15.5 Perturbation methods lecture Notes

Introduction

- Impatant to be able to make precise approximations to solutions of problems across apphed mamematics
- Two memods - numerical merrods sot in compention,
but complementary.
$-\left\{\begin{array}{r}\text { Perturbation methods - good fer sithahons where some parameters) } \\ \text { is large or small. } \\ \text { Numerical methods - work best when au r parameters are 0(1). }\end{array}\right.$
- Agreement between the two is reassunng, butcten analytical methods pronde more insight.
- Am a this course: to pronde an introduction to a range of methods that can be used to better understand the nature ct solutions to apple mains problems. Note hat A's more ct an art than a science in many ways - we mu learn the guidelines but experience is everyturng!

Chapter I Algebraic equations
Example suppose we want to solve $x^{2}+\varepsilon x-1=0$ where ε is a small parameter.

In this case, we can solve to give

$$
x=\frac{1}{2}\left[-\varepsilon \pm \sqrt{\varepsilon^{2}+4}\right]=\frac{-\varepsilon}{2} \pm \sqrt{1+\left(\frac{\varepsilon}{2}\right)^{2}}
$$

The binomial theorem gives

$$
x= \begin{cases}+1-\frac{\varepsilon}{2}+\frac{\varepsilon^{2}}{8}-\frac{\varepsilon^{4}}{128}+\cdots & \text { with convergence } \\ -1-\frac{\varepsilon}{2}-\frac{\varepsilon^{2}}{8}+\frac{\varepsilon^{4}}{128}+\cdots & \text { fer }\left|\frac{\varepsilon}{2}\right|<1 \\ \text { ie }|\varepsilon|<2 .\end{cases}
$$

- Most impatant is the 'quality' ct Me expansiai, writhe sense of how good the truncated expansions are at approximating the roots When ε is small.

For $\left.\varepsilon=0.1 \quad x=$\begin{tabular}{lll}
$x=1.0$ \& 1 term \\
\& 0.95 \& 2 terms \\
\& 0.95125 \& 3 terms \\
\& 0.951249 \& 4 terms \\
\& $=0.95124922 \ldots$ \& exact.

 \right\rvert\,

ne arm to get better \\
and better \\
approximations as we \\
tale more terms.
\end{tabular}

Here, we first found the solution and then approximated. But usually we won't know the solution, so we will need to make the approximation first!
1.1 The Rerative method
we want to Reranively find solutions by letting $x_{n+1}=g\left(x_{n} ; \varepsilon\right)$
Then if x^{*} is a root we have $x^{*}=g\left(x^{*} ; \varepsilon\right)$, and if $\left|x_{n}-x^{*}\right| \ll \mid$ we have

$$
\begin{aligned}
x_{n+1}-x^{*} & =g\left(x_{n} ; \varepsilon\right)-x^{*} \\
& =g\left(x^{*}+\left(x_{n}-x^{*}\right) ; \varepsilon\right)-x^{*} \\
& =\underbrace{\left.g\left(x^{*} ; \varepsilon\right)-x^{*}\right)}_{=0}+\left(x_{n}-x^{*}\right) g^{\prime}\left(x^{*} ; \varepsilon\right)+\cdots
\end{aligned}
$$

Hence, whether the Revation converges, and how quichly it converges, depends on $\left|g^{\prime}\left(x^{*} ; \varepsilon\right)\right|$.

For chr example problem, $x^{2}+\Sigma x-1=0$, we take Iferthe the root) $g(x ; \varepsilon)=\sqrt{1-\varepsilon x}$ so that $x_{n+1}=\sqrt{1-\varepsilon x_{n}}$.
we have $g^{\prime}\left(x^{*} ; \varepsilon\right)=\frac{-\varepsilon / 2}{\sqrt{1-\varepsilon x^{*}}} \approx-\frac{\varepsilon}{2}$

Hence the iteration converges - at each wound we get approximately a factor of $\varepsilon / 2$ closer.

Now we need to think about where to start (this mill potentially affect the abying of the Aeration to converge.

A sensible choice fer the stating point, x_{0}, is the solution fer $\varepsilon=0$. Here, we have $x_{0}=1$.
(binomial expansion)

Hence going terward we only need to keep the first two terms: $x_{1}=1-\frac{\varepsilon}{2}$.

$$
\begin{aligned}
x_{2}=\sqrt{1-\varepsilon\left(1-\frac{\varepsilon}{2}\right)} & =1-\frac{\varepsilon}{2}\left(1-\frac{\varepsilon}{2}\right)-\frac{\varepsilon^{2}}{8}\left(1-\frac{\varepsilon}{2}\right)^{2}-\frac{\varepsilon^{3}}{16}\left(1-\frac{\varepsilon}{2}\right)^{3}+\cdots \\
& =1-\frac{\varepsilon}{2}+\frac{\varepsilon^{2}}{8}+\underbrace{0\left(\varepsilon^{2}\right)}_{\text {rect to }}
\end{aligned}
$$

Notes

- At each izeration, more and more tams are correct, but more and more wank is required!
- The only way to check a term is correct is to proceed to the next Aeration and see if it changes.
- Fer fast convergence, we want $\left|g^{\prime}\left(x^{*} ; \varepsilon\right)\right|$ small. Mare generally, we try to choose $g\left(x_{i} \varepsilon\right)$ sit. $g^{\prime}\left(x^{*} ; \varepsilon\right)$ exists and $\left|g^{\prime}\left(x^{*} ; \varepsilon\right)\right| \rightarrow 0$ as $\varepsilon \rightarrow 0$.
- The usual procedure is to place the dominant term on the LH side. (As we will see later, the dominant term can be adjusted by scaling.)
1.2 Expansion method (much more common)

Here, we set $\varepsilon=0$ and find the unperturbed roots $(x= \pm 1)$. Then, we pose an expansion about one of the roots ct the term

$$
\begin{equation*}
x=1+\varepsilon x_{1}+\varepsilon^{2} x_{2}+\varepsilon^{3} x_{3}+\cdots \tag{thenot}
\end{equation*}
$$

need to find the x_{i}, which are independent of ε.
we substitute the expansion into the anginal equation $1 x^{2}+\Sigma x-1=0$)

$$
\left(1+\varepsilon x_{1}+\varepsilon^{2} x_{2}+\varepsilon^{3} x_{3}+\ldots\right)^{2}+\varepsilon\left(1+\varepsilon x_{1}+\varepsilon^{2} x_{2}+\varepsilon^{3} x_{3}+\ldots\right)-1=0
$$

Expand to give

$$
\left.1+2 x_{1} \varepsilon+\left(x_{1}^{2}+2 x_{2}\right) \varepsilon^{2}+12 x_{1} x_{2}+2 x_{3}\right) \varepsilon^{3}+\ldots+\varepsilon+\varepsilon^{2} x_{1}+\varepsilon^{3} x_{2}+\ldots-1=0
$$

whet terms of the same order in ε together:

$$
(1-1)+\left(2 x_{1}+1\right) \varepsilon+\left(x_{1}^{2}+2 x_{2}+x_{1}\right) \varepsilon^{2}+\left(2 x_{1} x_{2}+2 x_{3}+x_{2}\right) \varepsilon^{3}+\ldots=0
$$

Equate wetticients in parers of Σ : The can do this because the ap proximation

$$
\begin{array}{ll}
\varepsilon^{0}: & 1-1=0 \mathrm{~J} \\
\varepsilon^{1}: & 2 x_{1}+1=0 \Rightarrow x_{1}=-\frac{1}{2} \\
\varepsilon^{2}: & x_{1}^{2}+2 x_{2}+x_{1}=0 \Rightarrow x_{2}=\frac{1}{8} \\
\varepsilon^{3}: & 2 x_{1} x_{2}+2 x_{3}+x_{2}=0 \Rightarrow x_{3}=0
\end{array}
$$

Note the expansion method is eascii than the iterahve method when working to high orders. However, we might not know the term of
\square The expansiai a priori-it we use me wrong expansion, the method will break down (we will see such examples (ater on).
1.3 Singular perturbations I Another example where finding perturbation solutions becomes alticult!)

What is a singular perturbation? Consider the problem
$\Sigma x^{2}+x-1=0 \leqslant \operatorname{ter} \varepsilon=0$ there is one root $(x=1)$, but fer $\varepsilon \neq 0$ there are two roots.
This is an example ot a singular perturbation problem in which the imit solution $(\varepsilon=0)$ dithers in an important way from the limit $\varepsilon \rightarrow 0$. (Problems mich are not singular are regular.)
To see what is happening, let's look at the exact solutions:

$$
\varepsilon x^{2}+x-1=0 \quad \Rightarrow \quad x=\frac{1}{2 \varepsilon}[-1 \pm \sqrt{1+4 \varepsilon}]
$$

For $\operatorname{small} \varepsilon$, we can expand the Γ term to give

$$
x=\left\{\begin{array}{l}
1-\varepsilon+2 \varepsilon^{2}-5 \varepsilon^{4}+\cdots \\
-\frac{1}{\varepsilon}-1+\varepsilon-2 \varepsilon^{2}+5 \varepsilon^{4}+\ldots
\end{array}\right\} \begin{array}{r}
\text { rand fer }|4 \Sigma|<1 \\
\text { ie }|\varepsilon|<\frac{1}{4}
\end{array}
$$

\uparrow
This term means mat the second root tends to $x=-\infty$
as $\tau \rightarrow 0$ - this is a key feature of these types of problems.
Let's see What happens when we fry to use the two methods we have looked at so far.

Derative method
$\left.\begin{array}{lll}\text { There are two options (1) } g(x ; \varepsilon)=1-\Sigma x^{2} & \text { (list root) } \\ & \text { (2) } g(x ; \varepsilon)=\frac{1-x}{\Sigma x} & \text { (2nd root) }\end{array}\right\}$ why??

Recall that we need $g^{\prime}(x ; \varepsilon)$ small close to the root fer this to work.
(1) $\frac{d}{d x}\left(1-\varepsilon x^{2}\right)=2 \varepsilon x \leqslant$ his will be small near $x=0$, but wot near $x=-\frac{1}{2}$
(2) $\frac{d}{d x}\left(\frac{r-x}{\varepsilon x}\right)=\frac{-\Sigma}{\varepsilon^{2} x^{2}}<$ This is small near $x=-\frac{1}{\varepsilon}$ but not near $\begin{array}{r}x=0 .\end{array}$

- To do this, we needed an idea of the scale of the root. we will see What to do when this isn't the case later on.

Expansion me Mod
To capture the second root, we take $x=\frac{x_{-1}}{\varepsilon}+x_{0}+\Sigma x_{1}+\ldots$ (one root is $\left.\begin{array}{c}\text { as betere }\end{array}\right)$
substitute into the equation $\left(\Sigma x^{2}+x-1=0\right)$:

$$
\varepsilon\left(\frac{x-1}{\varepsilon}+x_{0}+\varepsilon x_{1}+\cdots\right)^{2}+\left(\frac{x-1}{\Sigma}+x_{0}+\varepsilon x_{1}+\cdots\right)-1=0
$$

Expand: $\frac{1}{2} x_{-1}^{2}+2 x_{-1} x_{0}+\varepsilon\left(2 x_{-1} x_{0}+x_{0}^{2}\right)+\cdots+\frac{1}{\varepsilon} x_{-1}+x_{0}+\varepsilon x_{1}+\cdots-1=0$
whet terms in powers of ε :
singular root
$\frac{1}{\varepsilon}: \quad x_{-1}^{2}+x_{-1}=0 \Rightarrow x_{-1}=\frac{\downarrow}{-1}$ or $0<$ regularrost
$\varepsilon^{0}: \quad 2 x_{-1} x_{0}+x_{0}-1=0 \quad \Rightarrow \quad x_{0}=-1 \quad \mid \quad x_{0}=1$
$\varepsilon^{\prime}: \quad 2 x_{-1} x_{0}+x_{0}{ }^{2}+x_{1}=0 \Rightarrow \underbrace{x_{1}=1}_{\text {singular }} \mid \underbrace{x_{1}=-1}_{\text {regular }}$
Regular root: $x=1-\varepsilon+\cdots$
Singular root : $x=-\frac{1}{\varepsilon}-1+\varepsilon+\ldots$
1.4 Rescaling the equation

For singular problems- a usetulidea is to rescale the anginal equation.
For the prenous problem $\left(\Sigma x^{2}+x-1=0\right)$ we let $x=\frac{x}{\varepsilon}$ so that

$$
X^{2}+X-\varepsilon=0 \quad \leftarrow \text { this is now a regular problem }
$$

\therefore The problem of finding the correct starting pant can be hewed as the problem of tinging the right re-scaling to regularise the singular problem.

There are some chfterent approaches...
1.4.1 systematic approach: general rescaling

Pose a general scale facter and let

Inced this fer both the expansion and Herative approaches)

$$
x=\underbrace{\delta(\varepsilon) X}_{\text {scale factor }} \varlimsup_{\substack{\text { strichycrder } \\ \text { as } \varepsilon \rightarrow 0}}
$$

This grass $\varepsilon \delta^{2} X^{2}+\delta X-1=0$.
We consider the dominant balance in the equation as $\delta(\varepsilon)$ vanes (small \rightarrow large).
(2) $\delta(\varepsilon)=1 \quad \underbrace{\sum \delta^{2} X^{2}}_{\text {small }}+\underbrace{\delta X}_{\sim X}-1=0 \quad \Rightarrow \quad X=1+$ small $\begin{gathered}\text { This is the regular root }\end{gathered}$
(3) $1 \ll \delta(\varepsilon) \ll \frac{1}{\varepsilon} \frac{\varepsilon \delta^{2} x^{2}+\delta X-1}{\delta}=\underbrace{\text { HS/ } \rightarrow x+\text { small }}_{\text {Can colly balance me zero }}$

As we keep increasing δ, we see that the dominance of the of term will be broken when $\delta=\frac{1}{\Sigma}$ (since then $\Sigma \delta^{2} x^{2}$ also relevant).
(4)

$$
\begin{aligned}
\delta(\varepsilon)=\frac{1}{\Sigma} \\
\text { LHS } / \Sigma \delta^{2}
\end{aligned} \frac{\frac{\varepsilon \delta^{2} X^{2}+\delta X-1}{\Sigma \delta^{2}}=X^{2}+X+s m a l l}{\varepsilon \delta^{2}} \sim O(1) \text { and } \frac{1}{\varepsilon \delta^{2}}=0(\varepsilon)
$$

\therefore Balance is $x^{2}+x=x(x+1)=0 \Rightarrow x=-1$ (as per the singular root)
So, it we rescale $x=\frac{X}{\varepsilon}$ then we can find a regular expanstariin x, or, we don't rescale, but include the $\frac{x-1}{\varepsilon}$ term.
(5) $\delta \gg \frac{1}{\varepsilon}$

$$
\begin{aligned}
& \frac{\varepsilon \delta^{2} X^{2}+\delta X-1}{\varepsilon \delta^{2}}=X^{2}+\sin a l+\sin a l l \\
& \frac{\delta}{2 \delta^{2}} \ll 1, \frac{1}{\sum \delta^{2}} \ll 1 \\
& \text { Cannutbalance } \\
& \text { the zero ontherHS } \\
& \text { mich } X \sim O(1)
\end{aligned}
$$

SUMMARY: we proceed by varying of from small to large in order to identify dominant balances.

Scalings that yeld dominant balances are kerown as distinguished limits.
1.4.2 Alternative approach: pairwise comparison

- Pairwise comparison of terms - quicher when you only have a small number of terms!
- To get a sensible answer, we need at least two terns to be in balance.
\uparrow Here $1^{s t}+2^{\text {nd }}, 1^{\text {st }}$ and $3^{\text {rd }}, 2^{\text {nd }}$ and $3^{\text {rd }}$.

$$
\underbrace{2 \delta^{2} X^{c}}_{(1}+\underbrace{\delta X}_{2}-\underbrace{1}_{3}=0
$$

(1) and (2) $\Sigma \delta^{2} \sim \delta \Rightarrow \delta \sim \frac{1}{\varepsilon}$ le $x=\frac{X}{\Sigma} \quad\left(\begin{array}{l}\text { and (1), (2) } \\ \text { domines singular root) } \\ \text { din }\end{array}\right)$
(1) and (3) $2 \delta^{2} \sim 1 \Rightarrow \delta=\frac{1}{\sqrt{\varepsilon}}$ BUT This doesult grve a dominant balance because (2) then
(2) and (3)
(gives regular root)
$\delta \sim 1$ li no rescaling needed. dominates.
(2) , (3) dommate (1)
1.5 Non-integral powers (powers might not always be integers!)

Example

$$
(1-\varepsilon) x^{2}-2 x+1=0 \text { with } \varepsilon \ll 1
$$

we know that $x=\frac{1 \pm \sqrt{\varepsilon}}{1-\varepsilon}=\left(1 \pm \varepsilon^{\frac{1}{2}}\right)\left(1-\varepsilon+\varepsilon^{2}+\cdots\right)$ binomial expansion

$$
=1 \pm \varepsilon^{\frac{1}{2}}-\varepsilon \pm \varepsilon^{\frac{3}{2}}+\cdots
$$

Setting $\Sigma=0$ gives $x=1$ as the double root (sign of danger to come!).
We mill proceed as usual (knowing something mill go wrong) to see What happens.

Pose the expansion $x=1+\Sigma x_{1}+\varepsilon^{2} x_{2}+\ldots$
substitute into the equation $\left((1-\varepsilon) x^{2}-2 x+1=0\right)$

$$
(1-\varepsilon)\left(1+\Sigma x_{1}+\varepsilon^{2} x_{2}+\ldots\right)^{2}-2\left(1+\varepsilon x_{1}+\varepsilon^{2} x_{2}+\ldots\right)+1=0
$$

Expanding:

$$
1+2 x_{1} \varepsilon+\left(2 x_{2}+x_{1}^{2}\right) \varepsilon^{2}+\cdots-\varepsilon-2 x_{1} \varepsilon^{2}+\cdots-2-2 x_{1} \varepsilon-2 x_{2} \varepsilon^{2}+\cdots+1=0
$$

weftiments of parers of ε :
$o\left(\varepsilon^{0}\right): \quad 1-2+1=0 \quad \checkmark /$ (since we started with the correct value, $x=1$, at $\varepsilon=0$).
$O\left(\Sigma^{\prime}\right): \quad 2 x_{1}-1-2 x_{1}=0$ - cannot be satistred by any valnect x_{1} (except $x_{1}=\infty$ in some sense...)

The cause If the onficulty: loon at the exact solution

$$
x=\frac{1}{1 \pm \sqrt{\varepsilon}} \text { - fer the largest root } x=1+\varepsilon^{\frac{1}{2}}+\varepsilon+\varepsilon^{\frac{3}{2}}+\cdots
$$

we owould have expanded in powers of $\varepsilon^{\frac{1}{2}}$!
this is what the $x_{1}=\infty$ constraint is hinting at: the scaung on x_{1} is 500 small...)

And, in retrospect, we could have noriced/gnessed that a change in x of order $\sqrt{\varepsilon}$ wald be required fer an order Σ change in the LHS at As mmmum...
Instead, pose the expansion $x=1+\sum^{\frac{1}{2}} x_{\frac{1}{2}}+\Sigma x_{1}+\ldots$
substitute into the equation $\left((1-\varepsilon) x^{2}-2 x+1=0\right)$:

$$
(1-\varepsilon)\left(1+\varepsilon^{\frac{1}{2}} x_{\frac{1}{2}}+\varepsilon x_{1}+\cdots\right)^{2}-2\left(1+\varepsilon^{\frac{1}{2}} x_{\frac{1}{2}}+\varepsilon x_{1}+\cdots\right)+1=0
$$

Expand: $\left\{\begin{array}{l}1+2 x_{\frac{1}{2}} \varepsilon^{\frac{1}{2}}+\left(2 x_{1}+x_{\frac{1}{2}}^{2}\right) \varepsilon+\left(2 x_{\frac{3}{2}}+2 x_{\frac{1}{2}} x_{1}\right) \varepsilon^{\frac{3}{2}}+\cdots \\ -\varepsilon-2 x_{\frac{1}{2}} \varepsilon^{\frac{3}{2}}+\ldots-2-2 x_{\frac{1}{2}} \varepsilon^{\frac{1}{2}}-2 x_{1} \varepsilon-2 x_{\frac{3}{2}} \varepsilon^{\frac{3}{2}}+\cdots+1\end{array}\right\}=0$
comparing corftivents of Σ :
$0\left(\varepsilon^{\circ}\right): 1-2+1=0$ V \quad (we had the correct guess fer the Xoterm)

$$
O\left(\varepsilon^{\frac{1}{2}}\right): \quad 2 x_{\frac{1}{2}}-2 x_{\frac{1}{2}}=0 \mathrm{~N}
$$

$O\left(\varepsilon^{\prime}\right): \quad 2 x_{1}+x_{\frac{1}{2}}^{2}-1-2 x_{1}=0 \Rightarrow x_{\frac{1}{2}}^{2}=1 \Rightarrow x_{\frac{1}{2}}= \pm 1$
$O\left(\varepsilon^{\frac{3}{2}}\right): \quad 2 x_{\frac{3}{2}}+2 x_{\frac{1}{2}} x_{1}-2 x_{\frac{1}{2}}-2 x_{\frac{3}{2}}=0 \Rightarrow x_{1}=1$ for both roots
NB - each term is determined at a higher level thanwe might have anticipated...
1.6 Finding the right expansion sequence

How can we determine the expansion sequence if we don't have the exact solution?

Pose $X=1+\delta_{1}(\varepsilon) x_{1} \quad$ with $\delta_{1}(\varepsilon) \ll 1$
substitute into $(1-\varepsilon) x^{2}-2 x+1=0$

$$
\begin{aligned}
& (1-\varepsilon)\left(1+\delta_{1} x_{1}\right)^{2}-2\left(1+\delta_{1} x_{1}\right)+1=0 \\
\Rightarrow & 1+2 \delta_{1} x_{1}+\delta_{1}^{2} x_{1}^{2}-\varepsilon-2 \delta_{1} x_{1} \varepsilon-\delta_{1}^{2} x_{1}^{2} \varepsilon-2-2 \delta_{1} x_{1}+1=0
\end{aligned}
$$

simplify:

$$
\begin{align*}
& 1+2 \delta_{1} x_{1}+\delta_{1}^{2} x_{1}^{2}-\varepsilon-2 \delta_{1} x_{1} \varepsilon-\delta_{1}^{2} x_{1}^{2} \varepsilon-z-2 \delta x_{1}+y=0 \\
& \quad \Rightarrow \delta_{1}^{2} x_{1}^{2}-\varepsilon-2 \delta_{1} x_{1} \varepsilon-\delta_{1}^{2} x_{1}^{2} \varepsilon=0 \tag{1}
\end{align*}
$$

Play dominant balance game again:
$\varepsilon \delta_{1} \ll \varepsilon$ so (3) $<(2)$ and (4) < (2) \Rightarrow leading terms are $\delta_{1}^{2} x_{1}^{2}, \varepsilon$
To get a sensible balance: need $\delta_{1}=\varepsilon^{\frac{1}{2}}$.
In this case, $\varepsilon x_{1}{ }^{2}-\varepsilon-2 \varepsilon^{\frac{3}{2}} x_{1}-\varepsilon^{2} x_{1}^{2}=0$

$$
x_{1}^{2}-1=0 \Rightarrow x_{1}= \pm 1
$$

To proceed to higher order - repeat: let $x=1+\varepsilon^{\frac{1}{2}}+\delta_{2} x_{2}$ min $\delta_{2} \ll \varepsilon^{\frac{1}{2}}=\delta_{1}(\varepsilon)$.

Subsitinte into $(1-\varepsilon) x^{2}-2 x+1=0$:

$$
\begin{aligned}
& (1-\varepsilon)\left(1+\varepsilon^{\frac{1}{2}}+\delta_{2} x_{2}\right)^{2}-2\left(1+\varepsilon^{\frac{1}{2}}+\delta_{2} x_{2}\right)+1=0 \\
& 1+2 \varepsilon^{\frac{1}{2}}+2 \delta_{2} x_{2}+2 \varepsilon^{\frac{1}{2}} \delta_{2} x_{2}+\varepsilon+\delta_{2}^{2} x_{2}^{2} \\
& \Rightarrow\left\{\begin{array}{l}
{\left[1+2 \varepsilon^{\frac{1}{2}}+2 \delta_{2} x_{2}+2 \varepsilon^{\frac{1}{2}} \delta_{2} x_{2}+\varepsilon+\delta_{2}^{2} x_{2}^{2}\right]} \\
-\left[\varepsilon+2 \varepsilon^{\frac{3}{2}}+\varepsilon^{2}+2 \varepsilon \delta_{2} x_{2}+2 \varepsilon^{3 / 2} \delta_{2} x_{2}+\varepsilon \delta_{2}^{2} x_{2}^{2}\right] \\
-\left[2+2 \varepsilon^{\frac{1}{2}}+2 \delta_{2} x_{2}\right]+1
\end{array}\right\}=0
\end{aligned}
$$

simpritying

$$
\left.\begin{array}{rl}
& \left\{\begin{array}{l}
{\left[x+2 \varepsilon^{\frac{1}{2}}+2 \delta_{2} x_{2}+2 \varepsilon^{\frac{1}{2}} \delta_{2} x_{2}+q_{1}+\delta_{2}^{2} x_{L}^{2}\right]} \\
- \\
-\left[\varepsilon_{1}+2 \varepsilon^{\frac{3}{2}}+\varepsilon^{2}+2 \varepsilon \delta_{2} x_{2}+2 \varepsilon^{3 / 2} \delta_{2} x_{2}+\varepsilon \delta_{2}^{2} x_{2}^{2}\right]
\end{array}\right\}=0 \\
\left.\Rightarrow 2 \varepsilon^{\frac{1}{2}}+2 \delta_{2} x_{2}\right]+X \tag{7}
\end{array}\right\}
$$

(4) $\ll(3)$
(5) < (1)
(6) < (1)
only turee terms to consider ü
Then, since $\delta_{2} \ll \varepsilon^{\frac{1}{2}}$ (2) $<$ (1) and so we must have
the dominant ferms (1) ~ (3) ie $\varepsilon^{\frac{1}{2}} \delta_{2}=\varepsilon^{\frac{3}{2}}$

$$
\Rightarrow \quad \delta_{2}=\varepsilon .
$$

Then, $2 \varepsilon^{\frac{1}{2}} \delta_{2} x_{2}-2 \varepsilon^{\frac{3}{2}}=0 \Rightarrow x_{2}=1$

$$
\text { and } x=1+\varepsilon^{\frac{1}{2}}+\varepsilon \ldots
$$

1.7 Iterative method

- Can be rey usemi in cases where the expansion sequence isn't known!

Recall: $(1-\varepsilon) x^{2}-2 x+1=0 \Rightarrow x^{2}-2 x+1=\varepsilon x^{2}$

$$
(x-1)^{2}=\sum x^{2}
$$

\Rightarrow Let $g(x ; \varepsilon)=1 \pm \sqrt{\varepsilon} x$ so that $x_{n+1}=1 \pm \sqrt{\varepsilon} x_{n}$.
Stanting mith $x_{0}=1$ (trevoot):

$$
\left(\begin{array}{rl}
g(x ; \varepsilon) & =1+\sqrt{\varepsilon} x \\
g^{\prime}(x ; \varepsilon) & =\sqrt{\varepsilon} \\
& \rightarrow 0 \text { as } \varepsilon \rightarrow 0 \\
V J
\end{array}\right)
$$

$$
\begin{aligned}
x_{1} & =1+\sqrt{\varepsilon} \\
x_{2} & =1+\sqrt{\varepsilon}(1+\sqrt{\varepsilon}) \\
& =1+\sqrt{\varepsilon}+\varepsilon
\end{aligned}
$$

generates tems veny quichly compared to me expansian memod!
1.7.1 logantums
(somenmes the expansion is nut even in paro sct 2!) consider the transcendental equ

$$
x e^{-x}=\varepsilon \quad(0<\varepsilon \ll 1)
$$

कre root close $\quad \varepsilon=0$ has $x=0$ as a solution
to $x=0$ - eas y
to approximate

Note mat we would acmally need to calculate x_{3} to check the first two terms are correct..
\rightarrow see the printed lecture notes!
NB Difficult sequence to guess! Ass, having terms such as $\log \left(\log \left(\frac{1}{\varepsilon}\right)\right)$ means the asymptotic approximation is only a good approximation fer very mall values of ε.
(Normally, held hope to get away meth $\varepsilon=0.5$ ar 0.1 but here $\varepsilon=10^{-9}$ gives $\left.\log \left(\log \left(\frac{1}{\varepsilon}\right)\right) \approx 3!!\right)$

