + te;) —g(x—y) dy.

As t — 0, the integrand converges to f(y)0y,g(x —y). We
would like to show that the above integral converges to

/ ()80~ y) dy = (F 0,8)(x).
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Differentiation rule for convolution

Proof
@ As before, if the support of g is contained in Bg, then, for
It| < R,
X—y+te) —glx —
Ix—y|<2R t

@ When |[x — y| <2R and |t| < R, we have |x — y + te;| < 3R.
Hence

lg(x —y +ter) — g(x —y)|
]

< max |0y, g| =: M.
Bs

R

So the integrand above satisfies

lintegrand| < M|f(y)].
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Differentiation rule for convolution

Proof
@ So we have, for |t| < R,

D.Q.(x. t) = /l_ » f(y)g(x —y+te)—g(x—y) dy

t

where
* integrand — f(y)0x,g(x —y) as t — 0.
x |integrand| < M|f(y)|, which belongs to L!({|x — y| < 2R}), as
f e LP(R").
@ By Lebesgue's dominated convergence theorem, we thus have

imD.0(x )= [ F(y)oglx—y)dy
[x—y|<2R

t—0

_ / F(y)0ug(x = y)dy = (F + 0,8)(x).
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Differentiation rule for convolution

Proof
@ We conclude that 0,,(f * g) exists and is equal to f * 0, g.

@ By the previous lemma, we have that f x 0,,g is continuous. So
Oy, (f * g) is continuous. Applying this to all partial derivatives,
we conclude that f x g € CY(R").
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Approximation of identity

o A family of “kernels” {o. : R" — R}..¢ is called an
approximation of identity if

fxp."—"fase—0,

where the meaning of the convergence depends on the context.

@ Loosely speaking, it means that the operators T. defined by
T.f = f % o. "approximates” the identity operator.
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Approximation of identity in continuous settings

Theorem (Approximation of identity)

Let ¢ be a non-negative function in C2°(R") such that [, 0= 1. For

e >0, let
(X)_i (’_()
0:() = Zo(2)-

If f € C(R"), then f x o. converges uniformly on compact subsets of
R" to f.

o’

More on terminologies:
@ A family (o.) as in the statement is called a family of ‘mollifiers’.

@ The family (f % o.) is called a regularization of f by mollification.
Note that since o. € C°(R"), we have that f *x o. € C*(R").
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Approximation of identity in continuous settings

Proof:

@ Let us first consider pointwise convergence, i.e. for every x there
holds:

()0 = [ 10)onlx =y dy =2 1)

@ The idea is to convert f(x) into an integral as well. For this we
use the identity

/Rngf(x_y)dy:/R,,QE(z)dZ:/nQ(W)dw:l.

Hence
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Approximation of identity in continuous settings

Proof:

@ So we need to show

e—0

Rn[f(X) — f(y)]o(x —y)dy — 0.

@ By hypotheses, ¢ vanishes outside of some ball Br centered at
the origin. So o.(x —y) = 0 when |x — y| > ¢R. It follows that

< sup [f(x) = f(y)] 0:(x —y)dy
{y:iIx—y|<eR} |x—y|<eR
e—0
= sup |f(x)—f(y)[—0.
{y:Ix—y|<eR}
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Approximation of identity in continuous settings

Proof:
@ Now we turn to prove the uniform convergence on compact sets,
i.e. for every given compact set K, we need to show

e—0

sup ‘(f * 0:)(x) — f(x)| — 0.

xeK

As before, this is equivalent to

0
E— 07

sup | [ [F(x) = F(y)]o-(x — y) dy
xeK R7
which can be turned into

—0
€ 0’

su f(x)—f (x—y)d
ol Wl dy

xeK
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Approximation of identity in continuous settings

Proof:
@ We need to show

ac=sw| [ 70— F el — y) dy| S0,
{y:lx— y\<6R}

xeK

@ In the same way as before, we have

A.<sup  sup  [f(x)—f(y)l
x€K {y:|x—y|<eR}
@ Note that if K C Br, e <1, x € K and |x — y| < ¢R, then

x| <R <R+R

* |y <Ix[+ly —x| <R+ R.

So
e—0
A. < sup [f(x) = f(y)[— 0,

{Ix[,ly|<R+R’,|x—y|<eR}

in view of the uniform continuity of f on Bg g
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Approximation of identity in Lipschitz settings

Theorem (Approximation of identity)

Let ¢ be a non-negative function in C2°(R") such that [, 0= 1. For
>0, let

If f € COY(R™), i.e. there exists L > 0 such that
|f(x) — f(y)| < L|x —y| for all x,y € R",
then, for some constant C > 0 depending only on the choice of o,

sup |f % 0.(x) — f(x)| < ClLe.

x€ER"
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Approximation of identity in Lipschitz settings

Proof: Following the same argument as before, we have

sup |(f * 0:)(x) = f(x)] = sup | [ [f(x) = f(y)]es(x — y) dy

xeRnM xeR" Rn

<sup sup[f(x) = f(y)]
x€RM {y:|x—y|<eR}

<sup sup Llx—y|
x€R" {y:|x—y|<eR}

< LeR.
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Approximation of identity in LP settings

Theorem (Approximation of identity)

Let ¢ be a non-negative function in L'(R") such that [, 0= 1. For
>0, let
1 /x
0:(x) = 5@(5)-
If f € LP(R") for some 1 < p < oo, then

!l‘% ||f * 0 — f”Lp(Rn) = 0
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There exist f € L*(R") and o € C°(B1(0)) such that f  o. does
not converge to f in L*°.

o Take f = XB1(0)-
@ Then
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f*xop.7 fin L[>

o fxp0(x fBl(x )NB-(0) 0:(2) dz.
x| <1—¢ x| >1+¢ x| =
fxo(x)=1 f*o.(x f % 0.(x) € [0,1]
— % in symmetry,
ie. 0= o(|x])
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f*xop.7 fin L[>

@ We now take some g of the form o(x) = o(|x|) such that, in
addition to the condition ||g||;: = 1, we have

/ 0(z)dz = ¢ € (0,1) for all |p| =1/2.
31/4(P)

@ Consider 1 < |x| < 1+¢/4.
* Bi(x) N B-(0) contains a ball
B./a(p-) with |p.| = ¢/2.

D * So fxp:(x) > [, (o) 0-(z) dz =
o G € (0 1)

* As f(x) = 0 here, we thus have

Hf*Qa_ fHLOO Z Co 7L> 0.
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Approximation of identity in LP settings

Theorem (Approximation of identity)

Let ¢ be a non-negative function in L'(R") such that [, 0= 1. For
>0, let
1 /x
0:(x) = 5@(5)-
If f € LP(R") for some 1 < p < oo, then

!l‘% ||f * 0 — f”Lp(Rn) = 0
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Approximation of identity in LP settings

Proof
o Let f.(x) := f % p-(x). Then

2= Frod) = [ ety dr= [ Flx=y)otr)dy

o Recall that, as [, 0. = 1, we have

0= [ Fx)ety) .

@ Hence
|£(x) — f(x)|< g 1f(x — y) — F()|]0-(y)|dy
- /R F(x = y) = F()lo- ()| lo-(y)|7 dy.
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Approximation of identity in LP settings

Proof

1 1
o [£(x) = F() < [ IF(x —y) = FOllo=(v)[7 0 (y)|7 dy.
@ Applying Holder's inequality, the above is less than or equal to

< { [ 1= = 10Pletl ) { [ lotlar)’
—{ [ 1= = FaPleml 8y}
Rn
@ Integrating and using Tonelli's theorem,
IIfE—fII'ZPS/ [(x = y) = F(x)[Plo=(y)] dy dx
n ]Rn
1o [ 17 =) = 700l dcf .
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Approximation of identity in LP settings

Proof
o N1 = I < Jun lo-)I fio 1F(x = y) = F()PP o}y

@ In other words,
~ 1 < [ el ~ Fld

@ If we had that Supp(o) C Bk, then Supp(o.) C B.r, and so

I — 2, < sup 7y f — I, / l0-(y)|dy
eR

ly|<eR
= sup |7 f — %530
ly|<eR

in view of the theorem on the continuity of the translation
operator in LP.
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Approximation of identity in LP settings

Proof

o I = flIf < Janlo-W)IlI7—y f = FlIZ-dy

@ In the general case where o may or may not have compact
support, we argue as follows: For every fixed R > 0,

[ el — g
ly|<eR
< sup [Iryf — flE, / l0-(y)|dy

ly|<eR B.x

f-||p 84}0
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Approximation of identity in LP settings

Proof
o I = FlIls < Jza lo=()ll7—yf = FlITody.
o ¥ R, lim._o [, _.plo-)llITy f — FllZdy = 0.
@ On the other hand,

[ 10l f = fldy

ly|>eR

< / 10017y Fllr + 1F 1)y

y|>eR

— 2|1, /| o.)dy= 27| 7|15 /| 10(2)dz.

y|>eR Z|>R

@ As g € L}(R"), we have by Lebesgue’s dominated convergence

theorem that
lim / lo(z)|dz = 0.
R—oo Jiz|>R
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Approximation of identity in LP settings

Proof
o [Ife =l < Jra loc()lI7—yf = FIITody.
o VR, lim._o f|y|§5;§ lo-(W)Il7—yf = fl|L,dy = 0.

0 V&, liman, foog o) lll7y F — Fl2,dy = 0.
@ We are ready to wrap up the proof: Fix some 1 > 0 and select
some large R so that

/ o) llry f — FliZady < /2

ly|>eR

@ Then we select small gq such that, for all £ < &y,

/ o) ll7y f — FllZdy < /2

ly|<eR
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Approximation of identity in LP settings

Proof

@ For ¢ < g,

I = fliis < 3 oWl f = FllLdy <n.

@ As 7 is arbitrary, we conclude that ||£. — f||,prr) — 0 as € — 0.
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For1 < p < o, the space C2°(R") is dense in LP(R").

Proof

e Fix f € LP(R"). We need to produce f, € C°(R") such that
fk — fin LP.
@ If f has compact support, say Supp(f) C Bg, this follows from
the previous theorem:
» Take a smooth non-negative function p € C2°(B1) with
Jgn 0 =1 and define the mollifiers o-(x) = % o(x/e).
* Then fi :=f x gy € C*° and fk—>fin LP.
* Recall that fi(x) = [p. f(y)o1/k(x — y) dy , and observe that
for |x| > R + 1/k, then, by triangle inequality, |y| > R or
Ix —y| >1/k. So f(y)o1/k(x — y) = 0 for those x. So
Supp(fx) C Bry1/k, and f € C°(R7).

Luc Nguyen (University of Oxford) C4.3 — Lectures 3-4 MT 2022 48 /50



Ce(R") = LP(R")

Proof
o In general, we produce f, € C°(R") with ||fx — f|[.r < 1/k as
follows:

% Note that, as R — o0, fxg, — f in LP by Lebesgue's
dominated convergence theorem.

* So we can pick large Ry such that [|fxg, — f|lr < 5.

* Now fXBRk has compact support, so by the previous
consideration, there exists a function f, € C2°(R") such that
1fxBe, — fillLe < 25

* Then ||fy — f||r < 1/k and so fx — f in LP as wanted.
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C(E)N LP(E) = LP(E)
Let C(E) = {f|E fe COO(R”)}.

For1 < p < oo, the space C*(E) N LP(E) is dense in LP(E).

Proof
e Fix f € LP(E). We will produce functions
fi € C>°(R") N LP(R") such that fx|g — f in LP(E).
@ Extend f to f : R” — R by setting f = 0 in R” \ E. Then
f € LP(R"). By the previous theorem, there exist
fi € C*(R") € C=(R") N LP(R") such that f, — f in LP(R").
@ Now,

/ fi — flPdx < [ |fi — fPdx — 0,
E Rn

and so fy|g — fin LP(E).
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