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In the last 4 lectures

@ [P spaces and their properties.
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This lecture

Pre-compactness criterion in LP().

Divergence theorem and Integration by parts formula.
Weak derivatives.

Sobolev spaces W*P(Q) and W, "P(Q) as Banach spaces.
Differentiation rule for convolution of Sobolev functions.
Dual of WP,

Sobolev spaces Wy "P(Q).

Differentiation rule for convolution of Sobolev functions.
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Pre-compactness criterion in C(K)

Theorem (Ascoli-Arzela's theorem)

Let K be a compact subset of R". Suppose that (f;) is a sequence of
functions of C(K) such that

@ (Boundedness) sup; ||fi||c(ky < oo,
@ (Equi-continuity) For every € > 0, there exists § > 0 such that
|fi(x) — fi(y)| < e forall i and all x,y € K with |x —y| < 0.

Then there exists a subsequence (f;) which converges uniformly on K.

4

In other words, the set {f;} is pre-compact.
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Pre-compactness criterion in C(K)

Proof

e We would like to show that (f;) has a subsequence (f;) which is
Cauchy in C(K), i.e. for every given ¢ > 0,

|f; = fillc(xy < € for all large j, k. (*)

@ We claim that a slightly softer statement holds: For every given
€, there is a subsequence (f) of (f;) such that

1 — fillck) < 3¢ for large j, k. (**)

k

@ Suppose that (**) holds for the moment, we will now show how
(*) can be obtained.
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Pre-compactness criterion in C(K)

Proof
e (**) = (*): We will use a diagonal procedure.

» Using (**), take a subsequence (fljl) of (f;) such that
”fljl - fiiHC(K) < 1 eventually.

* Now the sequence (f,jl) satisfies the condition of theorem. Since
we are assuming (**), we can thus take a subsequence (1‘,]2) of
(fijl) such that Hff — 2l c(k) < 1/2 eventually.

* Proceeding inductively, we have a nest sequence of subsequences
(i) > (f,-jl) D (f,f) D ... such that, for each m > 1,

1" = fi llc(ky < 1/m eventually.

* Now let f;; = fIJJ Then, for every fixed m, the sequence (f;) is
eventually a subsequence of (ﬁ-j’") and so [|f; — fiyllc(ky < 1/m
eventually. So (f;) satisfies (*).
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Pre-compactness criterion in C(K)

Proof

@ We now prove (**), i.e. for every given ¢, there is a subsequence
(f7) of (f;) such that

1 — fill gy < 3¢ for large Jj, k.

* By equi-continuity, there exists § > 0 such that
|fi(x) — fi(y)| < e forall i and all x,y € K with |x — y| <.

* As K is compact, we can cover K by finitely many open balls
B(x1,9), ..., B(xn,0) with x;'s in K.

* By uniform boundedness, for each /¢, the sequence (fi(x)) is
bounded in R. By Bolzano-Weierstrass' theorem, we can select
a subsequence (f,f) such that (f,f(Xg)) is convergent for all £. So

|ﬂf(Xg) — fi(x¢)| < e for all £ and for all large j, k.
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Pre-compactness criterion in C(K)

Proof

e We now prove (**).
* |fi(x) — fi(y)| <eforall iand all x,y € K with [x — y| < 0.
* B(x1,0), ..., B(xn,0) covers K.
* |f,f(X£) — f7(x¢)| < e for all £ and for all large j and k.
* Now if x € K, then x € B(xg,d) for some £. Then, for large j, k,

| (x) = £ Ol < 17 () = i Oa) [+ 17 (xe) = £ (X))
+ | (%) = fir(¥))

< 3e.

* So [|fif = f#llc(ky < 3¢, which proves (*¥).
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Pre-compactness criterion in LP()

Theorem (Kolmogorov-Riesz-Fréchet's theorem)

Let 1 < p < oo and Q be an open bounded subset of R". Suppose
that a sequence (f;) of LP(Q2) satisfies
@ (Boundedness) sup; ||fi||.r(q) < 0,

@ (Equi-continuity in LP) For every e > 0, there exists 6 > 0 such
that |7, f; — fill o) < € for all |y| < &, where f; is the extension

by zero of f; to the whole of R".
Then, there exists a subsequence (f;,) which converges in LP(2).

4

By definition # : R” — R is given by f: = f; in Q and f; = 0 in R™\ Q.
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Pre-compactness criterion in LP((2)

Proof

@ As in the proof of Ascoli-Arzela’s theorem, it suffices to show
that, for every given £ > 0, there exists a subsequence (f;) of
(f;) such that

||f,f — 2 |lp(e) < 3e for large j, k. (F5%)

o Claim: For every fixed ¢ € C®(R"), the sequence (f; * ¢|g)
satisfies the condition of Ascoli-Arzela’s theorem.

* First, by Holder's inequality, we have
il geey = Ifilliray < Ifilliogey QM7

Thus, by the boundedness of (f;) in LP(Q), we have that (£) is
bounded in L(R").
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Pre-compactness criterion in LP((2)

Proof

o Claim: (f  p|g) satisfies the condition of Ascoli-Arzela’s
theorem.

* sup; || fi| 1 (rny < 00
* By Young's convolution inequality

15 % @l Lo rrmy < 11Fill 2y Il oo () -

So sup; [|fi * oll (@) < oo
* Next,

) = Fe ol < [ [ole—2) = oty = 2)|1F2)1 ¢
< llell Lip@ny|x — yII1Fill 12 (go)-

So by squeezing |x — y|, we can make sup; |f; * o(x) — fi x (y)|
as small as we want.
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Pre-compactness criterion in LP((2)

Proof
o (fi * p|g) satisfies the condition of Ascoli-Arzela’s theorem.

o Now, take a non-negative function o € C°(By) with [, 0=1
and, for n > 0, let g,(x) = %,Q(x/'r]) be the standard mollifiers.
Recall that we have the estimate

1fi % oy — fill L, < A |on)IIT—y fi = fill s dy

< sup [|nfi — fillf, [ lon(y)ldy
lyl<n R"

= sup |7, f; — fi|7-
ly|<n
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Pre-compactness criterion in LP((2)

Proof
o (fi * ¢|g) satisfies the condition of Ascoli-Arzela’s theorem.
o ||fi % 0y — fill o < supjy<, 17y fi = fill e
@ We are now ready to prove (***):
* By the equi-continuity, there exists a small 7 > 0 such that
| fi % 0 — fi||Lp < € for all i.
* Using Ascoli-Arzela’s theorem, select a subsequence (f,f) of (f;)

such that (7?115 % 0ylq) is convergent in C(Q).

* It follows that Hfi * 0p — ﬁf * 0nlle(q) < € for large j, k.
* Consequently, by triangle inequality,

1 = fille@) < I = on — fif = onlliee) + Ifi * 0n — £ lle(0)
+ [|£5 % on — fi || r() < 3e for large j, k,

which is (¥**).
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Frequently used terminologies/notations

@ (2 denotes a domain in R".

@ C*(Q) denotes the space of functions which are k-times
continuously differentiable in 2.

o C¥(Q) denotes the subspace of C*(Q) consisting of functions
which can be extended to a k-times continuously differentiable
functions on some open set containing 2.

e CX(9) denotes the subspace of C*(Q) consisting of functions f
such that Supp(f) = {f # 0} is a bounded closed subset of Q.
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Frequently used terminologies/notations

@ Q is said to be a Lipschitz (resp. C*) domain, or equivalently,
0Q is said to be Lipschitz (resp. C*), if for every xo € 9 there
exists a radius rp > 0 such that, after a relabeling of coordinate
axes if necessary,

QN B,y(x0) = {x € By(x0) : xn > (X1, .-, %n-1)}

for some Lipschitz (resp. C) function ~.

n
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Divergence theorem

Let Q be a bounded Lipschitz domain in R"”. Fact: 92 admits an
‘outward pointing’ unit normal n.

Theorem (Divergence theorem)
Let F € CHQ;R"). Then

/didex:/ F-ndS.
Q a0

In particular, if F € C(Q;R"), then

/didex:O.
Q
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IBP formula

Let Q be a bounded Lipschitz domain in R".

Theorem (Integration by parts formula)
Let f,g € C*(Q). Then

/f@,-gdx:/ fgn,-dS—/c?,-fgdx.
Q o0 Q

In particular, if f or g has compact support in 2, then

/fa,-gdx:—/&-fgdx.
Q Q
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Weak derivatives

Let 2 be a domain in R".

Definition

Let f € L} (Q) and a = (a,. .., @,) be a multi-index. A function

loc

g € L} (Q) is said to be a weak a-derivative of f if

loc

/ f 0% dx = (—1) / gy dx for all p € C°(9Q). (1)
Q Q

We write g = 0°f in the weak sense.

The function ¢ is called a test function.
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Example of weak derivatives

o If f € C}(Q) and Q is a bounded Lipschitz domain, then its
classical derivatives are also its weak derivatives.

@ Suppose Q = (—1,1) and f(x) = |x|. Then, if ¢ € C(—1,1),
we have by IBP that

/_1 f(x) ¢'(x) dx = /0(—X)<,0’(x) dx + /01 X' (x) dx

1 -1

= x| - [ e o

-1

+x¢p(x)

__ /_ i () (x) dx.

1

So f'(x) = sign(x) in the weak sense.

Luc Nguyen (University of Oxford) C4.3 — Lectures 5-6 MT 2022 19/38



Uniqueness of weak derivatives

Let f € L}, (Q) and o = (v, . . ., ay) be a multi-index. The weak

loc
a-derivative of f, if exists, is uniquely defined up to a set of measure

ZEro.

This follows from the definition of weak derivative and the following:

Lemma (Fundamental lemma of the Calculus of

Variations)

Let g € L, (Q). If [ygp =0 forall ¢ € C(Q), then g =0 a.e. in
Q.
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Uniqueness of weak derivatives

Proof

@ We will only consider the case €2 is a bounded domain and
g € LY(Q). The general case is left as an exercise.

@ In Sheet 1, you showed that C>°() is dense in L1(Q). Thus, for
any € > 0, we can select h € C°(Q2) such that ||g — hl|;x <e.
Furthermore, by triangle inequality || hl|;x > ||g|lir — €.

@ For§ >0, let hs = \/WSO that hs € C2°(2) and |hs| < 1.
o By hypotheses, [, ghs dx = 0.
@ By construction, ‘ Jo(g — h)hs dx’ < |lg = hllz||hs]|Le < €.

o It follows that

52/gh5dx—/(g—h)h5dx:/hh5dx.
Q Q Q
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Uniqueness of weak derivatives

Proof

@ Recalling the expression of hs, we have

h2
e > — dXx.
N /Q V62 + h?

@ The integrand on the right hand side converges monotonically
increasingly to |h|. Thus, by Lebesgue's monotone convergence
theorem,

e> / || dx = ||h]].s.
Q

@ Recall that ||h]|2 > ||g]|i2 — €, we obtain that 2 > ||g]|.1.
Sending ¢ — 0, we obtain ||g|[;: =0, i.e. g =0 a.e. in Q.
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A relation between classical and weak derivatives

Remark
Suppose that
@ f € LY(Q) is weakly differentiable with weak derivatives O{'f,

..., OVf,
@ and, for some subdomain w C QQ, f is classically differentiable in
w with classical derivatives O5f, ..., O5f.

Then
0'f =0:f ae. inw foralli=1,..., n.
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A relation between classical and weak derivatives

Sketch of proof

@ Using the definition of weak derivatives, f|, is weakly
differentiable with weak derivatives 0y f|,, ..., 0/'f|..

@ As f is classically differentiable in w, its classical derivatives are
also weak derivatives of f|,.

@ By the uniqueness of weak derivatives, the conclusion follows.
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Example of non-existence of weak derivatives

If @ =(—1,1) and u(x) = sign(x), then u has no weak derivative.
Proof

@ Suppose otherwise that v/ = g € L, (—1,1). Then, for
pe (=11,

[ swea= [ e [ e

= [(0) = (=1)] = [»(1) — ¥(0)]

= 2¢(0).
e In particular if we take ¢ € C°(—1,0), we have
f g(x)p(x)dx =0. So g =0 a.e. in (—1,0). Likewise, g =0

a.e. |n( ) Sog=0ae. in(—1,1).

o We thus have 0 = [, g(x)¢(x) dx = 2¢(0) for all
@ € C(—1,1), which is impossible.
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The Sobolev spaces W*P(Q)

@ ): a domain of R".
@ For k> 0and 1 < p < oo, define

wee(9) = {f e LP(Q)‘V|04| < k, the weak derivative
0“f exists and belongs to LP(Q)}.
We equip W*P(Q) with the norm
Jullwosiey = | 3 100l |

|a|<k

so that W*P(Q) is a normed vector space (check this!).
e For p =2, we also write H*(Q2) for W*2(Q). These are inner
product spaces (check this!) with inner product

(u, V> wk2(Q) = Z <8°‘u, aaV>L2(Q).

o <k
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Examples of Sobolev functions

Let Q = (—1,1) and f(x) = |x|.
@ We have that f/(x) = sign(x) and so f € WP(—1,1) for every
p € [1,00].

@ The function f'(x) = sign(x) has no weak derivatives, and so
f ¢ W2P(—1,1) for any p € [1, 00].
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Completeness of W*P(Q)

Fork >0 and1 < p < oo, W’“"(Q) is @ Banach space. When
p =2, Wk2(Q) is a Hilbert space.

Proof

@ We have seen that W*" is a normed vector space and W2 is an
inner product space. It remains to show that W*" is complete.

@ Suppose that (u,,) is a Cauchy sequence in W*P. We need to
show that there exists u € W*P such that |lu, — ul|yr» — 0.

e For |a] < k, (0%uy,) is Cauchy in LP, as
10%um — 0% uj||e < [Jum — ujl[wre-

By Riesz-Fischer's theorem, we have that (0“u,,) converges in
LP to some v, € L".
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Completeness of W*P(Q)

Proof
e (up) is Cauchy in Wkr.
e For |a| < k, (0%um) converges in LP to some v,, € LP.
@ To conclude, we show that u := v(q_. o) belongs to W*P and
Um — uin Wk,
* By definition of weak derivatives, we have for |a| < k that

/umao‘s@dxz (—1)'“'/3"umwdx for all p € C(Q),
Q Q

* Now we would like to pass m — oo. By Holder's inequality
| [ (um = )% & < lum = o0y 0.

So [q um0®pdx — [ ud*p dx.
* Similarly, [ 0%umpdx = [ vap dx.

Luc Nguyen (University of Oxford) C4.3 — Lectures 5-6 MT 2022

29/38



Completeness of W*P(Q)

Proof
@ (up) is Cauchy in WHP.
e For |a| < k, (0%um) converges in LP to some v, € LP.
@ % We thus have

/ ud“p = (—1)'“'/ va @ for all p € C°(Q).
Q Q

So v, is the weak a-derivative of u. So u e WkP,
* Now

lum = ullfyep = > 10%um —3*ull},
la|<k
Z 0% upm — VaHp 30
el <k

So upy, — uin WkP.
@ We conclude that W*" is complete.
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Reflexivity of W P(Q)

Fork >0 and 1 < p < oo, WkP(Q) is reflexive.

Proof

@ We will only consider the case k = 1. The general case requires
some minor changes.

@ By Eberlein’s theorem, we only need to show that every bounded
sequence in WP has a weakly convergent subsequence.

@ Suppose (up,) C WP is bounded. Then, (u,,) and (O;u,,) are
bounded in LP.

@ By the weak sequential compactness property of LP for
1 < p < 00, there exists a subsequence (up,) such that (up,)
and (0;um,) are weakly convergent in LP. Let u be the LP weak
limit of (um,) and v; be the LP weak limit of (0;um,).
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Reflexivity of W P(Q)

@ To conclude, we show that u belongs to WP and Upm; — U in
wie.
@ The proof that u € WP is similar to the one we did moment

ago, but also has some subtle difference: By definition of weak
derivatives, we have

/ O = — / Drtim, o for all ¢ € C2(9),
Q Q

Sending j — oo by using the definition weak convergence, we
obtain

udip = —/ vi p for all p € C°(Q).
Q Q

So v; = O;u in the weak sense. So u € WP,
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Reflexivity of W P(Q)

@ It remains to show that, if A € (W'P)*, then Au, — Au.

« Define E : WP(Q) — (LP(Q))"+ by Ef = (f,01f,...,0nf).

Then E is an isometry.

* Let X := E(W™P(Q)) and Y := (LP(Q2))"+L. Define
A:X > Rby Ap=AE1pfor pe X. Then A € X*. By
Hahn-Banach's theorem, it has an extension Ac v~

* It follows that

Aumj = AEumj = AEumj
= A(tm;,0,...,0)+ > A(0,0,...,0,0itpm,0,...,0)

=: B(um,) + 3 Bi(djtm;)
— B(u) + Z Bi(0iu) = Au.

This concludes the proof.
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The Sobolev spaces W,""(Q)

@ 2: a domain of R".
@ For k> 0and 1 < p < o0, define

W, P(Q) = the closure of C°(Q) in W*P(Q).

When p = 2, we also write HX(Q) for Wy *(Q).

o In other words, u € W,P(Q) if there exist u, € C°(Q) such
that ||um — ul|wke — 0.

@ When k=0,1 < p < o0, and Q is a bounded domain, we have
seen in Sheet 1 that W, P(Q) = WoP(Q) = LP(Q).
In general, this is not true for k > 1. Roughly speaking,
W}P(Q) consists of functions f in W*P(Q) such that

‘0%f =0 on 0 for all |a] < k —1.
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IBP formula for Sobolev functions

Proposition (Integration by parts)

Let u € WrP(Q) and v € WP (Q) with k > 0,1 < p < oo and
,lJ + % = 1. Then

/8°‘uv dx = (—1)”"/ ud®v dx for all || < k.
Q Q

Proof
e By definition of W' there exists v, € C2°() such that
Ve — v in W5P' In particular, 9*v,,, — 0%v in LP for all
la] < k.
@ By the definition of weak derivatives,

/aauvm dx = (—1)|°‘|/ ud*vy, dx for all |a] < k.
Q Q
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IBP formula for Sobolev functions

Proof
® 0%, — %v in LP for all |a| < k.
o [, 0%vydx = (=1)l [ ud®v,, dx for all |a| < k.

@ We can now pass m — oo as in the proof of the completeness of
Sobolev spaces.

* By Holder's inequality
‘ / 0%u(Vm — v) dx’ < ||0%ul|te||Vm — v||,;» — 0.
Q
So [ 0%uvm dx — [ 0%uv dx.

* Similarly, [o u0®vy dx — [ ud*v dx.
* We conclude that

/8auvdxz(—1)|a/ u0®v dx.
Q Q
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Differentiation rule for convolution of Sobolev

functions

@ Suppose k >0and 1 < p < o0.

o Let f € LP(R") and g € CX(R"). We knew that f x g € CX(R")
and
Of*xg)="r=x(0%) for all |o| < k.

Assume f € W5P(R") and g € CX(R") for some k > 0 and
1< p< oo, then

O%(f x g) = (0°F) x g for all |a] < k.

Luc Nguyen (University of Oxford) C4.3 — Lectures 5-6 MT 2022 37/38



Differentiation rule for convolution of Sobolev

functions
Proof

@ We will only consider the case k = 1. We aim to prove that
O (f + 8) = (0uf) x g

e We compute

O (F % 8)(x) = £ % (Bn8)(x) = / F(y) g (x — y) dy

n

—— [ 0)0.8(x -y s
g

So we are done.

) 9, f(y) g(x — y) dy= ((0f) * g)(x).
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