
Chapter 2

Porous media

Groundwater is water which is stored in the soil and rock beneath the surface of
the Earth. It forms a fundamental constituent reservoir of the hydrological system,
and it is important because of its massive and long lived storage capacity. It is the
resource which provides drinking and irrigation water for crops, and increasingly in
recent decades it has become an unwilling recipient of toxic industrial and agricultural
waste. For all these reasons, the movement of groundwater is an important subject
of study.

Soil consists of very small grains of organic and inorganic matter, ranging in
size from millimetres to microns. Di↵erently sized (inorganic) particles have di↵erent
names. Particularly, we distinguish clay particles (size < 2 microns) from silt particles
(2–60 microns) and sand (60 microns to 1 mm). Coarser particles still are termed
gravel.

Viewed at the large scale, soil thus forms a continuum which is granular at the
small scale, and which contains a certain fraction of pore space, as shown in figure
2.1. The volume fraction of the soil (or sediment, or rock) which is occupied by the
pore space (or void space, or voidage) is called the porosity, and is commonly denoted
by the symbol �; sometimes other symbols are used, for example n.

Soils are formed by the weathering of rocks, and are specifically referred to as
soils when they contain organic matter formed by the rotting of plants and animals.
There are two main types of rock: igneous, formed by the crystallisation of molten
lava, and sedimentary, formed by the cementation of sediments under conditions of
great temperature and pressure as they are buried at depth.1 Sedimentary rocks,
such as sandstone, chalk, shale, thus have their porosity built in, because of the pre-
existing granular structure. With increasing pressure, the grains are compacted, thus
reducing their porosity, and eventually intergranular cements bond the grains into a
rock.

Igneous rock tends to be porous also, for a di↵erent reason. It is typically the
case for any rock that it is fractured. Most simply, rock at the surface of the Earth

1There are also metamorphic rocks, which form from pre-existing rocks through chemical changes
induced by burial at high temperatures and pressures; for example, marble is a metamorphic form
of limestone.
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Figure 2.1: A granular porous medium.

is subjected to enormous tectonic stresses, which cause it to fold and fracture. Thus,
even if the rock matrix itself is not porous, there are commonly faults and fractures
within the rock which act as channels through which fluids may flow, and which act
on the large scale as an e↵ective porosity. If the matrix is porous at the grain scale
also, then one refers to the rock as having a dual porosity, and the corresponding flow
models are called double porosity models.

In the subsurface, whether it be soil, underlying regolith, a sedimentary basin,
or oceanic lithosphere, the pore space contains liquid. At su�cient depth, the pore
space will be saturated with fluid, normally water. At greater depths, other fluids
may be present. For example, oil may be found in the pore space of the rocks of
sedimentary basins. In the near surface, both air and water will be present in the
pore space, and this (unsaturated) region is called the unsaturated zone, or the vadose
zone. The surface separating the two is called the piezometric surface, the phreatic
surface, or more simply the water table. Commonly it lies several metres below the
ground surface, and more in arid regions.

2.1 Darcy’s law

Groundwater is fed by surface rainfall, and as with surface water it moves under a
pressure gradient driven by the slope of the piezometric surface. In order to char-
acterise the flow of a liquid in a porous medium, we must therefore relate the flow
rate to the pressure gradient. An idealised case is to consider that the pores consist
of uniform cylindrical tubes of radius a; initially we will suppose that these are all
aligned in one direction. If a is small enough that the flow in the tubes is laminar
(this will be the case if the associated Reynolds number is <

⇠
1000), then Poiseuille
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flow in each tube leads to a volume flux in each tube of q =
⇡a4

8µ
|rp|, where µ is

the liquid viscosity, and rp is the pressure gradient along the tube. A more realistic
porous medium is isotropic, which is to say that if the pores have this tubular shape,
the tubules will be arranged randomly, and form an interconnected network. How-
ever, between nodes of this network, Poiseuille flow will still be appropriate, and an
appropriate generalisation is to suppose that the volume flux vector is given by

q ⇡ �
a4

µX
rp, (2.1)

where the approximation takes account of small interactions at the nodes; the numer-
ical tortuosity factor X >

⇠
1 takes some account of the arrangement of the pipes.

To relate this to macroscopic variables, and in particular the porosity �, we observe
that � ⇠ a2/d2

p
, where dp is a representative particle or grain size so that q/d2

p
⇠

�

✓
�2d2

p

µX

◆
rp. We define the volume flux per unit area (having units of velocity) as

the discharge u. Darcy’s law then relates this to an applied pressure gradient by the
relation

u = �
k

µ
[rp+ ⇢gk̂], (2.2)

where ⇢ is fluid density, g is the acceleration due to gravity, k̂ is a unit vector in the
vertical (upwards) direction, and k is an empirically determined parameter called the
permeability, having units of length squared. The discussion above suggests that we
can write

k =
d2
p
�2

X
; (2.3)

the numerical factor X may typically be of the order of 103, but other assumptions
can be made instead.

To check whether the pore flow is indeed laminar, we calculate the (particle)
Reynolds number for the porous flow. If v is the (average) fluid velocity in the pore
space (what we will call the phase-averaged velocity), then

v =
u

�
; (2.4)

If a is the pore radius, then we define a particle Reynolds number based on grain size
as

Rep =
2⇢va

µ
⇠
⇢|u|dp
µ
p
�
, (2.5)

since � ⇠ a/dp. Suppose (2.3) gives the permeability, and we use the gravitational
pressure gradient ⇢g to define (via Darcy’s law) a velocity scale2; then

Rep ⇠
�3/2

X

 
⇢
p
gdp dp
µ

!2

⇠ 10[dp]
3, (2.6)

2This scale is thus the hydraulic conductivity, defined below in (2.9).
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where dp = [dp] mm, and we have used �3/2/X = 10�3, g = 10 m s�2, µ/⇢ = 10�6

m2 s�2. Thus the flow is laminar for d < 5 mm, corresponding to a gravel. Only for
free flow through very coarse gravel could the flow become turbulent, but for water
percolation in rocks and soils, we invariably have slow, laminar flow.

In other situations, and notably for forced gas stream flow in fluidised beds or in
packed catalyst reactor beds, the flow can be rapid and turbulent. In this case, the
Poiseuille flow balance �rp = µu/k can be replaced by the Ergun equation

�rp =
⇢|u|u

k0 ; (2.7)

more generally, the right hand side will a sum of the two (laminar and turbulent)
interfacial resistances. The Ergun equation reflects the fact that turbulent flow in a
pipe is resisted by Reynolds stresses, which are generated by the fluctuation of the
inertial terms in the momentum equation. Just as for the laminar case, the parameter
k0, having units of length, depends both on the grain size dp and on �. Evidently, we
will have

k0 = dpE(�), (2.8)

with the numerical factor E ! 0 as �! 0.

Hydraulic conductivity

Another measure of flow rate in porous soil or rock relates specifically to the passage
of water through a porous medium under gravity. For free flow, the pressure gradient
downwards due to gravity is just ⇢g, where ⇢ is the density of water and g is the
gravitational acceleration; thus the water flux per unit area in this case is just

K =
k⇢g

µ
, (2.9)

and this quantity is called the hydraulic conductivity. It has units of velocity. A
hydraulic conductivity of K = 10�5 m s�1 (about 300 m y�1) corresponds to a
permeability of k = 10�12 m2, this latter unit also being called the darcy.

2.1.1 Homogenisation

The ‘derivation’ of Darcy’s law can be carried out in a more formal way using the
method of homogenisation. This is essentially an application of the method of multiple
(space) scales to problems with microstructure. Usually (for analytic reasons) one
assumes that the microstructure is periodic, although this is probably not strictly
necessary (so long as local averages can be defined).

Consider the Stokes flow equations for a viscous fluid in a medium of macroscopic
length l, subject to a pressure gradient of order �p/l. For simplicity we will ignore
gravity. If the microscopic (e. g., grain size) length scale is dp, and " = dp/l, then
if we scale velocity with d2

p
�p/lµ (appropriate for local Poiseuille-type flow), length
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with l, and pressure with �p, the Navier-Stokes equations can be written in the
dimensionless form

r.u = 0,

0 = �rp+ "2r2
u, (2.10)

together with the no-slip boundary condition,

u = 0 on S : f(x/") = 0, (2.11)

where S is the interfacial surface. We put x = "⇠ and seek solutions in the form

u = u
(0)(x, ⇠) + "u(1)(x, ⇠) . . .

p = p(0)(x, ⇠) + "p(1)(x, ⇠) . . . . (2.12)

Expanding the equations in powers of " and equating terms leads to p(0) = p(0)(x),
and u

(0) satisfies

r⇠.u
(0) = 0,

0 = �r⇠p
(1) +r

2
⇠
u
(0)

�rxp
(0), (2.13)

equivalent to Stokes’ equations for u
(0) with a forcing term �rxp(0). If wj is the

velocity field which (uniquely) solves

r⇠.w
j = 0,

0 = �r⇠P +r
2
⇠
w

j + ej, (2.14)

with periodic (in ⇠) boundary conditions and u = 0 on f(⇠) = 0, where ej is the
unit-vector in the ⇠j direction, then (since the equation is linear) we have (summing
over j)3

u
(0) = �

@p(0)

@xj

w
j. (2.15)

We define the average flux

hui =
1

V

Z

V

u
(0)dV, (2.16)

where V is the volume over which S is periodic.4 Averaging (2.15) then gives

hui = �k
⇤.rp, (2.17)

3In other words, we employ the summation convention which states that summation is implied
over repeated su�xes, see for example Je↵reys and Je↵reys (1953).

4Specifically, we take V to be the soil volume, but the integral is only over the pore space volume,
where u is defined. In that case, the average hui is in fact the Darcy flux (i. e., volume fluid flux per
unit area).
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where the (dimensionless) permeability tensor is defined by

k⇤
ij
= hwj

i
i. (2.18)

Recollecting the scales for velocity, length and pressure, we find that the dimensional
version of (2.17) is

hui = �
k

µ
.rp, (2.19)

where
k = k

⇤d2
p
, (2.20)

so that k⇤ is the equivalent in homogenisation theory of the quantity �2/X in (2.3).

2.1.2 Empirical measures

While the validity of Darcy’s law can be motivated theoretically, it ultimately relies
on experimental measurements for its accuracy. The permeability k has dimensions
of (length)2, which as we have seen is related to the mean ‘grain size’. If we write
k = d2

p
C, then the number C depends on the pore configuration. For a tubular

network (in three dimensions), one finds C ⇡ �2/72⇡ (as long as � is relatively
small). A di↵erent and often used relation is that of Carman and Kozeny, which
applies to pseudo-spherical grains (for example sand grains); this is

C ⇡
�3

180(1� �)2
. (2.21)

The factor (1��)2 takes some account of the fact that as � increases towards one, the
resistance to motion becomes negligible. In fact, for media consisting of uncemented
(i. e., separate) grains, there is a critical value of � beyond which the medium as a
whole will deform like a fluid. Depending on the grain size distribution, this value
is about 0.5 to 0.6. When the medium deforms in this way, the description of the
intergranular fluid flow can still be taken to be given by Darcy’s law, but this now
constitutes a particular choice of the interactive drag term in a two-phase flow model.
At lower porosities, deformation can still occur, but it is elastic not viscous (on short
time scales), and given by the theory of consolidation or compaction, which we discuss
later.

In the case of soils or sediments, empirical power laws of the form

C ⇠ �m (2.22)

are often used, with much higher values of the exponent (e.g. m = 8). Such behaviour
reflects the (chemically-derived) ability of clay-rich soils to retain a high fraction of
water, thus making flow di�cult. Table 2.1 gives typical values of the permeability
of several common rock and soil types, ranging from coarse gravel and sand to finer
silt and clay.
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k (m2) material
10�8 gravel
10�10 sand
10�12 fractured igneous rock
10�13 sandstone
10�14 silt
10�18 clay
10�20 granite

Table 2.1: Di↵erent grain size materials and their typical permeabilities.

An explicit formula of Carman-Kozeny type for the turbulent Ergun equation
expresses the ‘turbulent’ permeability k0, defined in (2.7), as

k0 =
�3dp

175(1� �)
. (2.23)

2.2 Basic groundwater flow

Darcy’s equation is supplemented by an equation for the conservation of the fluid
phase (or phases, for example in oil recovery, where these may be oil and water). For
a single phase, this equation is of the simple conservation form

@

@t
(⇢�) +r.(⇢u) = 0, (2.24)

supposing there are no sources or sinks within the medium. In this equation, ⇢ is the
material density, that is, mass per unit volume of the fluid. A term � is not present
in the divergence term, since u has already been written as a volume flux (i.e., the �
has already been included in it: cf. (2.4)).

Eliminating u, we have the parabolic equation

@

@t
(⇢�) = r.


k

µ
⇢{rp+ ⇢gk̂}

�
, (2.25)

and we need a further equation of state (or two) to complete the model. The simplest
assumption corresponds to incompressible groundwater flowing through a rigid porous
medium. In this case, ⇢ and � are constant, and the governing equation reduces (if
also k is constant) to Laplace’s equation

r
2p = 0. (2.26)

This simple equation forms the basis for the following development. Before pur-
suing this, we briefly mention one variant, and that is when there is a compressible
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pore fluid (e. g., a gas) in a non-deformable medium. Then � is constant (so k is con-
stant), but ⇢ is determined by pressure and temperature. If we can ignore the e↵ects
of temperature, then we can assume p = p(⇢) with p0(⇢) > 0, and (also neglecting
gravity whose e↵ect for gases is commonly small)

⇢t =
k

µ�
r.[⇢p0(⇢)r⇢], (2.27)

which is a nonlinear di↵usion equation for ⇢, sometimes called the porous medium

equation. If p / ⇢�, � > 0, this is degenerate when ⇢ = 0, and the solutions display
the typical feature of finite spreading rate of compactly supported initial data.

2.2.1 Boundary conditions

The Laplace equation (2.26) in a domain D requires boundary data to be prescribed
on the boundary @D of the spatial domain. Typical conditions which apply are a no
flow through condition at an impermeable boundary, u.n = 0, whence

@p

@n
+ ⇢gn.k̂ = 0 on @D, (2.28)

or a permeable surface condition

p = pa on @D, (2.29)

where for example pa would be atmospheric pressure at the ground surface. Another
example of such a condition would be the prescription of oceanic pressure at the
interface with the oceanic crust.

A more common application of the condition (2.29) is in the consideration of flow
in the saturated zone below the water table (which demarcates the upper limit of
the saturated zone). At the water table, the pressure is in equilibrium with the air
in the unsaturated zone, and (2.29) applies. The water table is a free surface, and
an extra kinematic condition is prescribed to locate it. This condition says that the
phreatic surface is also a material surface for the underlying groundwater flow, so
that its velocity is equal to the average fluid velocity (not the flux): bearing in mind
(2.4), we have

@F

@t
+

u

�
.rF = 0 on @D, (2.30)

if the free surface @D is defined by F (x, t) = 0.

2.2.2 Dupuit approximation

One of the principally obvious features of mature topography is that it is relatively
flat. A slope of 0.1 is very steep, for example. As a consequence of this, it is typically
also the case that gradients of the free groundwater (phreatic) surface are also small,
and a consequence of this is that we can make an approximation to the equations of
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groundwater flow which is analogous to that used in shallow water theory or the lubri-
cation approximation, i. e., we can take advantage of the large aspect ratio of the flow.
This approximation is called the Dupuit, or Dupuit–Forchheimer, approximation.

To be specific, suppose that we have to solve

r
2p = 0 in 0 < z < h(x, y, t), (2.31)

where z is the vertical coordinate, z = h is the phreatic surface, and z = 0 is an im-
permeable basement. We let u denote the horizontal (vector) component of the Darcy

flux, and w the vertical component. In addition, we now denote by r =

✓
@

@x
,
@

@y

◆

the horizontal component of the gradient vector. The boundary conditions are then

p = 0, �ht + u .rh = w on z = h,

@p

@z
+ ⇢g = 0 on z = 0; (2.32)

here we take (gauge) pressure measured relative to atmospheric pressure. The condi-
tion at z = 0 is that of no normal flux, allowing for gravity.

Let us suppose that a horizontal length scale of relevance is l, and that the corre-
sponding variation in h is of order d, thus

" =
d

l
(2.33)

is the size of the phreatic gradient, and is small. We non-dimensionalise the variables
by scaling as follows:

x, y ⇠ l, z ⇠ d, p ⇠ ⇢gd,

u ⇠
k⇢gd

µl
, w ⇠

k⇢gd2

µl2
, t ⇠

�µl2

k⇢gd
. (2.34)

The choice of scales is motivated by the same ideas as lubrication theory. The pressure
is nearly hydrostatic, and the flow is nearly horizontal.

The dimensionless equations are

u = �rp, "2w = �(pz + 1),

r.u+ wz = 0, (2.35)

with
pz = �1 on z = 0,

p = 0, ht = w +rp.rh on z = h. (2.36)

At leading order as "! 0, the pressure is hydrostatic:

p = h� z +O("2). (2.37)
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More precisely, if we put
p = h� z + "2p1 + . . . , (2.38)

then (2.35) implies
p1zz = �r

2h, (2.39)

with boundary conditions, from (2.36),

p1z = 0 on z = 0,

p1z = �ht + |rh|2 on z = h. (2.40)

Integrating (2.39) from z = 0 to z = h thus yields the evolution equation for h in the
form

ht = r. [hrh], (2.41)

which is a nonlinear di↵usion equation of degenerate type when h = 0.
This is easily solved numerically, and there are various exact solutions which

are indicated in the exercises. In particular, steady solutions are found by solving
Laplace’s equation for 1

2h
2, and there are various kinds of similarity solution. (2.41)

is a second order equation requiring two boundary conditions. A typical situation in
a river catchment is where there is drainage from a watershed to a river. A suitable
problem in two dimensions is

ht = (hhx)x + r, (2.42)

where the source term r represents recharge due to rainfall. It is given by

r =
rD
"2K

, (2.43)

where rD is the rainfall rate and K = k⇢g/µ is the hydraulic conductivity. At the
divide (say, x = 0), we have hx = 0, whereas at the river (say, x = 1), the elevation
is prescribed, h = 1 for example. The steady solution is

h =
⇥
1 + r � rx2

⇤1/2
, (2.44)

and perturbations to this decay exponentially. If this value of the elevation of the
water table exceeds that of the land surface, then a seepage face occurs, where water
seeps from below and flows over the surface. This can sometimes be seen in steep
mountainous terrain, or on beaches, when the tide is going out.

The Dupuit approximation is not uniformly valid at x = 1, where conditions of
symmetry at the base of a valley would imply that u = 0 (below the river), and thus
px = 0. There is therefore a boundary layer near x = 1, where we rescale the variables
by writing

x = 1� "X, w =
W

"
, h = 1 + "H, p = 1� z + "P. (2.45)

Substituting these into the two-dimensional version of (2.35) and (2.36), we find

u = PX , W = �Pz, r
2P = 0 in 0 < z < 1 + "H, 0 < X < 1, (2.46)
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with boundary conditions

P = H, "Ht + PXHX =
W

"
+ r on z = 1 + "H,

PX = 0 on X = 0,

Pz = 0 on z = 0,

P ⇠ H ⇠ rX as X ! 1. (2.47)

At leading order in ", this is simply

r
2P = 0 in 0 < z < 1, 0 < X < 1,

Pz = 0 on z = 0, 1,

PX = 0 on X = 0,

P ⇠ rX as X ! 1. (2.48)

Evidently, this has no solution unless we allow the incoming groundwater flux r
from infinity to drain to the river at X = 0, z = 1. We do this by having a singularity
in the form of a sink at the river,

P ⇠
r

⇡
ln
�
X2 + (1� z)2

 
near X = 0, z = 1. (2.49)

The solution to (2.48) can be obtained by using complex variables and the method
of images, by placing sinks at z = ±(2n+ 1), for integral values of n. Making use of
the infinite product formula (Je↵rey 2004, p. 72)

1Y

1

✓
1 +

⇣2

(2n+ 1)2

◆
= cosh

⇡⇣

2
, (2.50)

where ⇣ = X + iz, we find the solution to be

P =
r

⇡
ln


cosh2 ⇡X

2
cos2

⇡z

2
+ sinh2 ⇡X

2
sin2 ⇡z

2

�
. (2.51)

The complex variable form of the solution is

� = P + i =
2r

⇡
ln cosh

⇡⇣

2
, (2.52)

which is convenient for plotting. The streamlines of the flow are the lines  =
constant, and these are shown in figure 2.2.

This figure illustrates an important point, which is that although the flow towards
a drainage point may be more or less horizontal, near the river the groundwater seeps
upwards from depth. Drainage is not simply a matter of near surface recharge and
drainage. This means that contaminants which enter the deep groundwater may
reside there for a very long time.
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Figure 2.2: Groundwater flow lines towards a river at X = 0, z = 1.

A related point concerns the recharge parameter r defined in (2.43). According
to table 2.1, a typical permeability for sand is 10�10 m2, corresponding to a hydraulic
conductivity of K = 10�3 m s�1, or 3⇥ 104 m y�1. Even for phreatic slopes as low as
" = 10�2, the recharge parameter r <

⇠
O(1), and shallow aquifer drainage is feasible.

However, finer-grained sediments are less permeable, and the calculation of r for
a silt with permeability of 10�14 m2 (K = 10�7 m s�1 = 3 m y�1 suggests that
r ⇠ 1/"2 � 1, so that if the Dupuit approximation applied, the groundwater surface
would lie above the Earth’s surface everywhere. This simply points out the obvious
fact that if the groundmass is insu�ciently permeable, drainage cannot occur through
it but water will accumulate at the surface and drain by overland flow. The fact that
usually the water table is below but quite near the surface suggests that the long term
response of landscape to recharge is to form topographic gradients and su�ciently
deep sedimentary basins so that this status quo can be maintained.

2.2.3 Saltwater intrusion in a coastal aquifer

In many dry coastal areas around the world, such as Cyprus, Israel or Australia,
porous aquifers are often used as a means of storing and filtering water for safe use
(e.g. drinking water). Typically, aquifers are chosen above an impermeable bed rock
and are often dammed upstream to control the flow of water. Water flows towards the
sea, with fresh water meeting salty water below the coastline. It is important that the
salt water does not invade the aquifer since this would render the water unsuitable for
supply and put the aquifer out of use for a significant time. Hence, the groundwater
level is frequently monitored at various locations, and controlled by recharging if
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Figure 2.3: Schematic diagram of the long and thin sloping aquifer. The water table
level is indicated with the blue dashed curve. The coordinate system x and z is taken
respectively along and perpendicular to the bedrock, which is assumed to be flat and
↵ is the angle to the horizontal level. (Taken from Mondal et al. (2019)).

necessary. Below the water table the aquifer is fully saturated and approximately dry
above it. Here we will briefly describe and mathematically formulate such a scenario.

We choose a rotated coordinate system such that the x direction is parallel to the
bedrock level, inclined at a constant angle ↵ to the horizontal, and the z direction is
perpendicular to the bedrock. L and H are the length and elevation of the aquifer,
respectively, and tan↵ = H/L (see Fig. 2.3). We denote by (u, w) the velocity
components in the (x, z) directions, and by p the pressure. The flow is governed by
the continuity equation and the Darcy equations as follows:

ux + wz = 0,

u = �
k

µ
(px � ⇢g sin↵) ,

w = �
k

µ
(pz + ⇢g cos↵) . (2.53)

The rate of extraction (sinks) and recharge (sources) is modelled by a function s(x, t)
in the kinematic condition

w = ht + uhx � s(x, t) : z = h(x, t). (2.54)

We also impose the dynamic condition p = pa on z = h, as well as impermeability
w = 0 on z = 0, constant flux (seepage from the dam) Q at x = 0 and that the
groundwater meets the sea level h = Hs at x = L.

After appropriate non-dimensionalisation and using the small angle approximation
sin↵ ⇡ ↵ ⇡ H/L, the governing equations and boundary conditions become

ht + (h(1� hx))x = s,

h(1� hx) = Q̂ : x = 0,

h = Ĥ : x = 1, (2.55)

40



where Q̂ = QL/✏KH2 and Ĥ = Hs/H. In the steady state we can integrate this
system by defining

S =

Z
x

0

s dx, (2.56)

which is the cumulative extraction/recharge. Hence, the dimensionless velocity of the
flow is

1� hx =
Q̂+ S(x)

h
, (2.57)

indicating that the outflow will be positive under the condition

u(x = 1) > 0 if Q̂+ S(1) > 0. (2.58)

This imposes a constraint on the recharge rate S (given seepage rate Q̂) such that
seawater is not flowing into the aquifer (i.e. this allows water management teams
to recharge su�ciently to avoid seawater intrusion). Note, in the simple case where
S = 0 the solution is given implicitly as

h� Ĥ + Q̂ log
h� Q̂

Ĥ � Q̂
= x� 1. (2.59)

It is worth discussing the boundary between the fresh and salty water in more detail.
In general, this boundary is modelled as being sharp (for the sake of simplicity) or
di↵use, due to the transport of salt. In the case of a sharp interface model, there
is a level beneath the water table, below which the water is salty (with uniform salt
concentration) and above which it is completely fresh. In non-rotated coordinates
(i.e. measuring z above sea level), the water table height is denoted hw, whereas the
saltwater table height is denoted hs, such that an Archimedes balance indicates

hs =
⇢w

⇢s � ⇢w
hw ⇡ 40hw, (2.60)

where ⇢s is the density of salty water. Under the small angle approximation we have

hw ⇡ h�

⇣
Ĥ + x� 1

⌘
, (2.61)

where the subtracted quantity is the zero-flow case (u = 0). Hence, we can rearrange
to find the saltwater level

hs =
⇢w

⇢s � ⇢w

h
h�

⇣
Ĥ + x� 1

⌘i
. (2.62)

Again, this serves as a useful tool for estimating the intrusion of saltwater into the
aquifer, and to control recharge rates accordingly to avoid contamination. In prac-
tice, the interface between these two bodies of water is not sharp, because the salt
undergoes both advection and di↵usion. In this case, the Boussinesq approximation
can be applied to the density, such that

⇢ = ⇢w(1 + �c), (2.63)
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Figure 2.4: Schematic diagram of the Ghyben-Herzberg relationship for salt water
intrusion in a coastal aquifer (Taken from Barlow (2003)). In (2.60) the variables
hs, hw correspond to z, h in the image.

where � is an empirical parameter, and c is the concentration of salt which is subject
to the advection-di↵usion equation

ct + u ·rc = Dr
2c, (2.64)

where D is the di↵usion coe�cient. This must be solved in conjunction with the
Darcy equations, typically using a numerical scheme. In such cases, iso-levels for the
concentration indicate the location of dangerous levels of saltwater intrusion.

2.2.4 Carbon capture and storage

Figure 2.5: Illustration of the process of Carbon Capture and Storage (CCS). In this
example, biomass (carbon sink) is combusted and CO2 emissions captured and stored
in a geological reservoir. (taken from Bui et al. (2018)).

The overproduction of carbon dioxide emissions is one of biggest challenges facing
humankind over the next century. As outlined in the Paris Agreement (2015), it is
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necessary to limit global warming to less than 2� C by the year 2100 to avoid the
most dangerous consequences of climate change. To meet these temperature targets
it is imperative to reduce our CO2 emissions quickly, and by as much as possible.

One of the few proposed technological solutions to this problem is carbon capture
and storage (CCS) - that is, capturing CO2 at source (e.g. power plants and factories)
and injecting it into porous geological reservoirs to be sequestered (stored) several
kilometres beneath the ground. Trapping of the CO2 occurs in a variety of di↵erent
ways that take place over vastly di↵erent timescales, as illustrated in Fig. 2.5 (taken
from Krevor et al (2015)). Initially (over the first few years of injection) the CO2 is
trapped by impermeable caprocks preventing it from rising upwards; then over longer
timescales it is trapped by small scale capillary forces and by dissolution within the
surrounding salty brine. Finally, over much longer time scales, the CO2 is converted
into various minerals and stored permanently in the rock.

Figure 2.6: Diagram showing the di↵erent trapping mechanisms for CO2 sequestration
and the timescales over which they take place (taken from Krevor et al. (2015)).

CO2 sequestration is currently being developed as a technology in di↵erent sites
around the world. Many sites still remain in the research phase, whilst others are
being designed and built to be used in conjunction with future power stations. The
most famous case study of CCS is at Sleipner, a natural gas field in the Norwegian
North Sea. Since 1996, after the Norwegian government introduced a significant tax
on carbon emissions, the operators began capturing and sequestering CO2 which is
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Figure 2.7: Schematic diagram of CO2 injected at a rate Q beneath an impermeable
cap rock located at z = 0.

extracted as a by-product of the natural gas (before this tax the CO2 was simply
released into the atmosphere). Between 1996 (when the project began) and 2018,
approximately one million tonnes of CO2 were stored at Sleipner, and it will continue
to be used for many years to come.

The complex flow patterns involved during CO2 sequestration, together with the
multi-scale nature of the process (with rock variations from the millimetre to the kilo-
metre), presents several modelling challenges. Here we discuss several useful math-
ematical tools, such as similarity and asymptotic analyses, to gain insights into the
factors that a↵ect CO2 migration, and to help improve the overall safety and e�ciency
of CO2 sequestration in porous geological reservoirs.

A simple illustration of CO2 injected at a rate Q beneath an impermeable cap
rock is illustrated in Fig. 2.7. For simplicity, we model this in two-dimensions (which
is equivalent to CO2 injected from a line source). The injected CO2 has a lower
density than the surrounding brine, such that ⇢1 < ⇢2. A coordinate system is chosen
with z increasing downwards, such that the impermeable cap rock is located at z = 0,
whereas the shape of the current is given by z = h(x, t) � 0. We consider a symmetric
current and therefore restrict our attention to the half-width x 2 [0, xN(t)], where
xN(t) is the position of the leading edge. We denote the density di↵erence between
fluids as �⇢ = ⇢2 � ⇢1 and the conductivity as K = k�⇢g/µ.

By non-dimensionalising variables according to

x, h ⇠ Q/K, t ⇠ �Q/K2, (2.65)

and applying the Dupuit approximation, the governing system of equations and
boundary conditions become

ht = (hhx)x ,

�hhx = 1, x = 0,

�hhx = 0, x = xN(t),

h = 0, x = xN(t). (2.66)
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One of these boundary conditions can be replaced by the mass conservation condition
Z

xN

0

h dx = t. (2.67)

As discussed previously, such systems often admit self-similar solutions. In this case,
a self-similar solution exists of the form

h = t1/3f(⌘), ⌘ = x/t2/3, (2.68)

for which the system reduces to a BVP of the form

1

3
[f � 2⌘f 0] = [ff 0]0 ,

�ff 0 = 1, ⌘ = 0,

f = 0, ⌘ = ⌘N ,
Z

⌘N

0

f d⌘ = 1, (2.69)

where ⌘N is an unknown constant which is found as part of the solution (i.e. a free
boundary problem).

2.2.5 Numerical solutions to nonlinear di↵erential equations

Whilst we have seen such problems before, we have not yet discussed how a solution
could actually be calculated. In general such problems must be solved numerically,
using a finite di↵erence scheme for example. In such a numerical approach, it is
inconvenient that the size of the numerical domain (⌘N) is unknown, so instead we
introduce a stretched coordinate system

y = ⌘/⌘N , F (y) = f(⌘), (2.70)

such that the system is written as

⌘2
N

3
[F � 2yF 0] = [FF 0]0 ,

�
1

⌘N
FF 0 = 1, y = 0,

F = 0, y = 1,

⌘N

Z 1

0

F dy = 1. (2.71)

Using a finite di↵erence approach, we discretise space into N steps, y1, y2, . . . , yN ,
where y1 = 0, yN = 1 and yi � yi�1 = dy is a constant step size. We denote
the corresponding function values as F1, F2, . . . , FN , and we consider second order
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accurate scheme (i.e. which solves the system up to an accuracy of O(dy2)). There
are many di↵erent possible ways we can choose to approximate derivatives using finite
di↵erence. For example, we could use a forward, central, or backward scheme, which
are each given by

F 0(yi) ⇡
1

2dy
(�3Fi + 4Fi+1 � Fi+2) , (2.72)

F 0(yi) ⇡
1

2dy
(�Fi�1 + Fi+1) , (2.73)

F 0(yi) ⇡
1

2dy
(Fi�2 � 4Fi�1 + 3Fi) , (2.74)

respectively (note, these coe�cients are calculated by considering a Taylor expansion
about the function F evaluated at di↵erent locations). Hence, a consistent way of
writing a derivative matrix D (which operates on the vector F) is:

DF =
1

dy

0

BBBBB@

�3/2 2 �1/2
�1 0 1

. . .
�1 0 1
1/2 �2 3/2

1

CCCCCA

0

BBBBB@

F1

F2
...

FN�1

FN

1

CCCCCA
. (2.75)

In this way, the derivative can be approximated to second order accuracy across the
whole domain without using any more or fewer points than necessary. Of course, we
could have used a higher (or lower) order method, in which case the above matrix
would contain more (or fewer) column entries corresponding to extra terms in the
Taylor series for the derivative.

The vector form of our governing equation is therefore

G :=
⌘2
N

3

⇥
F� 2y �DF

⇤
�D

⇥
F �DF

⇤
= 0, (2.76)

where the notation � indicates the pointwise product (a�b = (a1b1, a2b2, . . . , aNbN)).
This vector equation applies to all points i = 2, 3, . . . N � 1, whereas the boundary
conditions must be applied to the first and last points F1 and FN . These take the
form:

G1 : =
1

⌘N

⇥
F �DF

⇤
1
+ 1 = 0,

GN : = FN = 0. (2.77)

This defines a square system of N equations (G) for N unknowns F. However, this
neglects the fact that ⌘N is also an unknown. Hence, the mass conservation constraint
provides a final equation, and we approximate this using the trapezoidal rule

GN+1 :=
⌘Ndy

2

"
F1 + FN +

N�1X

i=2

2Fi

#
� 1 = 0. (2.78)
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Hence, we now have a (N +1)⇥ (N +1) square system that is well-defined. However,
we note that the governing equations and hence the system is nonlinear, and therefore
cannot be solved by simple matrix inversion.

One way of solving the above system is using Newton’s method. If we write the
combined vector X = (F1, F2, . . . , FN , ⌘N), then Newton’s method provides iterations
for converging to the root of the function G(X). Starting with an initial guess X

0,
iterations are thereafter given by

X
n+1 = X

n
� J

�1(Xn)G(Xn), (2.79)

where J is the Jacobian matrix. The Jacobian is defined (using subscript notation)
as

Jij =
@Gi

@Xj

. (2.80)

There are several ways we could calculate J. In principle, none of the individual
G equations are very complicated, so it’s feasible to calculate these analytically.
However, this is extremely tedious and prone to error, considering the number of
equations involved (i.e. for large N). Hence, one approach is to calculate J using
finite di↵erences, by evaluating G at di↵erent values of X. However, since G and
X are both of length N + 1, this requires (N + 1)2 function evaluations per Newton
iteration. In other words, this becomes intractable for large N . However, for smaller
values of N (as we will see in Problem Sheet 2), this works fine.

Another approach is to use a computer to calculate the derivatives in J for us,
which is known as automatic di↵erentiation. This is an extremely powerful (but
surprisingly seldom used) tool. The idea is that all variables written in computer
code are defined in terms of operations like multiplication, addition, and so on, which
can all be di↵erentiated by the chain and product rules. Even more complicated
functions such as sin(x), exp(x), etc... are usually defined in terms of a Taylor series on
a computer, and therefore are simply defined in terms of addition and multiplication.
In this way, a computer can compile the Jacobian matrix in terms of a very long
list of chain rule operations given in terms of the variables X. This only needs to
be compiled once (before running the code) and can thereafter be evaluated at every
iteration. For example, the 1st row of G is

G1 =
1

2⌘Ndy
F1 (�3F1 + 4F2 � F3) + 1. (2.81)

It is straightforward for a computer to calculate derivatives of G1 using the product
and chain rule. For example, the first entry of the Jacobian (as seen by an automatic
di↵erentiation algorithm) is

@G1

@F1
=

1

2⌘Ndy

@F1

@F1
(�3F1 + 4F2 � F3) +

1

2⌘Ndy
F1

✓
�3

@F1

@F1
+ 0� 0

◆
+ 0. (2.82)

Automatic di↵erentiation is a feature of the Julia programming language, for example
(see Problem Sheet 2).
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Another approach to solve such problems is known as the shooting method. This
is where we convert the above BVP into an IVP and guess the value of ⌘N = ⌘N0 .
First we note that we can write the problem as a system of first order ODE’s,

F 0(y) = �
L

F
,

L0(y) = �
⌘2
N

3

✓
F + 2y

L

F

◆
, (2.83)

where we have introduced the flux function L = �FF 0. At the right hand boundary
the variables satisfy

L(1) = 0, F (1) = 0, lim
y!1

L

F
=

2⌘2
N

3
, (2.84)

where the last of these is found by analysing the governing ODE’s near y ⇡ 1. One
can then discretise the variables F, L, into N points, as before. Then, the solution is
found by marching backwards from y = 1 down towards y = 0 using a suitable finite
di↵erence scheme. For example, a simple first order scheme gives us

Fi�1 = Fi � dy


�
L

F

�

i

,

Li�1 = Li � dy


�
⌘2
N

3

✓
F + 2y

L

F

◆�

i

, (2.85)

which can be evaluated for i = N,N�1, . . . , 2. Hence, the flux value at the origin, L1

will not satisfy the correct condition L1 = ⌘N unless the correct value of ⌘N0 was used
as an initial guess. Equivalently, the same applies to the mass conservation condition
(2.67) (which is (2.78) in discretised form).

This is why the above approach is known as the shooting method. A guess is
chosen for the parameter ⌘N0 , after which one shoots towards the origin (missing
one’s target), and ⌘N is updated accordingly to get closer and closer to the target
iteratively. Essentially, we treat the above approach as a root-finding method for the
function

F(⌘N) = ⌘N

Z 1

0

F dy � 1, (2.86)

where the integral is discretised (e.g. using the trapezoidal rule) and the vector F,
which is calculated numerically using the shooting method, is considered a function
of the parameter ⌘N . Hence, ⌘N can be updated using any root-finding algorithm,
such as Newton’s method for example.

Whilst these examples give two possible approaches to solve nonlinear di↵erential
equations, there are plenty of other methods, such as pseudo-time-stepping, for exam-
ple. Let’s briefly discuss time-stepping methods in general, since these are essential
in most fluid dynamics problems. Suppose that the boundary conditions of the above
problem were modified in such a way that no self-similar solution exists. For example,
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this can be achieved by setting the inflow condition to some function of time Q = Q(t)
which is not necessarily power law (e.g. set by the operator of the CO2 sequestration
site). In this case it is not possible to convert to a set of similarity equations, but
instead we must solve the full PDE system (2.66) numerically. However, there is no
need to fear since we already have nearly all the tools to do this.

First we discretise the shape of the current into a vector of N spatial points,
h. Then, we discretise in time by considering a time step of size dt and marching
forwards from t = 0 to the nth time step value, t = ndt. Approximating the time
derivative using a first order implicit Euler scheme, we get

1

dt

�
h
n+1

� h
n
�
= (Dh

n+1) � (Dh
n+1) + h

n+1
� (D2

h
n+1). (2.87)

This is known as an implicit scheme because the right hand side is evaluated at the
n+1 time step, rather than the n time step, which is far more stable (see any standard
textbook on numerical analysis). Hence, the above can be rearranged into a system
of equations for the unknown vector hn+1, which are

G(hn+1) := h
n+1

� h
n
� dt

⇥
(Dh

n+1) � (Dh
n+1) + h

n+1
� (D2

h
n+1)

⇤
, (2.88)

where h
n is known. This approach is often called the method of lines.

As before, we need to ensure that the boundary conditions are satisfied at x = 0
and x = xN(t). The flux boundary condition at x = 0 is imposed by replacing the
first equation in (2.88) with

G1 :=
⇥
h
n+1

� (Dh
n+1)

⇤
1
+Qn+1 = 0, (2.89)

where Qn+1 is the function Q(t) discretised and evaluated at the n+ 1 time step.
The boundary conditions at x = xN(t) can be dealt with using a special trick,

making use of the fact that the shape function h(x, t) has compact support. In other
words, for x � xN(t) the shape satisfies h = 0, and �hhx = 0 exactly. Therefore, if
we define our numerical domain x 2 [0, L] and discretise into N points hi, then we
can set the initial conditions for the gravity current as

h0
i
=

(
f(xi) : 0 < xi < xN(0),

0 : xN(0)  xi  L,
(2.90)

for some function f which is continuous at the initial nose position x = xN(0).
Henceforth, for all time steps n > 0 we solve the nonlinear square system (2.88)
(with first entry (2.89)) using Newton’s method, and there is no need to impose any
boundary conditions at x = xN . This is because the flux �hhx naturally vanishes
wherever the thickness h drops to zero, i.e. at the moving boundary xN(t). There
is no need to impose the dynamic evolution of xN(t), since this will naturally follow
from conservation of mass (i.e. since the PDE and BC’s are satisfied). This method
can be applied to many di↵usion problems with compact support, and we will explore
further in Problem Sheet 2.
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Figure 2.8: Illustration of gravity current dynamics when CO2 is injected over an
interval.

2.2.6 Injection intervals

Suppose that at some time after injection the flow rate is switched o↵ Q = 0. In this
case, conservation of mass indicates that the gravity current must satisfy

Z
xN (t)

0

h dx = V, (2.91)

for all time thereafter, where V is some constant. It is straightforward to show that
this setup admits a similarity solution of the form

h = taf(⌘), ⌘ = x/tb, (2.92)

where a = �1/3 and b = 1/3. Attention must be paid when considering the non-
dimensionalisation of this model, since Q no longer exists as a dimensional parameter.
Instead, appropriate scalings are given in terms of the volume (per unit width) of the
current

x, h ⇠ V 1/2, t ⇠ �V 1/2/K. (2.93)

We note that the vertical extent of the current h shrinks like ⇠ t�1/3 when Q = 0,
compared to growing like ⇠ t1/3 when Q is a constant. Hence, if we consider an
injection interval in which Q is switched o↵ after some finite time tc, then the motion
of the current changes from a situation in which it is invading new vertical space to
a situation in which it is withdrawing from that vertical space. As we will discuss
later, due to contact line e↵ects between the CO2, rock and water, the invading and
retreating properties of CO2 are di↵erent. In fact, as the CO2 withdraws from pore
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space, it typically leaves a fraction of its mass behind, trapped in the pore spaces due
to small scale capillary forces. This scenario is illustrated in Fig. 2.8, indicating the
region of trapped CO2 as the injection switches o↵. Since the objective of CCS is
to sequester as much CO2 as possible within a reservoir, there is an important and
active area of research in understanding ways to optimally store CO2 by controlling
injection rates in such ways.

2.2.7 Heterogeneities

Figure 2.9: Tullig point, Co. Clare, Ireland. (taken from Woods (2005)).

So far we have only considered spatially uniform rocks with constant permeability
k and porosity �. In practice, all real porous media in the environment have sig-
nificantly non-uniform values of k and �. For example, rocks are often composed of
sedimentary layers, as can be seen on some coastal cli↵s. Such rocks were formed
by the deposition of di↵erent types of sediment over time, resulting in layers with
potentially very di↵erent properties (such as permeability), as shown in Fig. 2.9.
When considering flow of CO2, groundwater, or any such fluid through a heteroge-
neous rock, the resulting patterns can become extremely complex and di�cult to
resolve. Hence, it is often desirable to describe the averaged, or upscaled, properties
of heterogeneous porous media, rather than modelling the precise details of these
complex layer arrangements. Here we will briefly discuss some approaches for upscal-
ing heterogeneous media, and how these heterogeneities can a↵ect the macroscopic
arrangement of the flow.

Consider the two flow scenarios depicted in Fig. 2.10. A constant pressure drop
pb � pa is imposed across a layered rock of width L. We consider separately the flow
perpendicular to, and parallel to a two layer system with permeability values k1 and
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Figure 2.10: Schematic diagram of flow perpendicular (a) and parallel (b) to sedi-
mentary layers in a porous rock.

k2. Starting with the first (perpendicular) case, Darcy’s law states that the horizontal
flow is given by

u = �
k(x)

µ
px. (2.94)

By integrating across the width of the flow region, we get

�p = pb � pa =

Z
L

0

�
µu

k(x)
dx. (2.95)

Meanwhile, the continuity equation ux + wz = 0 indicates that if there is no vertical
flow then u must be a constant. By symmetry (or by considering an infinitely tall
system) we see that w = 0, and hence the above integral simplifies and rearranges to

u = �
k?�p

µL
, (2.96)

where the e↵ective permeability in the perpendicular direction is given by

k? =
2

1/k1 + 1/k2
, (2.97)

which is incidentally the harmonic mean of the two permeability values. Since u is a
constant in this system, it is also equivalent to the average velocity value, and hence
we write u = ū.

In the case of flow parallel to the layers (as shown in Fig. 2.10b), the horizontal
flow is di↵erent in each of the two layers

u1 = �
k1�p

µL
,

u2 = �
k2�p

µL
. (2.98)
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Hence, the average flow across the system is given by

ū = �
kk�p

µL
, (2.99)

where

kk =
1

2
(k1 + k2). (2.100)

We now have two e↵ective permeability values for flow perpendicular and parallel to
the layers. In this way, we can define the ratio between the two as

↵ =
k?
kk

=
4

(1 + )2
, (2.101)

where  = k1/k2. Clearly, ↵() has a unique maximum at  = 1. This indicates that
perpendicular flow is always less than parallel flow for a fixed pressure gradient and
viscosity.

In general, these upscaled permeability values are a good approximation for flow
across or along many-layered systems, so long as the flow length scale h is much larger
than the layer width scale d, such that h/d � 1. In other words, a unidirectional
flow across a system of many layers can be well approximated as a flow through a
homogeneous medium with uniform permeability given by k?.

In the case where the flow has more complex layer structures (i.e. with more than
two permeability values, or with di↵ering layer widths), the above upscaling analysis
can be extended easily. In this case, we have

k? =


1

L

Z
L

0

1

k
dx

��1

,

kk =
1

H

Z
H

0

k dz, (2.102)

where H is the vertical extent of the flow region.
For real sedimentary systems the ratio ↵() has been measured in the range 10�4

�

10�1. Next we will investigate the possible consequences of such a large permeability
ratio. To do so, we consider a porous medium with upscaled properties kk and k? in
the x and z directions. This is known as an anisotropic permeability field, for which
Darcy’s law is written

u = �
1

µ
k ·r [p+ ⇢gz] , (2.103)

where k = diag(kk, k?). In doing so, we have approximated a heterogeneous system
of layers as a single medium with anisotropic properties. As discussed previously,
this is only valid when the flow extends across many layers. Alternatively, (2.103)
is also a valid model for rocks which are genuinely anisotropic, as can happen when
sedimentary layers undergo compaction due to high lithostatic pressures (i.e. the
weight of overlying rock) over very long time scales. In either case, such a model is
relevant to many real flow scenarios in porous media.
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2.2.8 Injection into anisotropic media

Consider the injection Q of CO2 into a two-dimensional anisotropic porous medium
with permeability field k = diag(kk, k?) in the x, z directions. As before, we consider
that the flow is bounded above by a horizontal impermeable cap rock located at z = 0.
Due to the continuity equation, the pressure satisfies

kkpxx + k?pzz = 0, (2.104)

within the injected fluid. By switching to a stretched coordinate system

⇠ = ↵1/4x, ⇣ = ↵�1/4z, (2.105)

the pressure then satisfies the standard Laplace equation,

p⇠⇠ + p⇣⇣ = 0. (2.106)

The pressure solution (which satisfies suitable flux conditions at the origin) is simply
the Green’s function in two dimensions

p = �
Qµ

⇡ke
log r + f(t), (2.107)

where r = (⇠2 + ⇣2)1/2, f(t) is some function of time, and ke = kk↵1/2 = k?↵�1/2 is
the e↵ective permeability. This solution does not include the e↵ects of gravity and is
therefore only valid very close to the injection point. Hence, this is the appropriate
form of the pressure at very early times, when the injected region is very small. This
can be seen by comparing the dimensional pressure scaling associated with (2.107)
(Qµ/ke) and the pressure scale associated with the weight of a current of depth H
(�⇢gH). Hence, (2.107) is valid for currents which satisfy

Qµ

ke
� �⇢gH. (2.108)

In this case, gravity can be ignored and the appropriate boundary condition for the
pressure at the edge of the current is p = pa. By symmetry (since gravity is negligible)
the current must grow radially outwards like a circle of radius R(t). Hence, we have

p� pa = �
Qµ

⇡ke
log

r

R(t)
. (2.109)

The dynamics of the radius are determined by the kinematic condition, which states
that

Ṙ =
ur

�
, (2.110)

where ur is the radial velocity outwards, given by

ur = �
ke
µ

@p

@r

����
r=R(t)

=
Q

⇡R
. (2.111)
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Hence, integrating the above two equations gives

1

2
R2 =

Qt

⇡�
. (2.112)

Note that this equation could also be derived by considering that an injected volume
Qt (per unit depth) must occupy a semicircle of area �⇡R2/2.

In the original coordinate system the radius satisfies

R2 = ⇠2 + ⇣2 = x2↵1/2 + z2↵�1/2. (2.113)

Hence, the shape of the injected flow is actually an ellipse with semi-major and semi-
minor axes

RH = R↵�1/4, RV = R↵1/4. (2.114)

Since ↵  1, the ellipse is always elongated in the horizontal direction (H) and
squashed in the vertical direction (V). Hence, the e↵ect of anisotropy is to create a
long-thin elliptical flow (but not hydrostatic, as is typically assumed for long-thin
flows!).

Next, we consider the e↵ects of gravity. From the earlier analysis (2.108) it is
clear that the e↵ects of gravity are appreciable when

RV ⇡
Qµ

ke�⇢g
=

Q

Ke

, (2.115)

where Ke = ke�⇢g/µ is the e↵ective conductivity. From (2.112),(2.114), this happens
at a time

t =
⇡�Q

2K2
e
↵1/2

. (2.116)

Hence, writing everything in terms of the conductivity in the parallel direction K =
kk�⇢g/µ (which is the most commonly used), we see that the solution regime is
determined by two critical parameter values for RV and t, which are

R⇤
V
= H⇤ :=

Q

↵1/2K
, t⇤ :=

⇡�Q

2↵3/2K2
. (2.117)

The regimes are summarised as follows: At early times t ⌧ t⇤ (or when RV ⌧ H⇤)
the flow is dominated by injection and gravity is negligible; at late times t � t⇤

(or when RV � H⇤) the flow is dominated by gravity. In the latter case, the earlier
gravity current analysis (i.e. (2.66)) is applicable, for which self-similar solutions exist
in which x ⇠ t2/3 and z ⇠ t1/3.

This analysis illustrates that the e↵ect of anisotropy is to delay the time at which
gravity dominates the flow. Indeed for very heterogeneous/anisotropic geological
reservoirs, for which ↵ = O(10�4), the CO2 current may not feel the e↵ects of gravity
until several years after injection begins. This is very important to know, both from
the perspective of e�ciency as well as safety, before selecting a geological reservoir for
carbon storage. Hence, detailed measurements are taken in as many locations as pos-
sible, in conjunction with seismic surveys, to assess the landscape of heterogeneities.
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Figure 2.11: Experiments of glycerol (dyed red) injected into a Hele-Shaw cell, aligned
vertically so gravity acts downwards. The flow is bounded below by an impermeable
substrate.

Despite the simplicity of this problem, we have shown that there exist two separate
self-similar regimes. These are summarised by the horizontal and vertical extents of
the current RH and RV . Hence we have

RH/H
⇤
/

(
(t/t⇤)1/2 : t ⌧ t⇤,

(t/t⇤)2/3 : t � t⇤,

RV /H
⇤
/

(
(t/t⇤)1/2 : t ⌧ t⇤,

(t/t⇤)1/3 : t � t⇤.
(2.118)

Snapshots taken from an experiment of glycerol injected between two glass plates
(known as a Hele-Shaw cell) are shown in Fig. 2.11. This is the inverted version of
a CO2 current since glycerol is heavy compared with the surrounding air, so gravity
causes it to slump downwards. At early times (towards the left of the figure) the
current grows like a semi-circle, whereas at late times (towards the right of the figure)
the current collapses into a classical gravity current, exactly as we have predicted here.

A similar analysis can be performed in three dimensions, assuming an axisymmet-
ric injection. In this case, di↵erent scalings are derived. For example, at early times
we have an ellipsoid with

RH = ↵�1/6R, RV = ↵1/3R, (2.119)

where R = (3Qt/4⇡�)1/3 and the transition scalings

H⇤ =

✓
Q

K

◆1/2

, t⇤ =
2⇡�

3↵

✓
Q

K3

◆1/2

. (2.120)

2.3 Unsaturated soils

Let us now consider flow in the unsaturated zone. Above the water table, water and
air occupy the pore space. If the porosity is � and the water volume fraction per
unit volume of soil is W , then the ratio S = W/� is called the relative saturation. If
S = 1, the soil is saturated, and if S < 1 it is unsaturated. The pore space of an
unsaturated soil is configured as shown in figure 2.12. In particular, the air/water

56


