I describe here in some more detail (and in a hopefully clearer way) an example we discussed in class (at the end of lecture 6), but that is not in the lecture notes.

Definition 1 function $f: \mathbf{C} \rightarrow \mathbf{C}$ is said to be holomorphic at $z=z_{0} \in \mathbf{C}$ if the following limit exists:

$$
\lim \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}
$$

as z tends to z_{0} in the complex plane \mathbf{C}.
This limit is called the complex derivative of f at $z=z_{0}$ and denoted by $f^{\prime}\left(z_{0}\right)$.
For example if $f(z)=z^{n}$ then $f^{\prime}(z)=n z^{n-1}$.
How does this notion relate to that of partial derivatives?
To make sense of this question observe first that the function f can be seen as a complex valued function of 2 real variables by setting:

$$
g(x, y):=f(x+i y)
$$

Conversely, given a complex valued function $g(x, y)$ of 2 real variables x, y we can set $f(z)=g(\Re(z), \Im(z))$.

So the natural question is to understand what are the conditions on a complex valued function $g(x, y)$ for the associated function $f(z)=g(\Re(z), \Im(z))$ to be holomorphic.

The answer is as follows:
Proposition 1 The function $f(z)$ is holomorphic at $z=z_{0}$ if and only if the partial derivatives of g satisfy the equation:

$$
\begin{equation*}
\frac{\partial g}{\partial x}=-i \frac{\partial g}{\partial y} \tag{1}
\end{equation*}
$$

at $(x, y)=\left(x_{0}, y_{0}\right)$, where $z_{0}=x_{0}+i y_{0}$.
Proof: (i) first suppose that f is holomorphic at $z=z_{0}$. Let's compute the partial derivatives of g :

$$
\begin{aligned}
\frac{\partial g}{\partial x} & =\lim _{x \rightarrow x_{0}} \frac{g\left(x, y_{0}\right)-g\left(x_{0}, y_{0}\right)}{x-x_{0}} \\
& =\lim _{x \rightarrow x_{0}} \frac{f\left(x+i y_{0}\right)-f\left(x_{0}+i y_{0}\right)}{x-x_{0}}=\lim _{x \rightarrow x_{0}} \frac{f\left(x+i y_{0}\right)-f\left(x_{0}+i y_{0}\right)}{x+i y_{0}-\left(x_{0}+i y_{0}\right)}=f^{\prime}\left(z_{0}\right)
\end{aligned}
$$

Similarly

$$
\begin{aligned}
\frac{\partial g}{\partial y} & =\lim _{y \rightarrow y_{0}} \frac{g\left(x_{0}, y\right)-g\left(x_{0}, y_{0}\right)}{y-y_{0}} \\
& =\lim _{y \rightarrow y_{0}} \frac{f\left(x+i y_{0}\right)-f\left(x_{0}+i y_{0}\right)}{y-y_{0}}=\lim _{y \rightarrow y_{0}} i \frac{f\left(x+i y_{0}\right)-f\left(x_{0}+i y_{0}\right)}{x_{0}+i y-\left(x_{0}+i y_{0}\right)}=i f^{\prime}\left(z_{0}\right)
\end{aligned}
$$

Hence (1) holds.
(ii) Conversely, suppose that (1) holds. Pick a curve $z(t)$ through z_{0} and assume that $z(0)=z_{0}$, say, and $z(t)=x(t)+i y(t)$. Consider $f(z(t))$. We need to show that

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{f(z(t))-f\left(z_{0}\right)}{z(t)-z_{0}} \tag{2}
\end{equation*}
$$

exists and is independent of the choice of the curve $z(t)$ through z_{0}. It this is true, then

$$
\frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}
$$

will have a well-defined limit as $z \rightarrow z_{0}$ in the complex plane, and thus f will be holomorphic at $z=z_{0}$.

To check (2), we note that

$$
\lim _{t \rightarrow 0} \frac{f(z(t))-f\left(z_{0}\right)}{z(t)-z_{0}}=\lim _{t \rightarrow 0} \frac{t}{z(t)-z(0)} \frac{f(z(t))-f\left(z_{0}\right)}{t}=\left.\frac{1}{z^{\prime}(0)} \frac{d}{d t}\right|_{t=0} f(z(t))
$$

But by the Chain Rule:

$$
\left.\frac{d}{d t}\right|_{t=0} f(z(t))=\left.\frac{d}{d t}\right|_{t=0} g(x(t), y(t))=\frac{\partial g}{\partial x}\left(x_{0}, y_{0}\right) x^{\prime}(0)+\frac{\partial g}{\partial y}\left(x_{0}, y_{0}\right) y^{\prime}(0)
$$

hence by (1):

$$
\left.\frac{d}{d t}\right|_{t=0} f(z(t))=\frac{\partial g}{\partial x}\left(x_{0}, y_{0}\right)\left(x^{\prime}(0)+i y^{\prime}(0)\right)=\frac{\partial g}{\partial x}\left(x_{0}, y_{0}\right) z^{\prime}(0)
$$

So

$$
\lim _{t \rightarrow 0} \frac{f(z(t))-f\left(z_{0}\right)}{z(t)-z_{0}}=\lim _{t \rightarrow 0} \frac{t}{z(t)-z(0)} \frac{f(z(t))-f\left(z_{0}\right)}{t}=\frac{\partial g}{\partial x}\left(x_{0}, y_{0}\right)
$$

This ends the proof.

