

C4.3 Functional Analytic Methods for PDEs Lectures 5-6

Luc Nguyen luc.nguyen@maths

University of Oxford

MT 2022

In the last 4 lectures

• L^p spaces and their properties.

This lecture

- Pre-compactness criterion in $L^p(\Omega)$.
- Divergence theorem and Integration by parts formula.
- Weak derivatives.
- Sobolev spaces $W^{k,p}(\Omega)$ and $W_0^{k,p}(\Omega)$ as Banach spaces.
- Differentiation rule for convolution of Sobolev functions.
- Dual of $W^{1,p}$.
- Sobolev spaces $W_0^{k,p}(\Omega)$.
- Differentiation rule for convolution of Sobolev functions.

Theorem (Ascoli-Arzelà's theorem)

Let K be a compact subset of \mathbb{R}^n . Suppose that (f_i) is a sequence of functions of C(K) such that

- ① (Boundedness) $\sup_i ||f_i||_{C(K)} < \infty$,
- (2) (Equi-continuity) For every $\varepsilon > 0$, there exists $\delta > 0$ such that $|f_i(x) f_i(y)| < \varepsilon$ for all i and all $x, y \in K$ with $|x y| < \delta$.

Then there exists a subsequence (f_{i_j}) which converges uniformly on K.

In other words, the set $\{f_i\}$ is pre-compact.

Proof

• We would like to show that (f_i) has a subsequence (f_{i_j}) which is Cauchy in C(K), i.e. for every given $\varepsilon > 0$,

$$||f_{i_j} - f_{i_k}||_{C(K)} \le \varepsilon \text{ for all large } j, k.$$
 (*)

• We claim that a slightly softer statement holds: For every given ε , there is a subsequence $(f_{i_i}^{\varepsilon})$ of (f_i) such that

$$\|f_{i_j}^{\varepsilon} - f_{i_k}^{\varepsilon}\|_{\mathcal{C}(K)} \le 3\varepsilon \text{ for large } j, k.$$
 (**)

Suppose that (**) holds for the moment, we will now show how
 (*) can be obtained.

Proof

- $(**) \Rightarrow (*)$: We will use a diagonal procedure.
 - * Using (**), take a subsequence $(f_{i_j}^1)$ of (f_i) such that $\|f_{i_i}^1 f_{i_k}^1\|_{\mathcal{C}(K)} \le 1$ eventually.
 - * Now the sequence $(f_{i_j}^1)$ satisfies the condition of theorem. Since we are assuming (**), we can thus take a subsequence $(f_{i_j}^2)$ of $(f_{i_i}^1)$ such that $\|f_{i_i}^2 f_{i_k}^2\|_{C(K)} \le 1/2$ eventually.
 - * Proceeding inductively, we have a nest sequence of subsequences $(f_i) \supset (f_{i_i}^1) \supset (f_{i_i}^2) \supset \dots$ such that, for each $m \geq 1$,

$$||f_{i_j}^m - f_{i_k}^m||_{C(K)} \le 1/m$$
 eventually.

* Now let $f_{i_j} = f_{i_j}^j$. Then, for every fixed m, the sequence (f_{i_j}) is eventually a subsequence of $(f_{i_j}^m)$ and so $||f_{i_j} - f_{i_k}||_{C(K)} \le 1/m$ eventually. So (f_{i_j}) satisfies (*).

Proof

• We now prove (**), i.e. for every given ε , there is a subsequence $(f_{i_i}^{\varepsilon})$ of (f_i) such that

$$\|f_{i_j}^{\varepsilon} - f_{i_k}^{\varepsilon}\|_{C(K)} \le 3\varepsilon$$
 for large j, k .

- * By equi-continuity, there exists $\delta > 0$ such that $|f_i(x) f_i(y)| < \varepsilon$ for all i and all $x, y \in K$ with $|x y| < \delta$.
- * As K is compact, we can cover K by finitely many open balls $B(x_1, \delta), \ldots, B(x_N, \delta)$ with x_ℓ 's in K.
- * By uniform boundedness, for each ℓ , the sequence $(f_i(x_\ell))$ is bounded in \mathbb{R} . By Bolzano-Weierstrass' theorem, we can select a subsequence $(f_{i_i}^{\varepsilon})$ such that $(f_{i_i}^{\varepsilon}(x_\ell))$ is convergent for all ℓ . So

$$|f_{i_j}^{\varepsilon}(x_{\ell}) - f_{i_k}^{\varepsilon}(x_{\ell})| \leq \varepsilon$$
 for all ℓ and for all large j, k .

Proof

- We now prove (**).
 - * ... $|f_i(x) f_i(y)| \le \varepsilon$ for all i and all $x, y \in K$ with $|x y| < \delta$.
 - $\star B(x_1, \delta), \ldots, B(x_N, \delta)$ covers K.
 - $\star \ldots |f_{i_i}^{\varepsilon}(x_{\ell}) f_{i_k}^{\varepsilon}(x_{\ell})| \leq \varepsilon$ for all ℓ and for all large j and k.
 - * Now if $x \in K$, then $x \in B(x_{\ell}, \delta)$ for some ℓ . Then, for large j, k,

$$\begin{split} |f_{i_j}^{\varepsilon}(x) - f_{i_k}^{\varepsilon}(x)| &\leq |f_{i_j}^{\varepsilon}(x_{\ell}) - f_{i_k}^{\varepsilon}(x_{\ell})| + |f_{i_j}^{\varepsilon}(x_{\ell}) - f_{i_j}^{\varepsilon}(x)| \\ &+ |f_{i_k}^{\varepsilon}(x_{\ell}) - f_{i_k}^{\varepsilon}(x)| \\ &\leq 3\varepsilon. \end{split}$$

* So $||f_{i_i}^{\varepsilon} - f_{i_k}^{\varepsilon}||_{C(K)} \le 3\varepsilon$, which proves (**).

Theorem (Kolmogorov-Riesz-Fréchet's theorem)

Let $1 \le p < \infty$ and Ω be an open bounded subset of \mathbb{R}^n . Suppose that a sequence (f_i) of $L^p(\Omega)$ satisfies

- ① (Boundedness) $\sup_i \|f_i\|_{L^p(\Omega)} < \infty$,
- ② (Equi-continuity in L^p) For every $\varepsilon > 0$, there exists $\delta > 0$ such that $\|\tau_y \tilde{f_i} \tilde{f_i}\|_{L^p(\Omega)} < \varepsilon$ for all $|y| < \delta$, where $\tilde{f_i}$ is the extension by zero of f_i to the whole of \mathbb{R}^n .

Then, there exists a subsequence (f_{i_j}) which converges in $L^p(\Omega)$.

By definition $\tilde{f}_i : \mathbb{R}^n \to \mathbb{R}$ is given by $\tilde{f}_i = f_i$ in Ω and $\tilde{f}_i = 0$ in $\mathbb{R}^n \setminus \Omega$.

Proof

• As in the proof of Ascoli-Arzelà's theorem, it suffices to show that, for every given $\varepsilon > 0$, there exists a subsequence (f_{ij}^{ε}) of (f_i) such that

$$||f_{i_j}^{\varepsilon} - f_{i_k}^{\varepsilon}||_{L^p(\Omega)} \le 3\varepsilon \text{ for large } j, k.$$
 (***)

- Claim: For every fixed $\varphi \in C_c^{\infty}(\mathbb{R}^n)$, the sequence $(\tilde{f}_i * \varphi|_{\bar{\Omega}})$ satisfies the condition of Ascoli-Arzelà's theorem.
 - ⋆ First, by Hölder's inequality, we have

$$\|\tilde{f}_i\|_{L^1(\mathbb{R}^n)} = \|f_i\|_{L^1(\Omega)} \le \|f_i\|_{L^p(\Omega)} |\Omega|^{1/p'}.$$

Thus, by the boundedness of (f_i) in $L^p(\Omega)$, we have that $(\tilde{f_i})$ is bounded in $L^1(\mathbb{R}^n)$.

Proof

- Claim: $(\tilde{f}_i * \varphi|_{\bar{\Omega}})$ satisfies the condition of Ascoli-Arzelà's theorem.
 - * $\sup_{i} \|\tilde{f}_{i}\|_{L^{1}(\mathbb{R}^{n})} < \infty.$
 - * By Young's convolution inequality

$$\|\tilde{f}_i * \varphi\|_{L^{\infty}(\mathbb{R}^n)} \leq \|\tilde{f}_i\|_{L^1(\mathbb{R}^n)} \|\varphi\|_{L^{\infty}(\mathbb{R}^n)}.$$

So $\sup_{i} \|\tilde{f}_{i} * \varphi\|_{C(\bar{\Omega})} < \infty$.

⋆ Next,

$$|\tilde{f}_{i} * \varphi(x) - \tilde{f}_{i} * \varphi(y)| \leq \int_{\mathbb{R}^{n}} |\varphi(x - z) - \varphi(y - z)| |\tilde{f}(z)| dz$$

$$\leq ||\varphi||_{Lip(\mathbb{R}^{n})} |x - y| ||\tilde{f}_{i}||_{L^{1}(\mathbb{R}^{n})}.$$

So by squeezing |x-y|, we can make $\sup_i |\tilde{f}_i * \varphi(x) - \tilde{f}_i * \varphi(y)|$ as small as we want.

Proof

- $(\tilde{f}_i * \varphi|_{\bar{\Omega}})$ satisfies the condition of Ascoli-Arzelà's theorem.
- Now, take a non-negative function $\varrho \in C_c^{\infty}(B_1)$ with $\int_{\mathbb{R}^n} \varrho = 1$ and, for $\eta > 0$, let $\varrho_{\eta}(x) = \frac{1}{\eta^n}\varrho(x/\eta)$ be the standard mollifiers. Recall that we have the estimate

$$\begin{split} \|\tilde{f}_i * \varrho_{\eta} - \tilde{f}_i\|_{L^p}^p &\leq \int_{\mathbb{R}^n} |\varrho_{\eta}(y)| \|\tau_{-y}\tilde{f}_i - \tilde{f}_i\|_{L^p}^p \, dy \\ &\leq \sup_{|y| \leq \eta} \|\tau_y \tilde{f}_i - \tilde{f}_i\|_{L^p}^p \int_{\mathbb{R}^n} |\varrho_{\eta}(y)| \, dy \\ &= \sup_{|y| \leq \eta} \|\tau_y \tilde{f}_i - \tilde{f}_i\|_{L^p}^p. \end{split}$$

Proof

- $(\tilde{f}_i * \varphi|_{\bar{\Omega}})$ satisfies the condition of Ascoli-Arzelà's theorem.
- $\bullet \|\tilde{f}_i * \varrho_{\eta} \tilde{f}_i\|_{L^p} \leq \sup_{|y| \leq \eta} \|\tau_y \tilde{f}_i \tilde{f}_i\|_{L^p}.$
- We are now ready to prove (***):
 - \star By the equi-continuity, there exists a small $\eta > 0$ such that $\|\tilde{f}_i * \varrho_{\eta} \tilde{f}_i\|_{L^p} \leq \varepsilon$ for all i.
 - * Using Ascoli-Arzelà's theorem, select a subsequence $(f_{i_j}^{\varepsilon})$ of (f_i) such that $(\tilde{f}_{i_i}^{\varepsilon} * \varrho_{\eta}|_{\bar{\Omega}})$ is convergent in $C(\bar{\Omega})$.
 - $\star \text{ It follows that } \|\tilde{f}_{i_i}^{\varepsilon} * \varrho_{\eta} \tilde{f}_{i_k}^{\varepsilon} * \varrho_{\eta}\|_{L^p(\Omega)} \leq \varepsilon \text{ for large } j,k.$
 - ⋆ Consequently, by triangle inequality,

$$\begin{split} \|f_{i_{j}}^{\varepsilon} - f_{i_{k}}^{\varepsilon}\|_{L^{p}(\Omega)} &\leq \|f_{i_{j}}^{\varepsilon} * \varrho_{\eta} - f_{i_{k}}^{\varepsilon} * \varrho_{\eta}\|_{L^{p}(\Omega)} + \|f_{i_{j}}^{\varepsilon} * \varrho_{\eta} - f_{i_{j}}^{\varepsilon}\|_{L^{p}(\Omega)} \\ &+ \|f_{i_{k}}^{\varepsilon} * \varrho_{\eta} - f_{i_{k}}^{\varepsilon}\|_{L^{p}(\Omega)} \leq 3\varepsilon \text{ for large } j, k, \end{split}$$

which is (***).

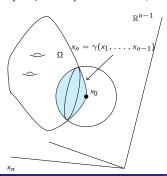
Frequently used terminologies/notations

- Ω denotes a domain in \mathbb{R}^n .
- $C^k(\Omega)$ denotes the space of functions which are k-times continuously differentiable in Ω .
- $C^k(\bar{\Omega})$ denotes the subspace of $C^k(\Omega)$ consisting of functions which can be extended to a k-times continuously differentiable functions on some open set containing $\bar{\Omega}$.
- $C_c^k(\Omega)$ denotes the subspace of $C^k(\Omega)$ consisting of functions f such that $Supp(f) = \overline{\{f \neq 0\}}$ is a bounded closed subset of Ω .

Frequently used terminologies/notations

• Ω is said to be a Lipschitz (resp. C^k) domain, or equivalently, $\partial \Omega$ is said to be Lipschitz (resp. C^k), if for every $x_0 \in \partial \Omega$ there exists a radius $r_0 > 0$ such that, after a relabeling of coordinate axes if necessary,

$$\Omega \cap B_{r_0}(x_0) = \{x \in B_{r_0}(x_0) : x_n > \gamma(x_1, \dots, x_{n-1})\}$$
 for some Lipschitz (resp. C^k) function γ .



Divergence theorem

Let Ω be a bounded Lipschitz domain in \mathbb{R}^n . Fact: $\partial \Omega$ admits an 'outward pointing' unit normal n.

Theorem (Divergence theorem)

Let $F \in C^1(\bar{\Omega}; \mathbb{R}^n)$. Then

$$\int_{\Omega} div \, F \, dx = \int_{\partial \Omega} F \cdot n \, dS.$$

In particular, if $F \in C^1_c(\Omega; \mathbb{R}^n)$, then

$$\int_{\Omega} div \, F \, dx = 0.$$

IBP formula

Let Ω be a bounded Lipschitz domain in \mathbb{R}^n .

Theorem (Integration by parts formula)

Let $f,g\in C^1(\bar\Omega)$. Then

$$\int_{\Omega} f \, \partial_i g \, dx = \int_{\partial \Omega} fg n_i \, dS - \int_{\Omega} \partial_i f \, g \, dx.$$

In particular, if f or g has compact support in Ω , then

$$\int_{\Omega} f \, \partial_i g \, dx = - \int_{\Omega} \partial_i f \, g \, dx.$$

Weak derivatives

Let Ω be a domain in \mathbb{R}^n .

Definition

Let $f \in L^1_{loc}(\Omega)$ and $\alpha = (\alpha_1, \dots, \alpha_n)$ be a multi-index. A function $g \in L^1_{loc}(\Omega)$ is said to be a weak α -derivative of f if

$$\int_{\Omega} f \, \partial^{\alpha} \varphi \, dx = (-1)^{|\alpha|} \int_{\Omega} g \varphi \, dx \text{ for all } \varphi \in C_{c}^{\infty}(\Omega). \tag{1}$$

We write $g = \partial^{\alpha} f$ in the weak sense.

The function φ is called a *test function*.

Example of weak derivatives

- If $f \in C^1(\bar{\Omega})$ and Ω is a bounded Lipschitz domain, then its classical derivatives are also its weak derivatives.
- Suppose $\Omega=(-1,1)$ and f(x)=|x|. Then, if $\varphi\in C_c^\infty(-1,1)$, we have by IBP that

$$\int_{-1}^{1} f(x) \varphi'(x) dx = \int_{-1}^{0} (-x) \varphi'(x) dx + \int_{0}^{1} x \varphi'(x) dx$$
$$= -x \varphi(x) \Big|_{-1}^{0} - \int_{-1}^{0} (-1) \varphi(x) dx$$
$$+ x \varphi(x) \Big|_{0}^{1} - \int_{0}^{1} (1) \varphi(x) dx$$
$$= -\int_{-1}^{1} \operatorname{sign}(x) \varphi(x) dx.$$

So f'(x) = sign(x) in the weak sense.

Uniqueness of weak derivatives

Lemma

Let $f \in L^1_{loc}(\Omega)$ and $\alpha = (\alpha_1, ..., \alpha_n)$ be a multi-index. The weak α -derivative of f, if exists, is uniquely defined up to a set of measure zero.

This follows from the definition of weak derivative and the following:

Lemma (Fundamental lemma of the Calculus of Variations)

Let $g \in L^1_{loc}(\Omega)$. If $\int_{\Omega} g \varphi = 0$ for all $\varphi \in C^{\infty}_c(\Omega)$, then g = 0 a.e. in Ω .

Uniqueness of weak derivatives

Proof

- We will only consider the case Ω is a bounded domain and $g \in L^1(\Omega)$. The general case is left as an exercise.
- In Sheet 1, you showed that $C_c^{\infty}(\Omega)$ is dense in $L^1(\Omega)$. Thus, for any $\varepsilon > 0$, we can select $h \in C_c^{\infty}(\Omega)$ such that $\|g h\|_{L^1} \le \varepsilon$. Furthermore, by triangle inequality $\|h\|_{L^1} \ge \|g\|_{L^1} \varepsilon$.
- For $\delta>0$, let $h_\delta=\frac{h}{\sqrt{\delta^2+h^2}}$ so that $h_\delta\in\mathcal{C}_c^\infty(\Omega)$ and $|h_\delta|\leq 1$.
- By hypotheses, $\int_{\Omega} g h_{\delta} dx = 0$.
- By construction, $\left|\int_{\Omega} (g-h)h_{\delta}\,dx\right| \leq \|g-h\|_{L^{1}}\|h_{\delta}\|_{L^{\infty}} \leq \varepsilon.$
- It follows that

$$arepsilon \geq \int_{\Omega} g h_{\delta} \, dx - \int_{\Omega} (g - h) h_{\delta} \, dx = \int_{\Omega} h h_{\delta} \, dx.$$

Uniqueness of weak derivatives

Proof

• Recalling the expression of h_{δ} , we have

$$\varepsilon \geq \int_{\Omega} \frac{h^2}{\sqrt{\delta^2 + h^2}} \, dx.$$

• The integrand on the right hand side converges monotonically increasingly to |h|. Thus, by Lebesgue's monotone convergence theorem,

$$\varepsilon \geq \int_{\Omega} |h| \, dx = \|h\|_{L^1}.$$

• Recall that $||h||_{L^1} \ge ||g||_{L^1} - \varepsilon$, we obtain that $2\varepsilon \ge ||g||_{L^1}$. Sending $\varepsilon \to 0$, we obtain $||g||_{L^1} = 0$, i.e. g = 0 a.e. in Ω .

A relation between classical and weak derivatives

Remark

Suppose that

- \emptyset $f \in L^1(\Omega)$ is weakly differentiable with weak derivatives $\partial_1^w f$, ..., $\partial_n^w f$,
- **and, for some subdomain** $\omega \subset \Omega$, f is classically differentiable in ω with classical derivatives $\partial_1^c f$, ..., $\partial_n^c f$.

Then

$$\partial_i^w f = \partial_i^c f$$
 a.e. in ω for all $i = 1, \ldots, n$.

A relation between classical and weak derivatives

Sketch of proof

- Using the definition of weak derivatives, $f|_{\omega}$ is weakly differentiable with weak derivatives $\partial_1^w f|_{\omega}$, ..., $\partial_n^w f|_{\omega}$.
- As f is classically differentiable in ω , its classical derivatives are also weak derivatives of $f|_{\omega}$.
- By the uniqueness of weak derivatives, the conclusion follows.

Example of non-existence of weak derivatives

If $\Omega = (-1,1)$ and $u(x) = \operatorname{sign}(x)$, then u has no weak derivative. Proof

• Suppose otherwise that $u'=g\in L^1_{loc}(-1,1)$. Then, for $\varphi\in C^\infty_c(-1,1)$,

$$\int_{-1}^{1} g(x)\varphi(x) dx = \int_{-1}^{0} \varphi'(x) dx - \int_{0}^{1} \varphi'(x) dx$$
$$= [\varphi(0) - \varphi(-1)] - [\varphi(1) - \varphi(0)]$$
$$= 2\varphi(0).$$

- In particular, if we take $\underline{\varphi} \in C_c^{\infty}(-1,0)$, we have $\int_{-1}^0 g(x)\varphi(x)\,dx = 0$. So g=0 a.e. in (-1,0). Likewise, g=0 a.e. in (0,1). So g=0 a.e. in (-1,1).
- We thus have $0 = \int_{-1}^{1} g(x)\varphi(x) dx = 2\varphi(0)$ for all $\varphi \in C_c^{\infty}(-1,1)$, which is impossible.

The Sobolev spaces $W^{k,p}(\Omega)$

- Ω : a domain of \mathbb{R}^n .
- For $k \ge 0$ and $1 \le p \le \infty$, define

$$W^{k,p}(\Omega) = \Big\{ f \in L^p(\Omega) \Big| \forall |\alpha| \le k, \text{ the weak derivative} \\ \partial^{\alpha} f \text{ exists and belongs to } L^p(\Omega) \Big\}.$$

We equip $W^{k,p}(\Omega)$ with the norm

$$\|u\|_{W^{k,p}(\Omega)} = \Big[\sum_{|\alpha| \le k} \|\partial^{\alpha} u\|_{L^p(\Omega)}^p\Big]^{\frac{1}{p}}$$

so that $W^{k,p}(\Omega)$ is a normed vector space (check this!).

• For p=2, we also write $H^k(\Omega)$ for $W^{k,2}(\Omega)$. These are inner product spaces (check this!) with inner product

$$\langle u, v \rangle_{W^{k,2}(\Omega)} = \sum_{|\alpha| \le k} \langle \partial^{\alpha} u, \partial^{\alpha} v \rangle_{L^{2}(\Omega)}.$$

Examples of Sobolev functions

Let
$$\Omega = (-1, 1)$$
 and $f(x) = |x|$.

- We have that $f'(x) = \operatorname{sign}(x)$ and so $f \in W^{1,p}(-1,1)$ for every $p \in [1,\infty]$.
- The function $f'(x) = \operatorname{sign}(x)$ has no weak derivatives, and so $f \notin W^{2,p}(-1,1)$ for any $p \in [1,\infty]$.

Completeness of $W^{k,p}(\Omega)$

Theorem

For $k \geq 0$ and $1 \leq p \leq \infty$, $W^{k,p}(\Omega)$ is a Banach space. When p = 2, $W^{k,2}(\Omega)$ is a Hilbert space.

Proof

- We have seen that $W^{k,p}$ is a normed vector space and $W^{k,2}$ is an inner product space. It remains to show that $W^{k,p}$ is complete.
- Suppose that (u_m) is a Cauchy sequence in $W^{k,p}$. We need to show that there exists $u \in W^{k,p}$ such that $||u_m u||_{W^{k,p}} \to 0$.
- For $|\alpha| \leq k$, $(\partial^{\alpha} u_m)$ is Cauchy in L^p , as

$$\|\partial^{\alpha}u_{m}-\partial^{\alpha}u_{j}\|_{L^{p}}\leq\|u_{m}-u_{j}\|_{W^{k,p}}.$$

By Riesz-Fischer's theorem, we have that $(\partial^{\alpha} u_m)$ converges in L^p to some $v_{\alpha} \in L^p$.

Completeness of $W^{k,p}(\Omega)$

Proof

- (u_m) is Cauchy in $W^{k,p}$.
- For $|\alpha| \leq k$, $(\partial^{\alpha} u_m)$ converges in L^p to some $v_{\alpha} \in L^p$.
- To conclude, we show that $u:=v_{(0,\dots,0)}$ belongs to $W^{k,p}$ and $u_m\to u$ in $W^{k,p}$.
 - \star By definition of weak derivatives, we have for $|\alpha| \leq k$ that

$$\int_{\Omega} u_m \partial^{\alpha} \varphi \, dx = (-1)^{|\alpha|} \int_{\Omega} \partial^{\alpha} u_m \, \varphi \, dx \text{ for all } \varphi \in \mathit{C}^{\infty}_{c}(\Omega),$$

 \star Now we would like to pass $m \to \infty$. By Hölder's inequality

$$\Big|\int_{\Omega} (u_m - u) \partial^{\alpha} \varphi \, dx\Big| \leq \|u_m - u\|_{L^p} \|\partial^{\alpha} \varphi\|_{L^{p'}} \to 0.$$

So $\int_{\Omega} u_m \partial^{\alpha} \varphi \, dx \to \int_{\Omega} u \partial^{\alpha} \varphi \, dx$.

* Similarly, $\int_{\Omega} \partial^{\alpha} u_m \varphi dx \rightarrow \int_{\Omega} v_{\alpha} \varphi dx$.

Completeness of $W^{k,p}(\Omega)$

Proof

- (u_m) is Cauchy in $W^{k,p}$.
- For $|\alpha| \leq k$, $(\partial^{\alpha} u_m)$ converges in L^p to some $v_{\alpha} \in L^p$.
- * We thus have

$$\int_{\Omega}u\partial^{\alpha}\varphi=(-1)^{|\alpha|}\int_{\Omega}\mathsf{v}_{\alpha}\,\varphi\ \text{for all}\ \varphi\in\mathsf{C}_{c}^{\infty}(\Omega).$$

So v_{α} is the weak α -derivative of u. So $u \in W^{k,p}$.

* Now

$$\begin{split} \|u_{m} - u\|_{W^{k,p}}^{p} &= \sum_{|\alpha| \le k} \|\partial^{\alpha} u_{m} - \partial^{\alpha} u\|_{L^{p}}^{p} \\ &= \sum_{|\alpha| \le k} \|\partial^{\alpha} u_{m} - v_{\alpha}\|_{L^{p}}^{p \xrightarrow{m \to \infty}} 0. \end{split}$$

So $u_m \to u$ in $W^{k,p}$.

• We conclude that $W^{k,p}$ is complete.

Reflexivity of $W^{k,p}(\Omega)$

Theorem

For $k \ge 0$ and $1 , <math>W^{k,p}(\Omega)$ is reflexive.

Proof

- We will only consider the case k = 1. The general case requires some minor changes.
- By Eberlein's theorem, we only need to show that every bounded sequence in $W^{1,p}$ has a weakly convergent subsequence.
- Suppose $(u_m) \subset W^{1,p}$ is bounded. Then, (u_m) and $(\partial_i u_m)$ are bounded in L^p .
- By the weak sequential compactness property of L^p for $1 , there exists a subsequence <math>(u_{m_j})$ such that (u_{m_j}) and $(\partial_i u_{m_j})$ are weakly convergent in L^p . Let u be the L^p weak limit of (u_{m_j}) and v_i be the L^p weak limit of $(\partial_i u_{m_j})$.

Reflexivity of $W^{k,p}(\Omega)$

- To conclude, we show that u belongs to $W^{1,p}$ and $u_{m_j} \rightharpoonup u$ in $W^{1,p}$.
- The proof that $u \in W^{1,p}$ is similar to the one we did moment ago, but also has some subtle difference: By definition of weak derivatives, we have

$$\int_{\Omega}u_{m_{j}}\partial_{i}\varphi=-\int_{\Omega}\partial_{i}u_{m_{j}}\,\varphi \text{ for all }\varphi\in \textit{\textit{C}}_{c}^{\infty}(\Omega),$$

Sending $j \to \infty$ by using the definition weak convergence, we obtain

$$\int_{\Omega} u \partial_i \varphi = - \int_{\Omega} v_i \varphi \text{ for all } \varphi \in C_c^{\infty}(\Omega).$$

So $v_i = \partial_i u$ in the weak sense. So $u \in W^{1,p}$.

Reflexivity of $W^{k,p}(\Omega)$

- It remains to show that, if $A \in (W^{1,p})^*$, then $Au_{m_j} \to Au$.
 - * Define $E: W^{1,p}(\Omega) \to (L^p(\Omega))^{n+1}$ by $Ef = (f, \partial_1 f, \dots, \partial_n f)$. Then E is an isometry.
 - * Let $X:=E(W^{1,p}(\Omega))$ and $Y:=(L^p(\Omega))^{n+1}$. Define $\tilde{A}:X\to\mathbb{R}$ by $\tilde{A}p=AE^{-1}p$ for $p\in X$. Then $\tilde{A}\in X^*$. By Hahn-Banach's theorem, it has an extension $\hat{A}\in Y^*$.
 - * It follows that

$$Au_{m_j} = \tilde{A}Eu_{m_j} = \hat{A}Eu_{m_j}$$

$$= \hat{A}(u_{m_j}, 0, \dots, 0) + \sum_i \hat{A}(0, 0, \dots, 0, \partial_i u_{m_j}, 0, \dots, 0)$$

$$=: B(u_{m_j}) + \sum_i B_i(\partial_i u_{m_j})$$

$$\to B(u) + \sum_i B_i(\partial_i u) = Au.$$

This concludes the proof.

The Sobolev spaces $W_0^{k,p}(\Omega)$

- Ω : a domain of \mathbb{R}^n .
- For $k \ge 0$ and $1 \le p < \infty$, define

$$W_0^{k,p}(\Omega) = \text{the closure of } C_c^{\infty}(\Omega) \text{ in } W^{k,p}(\Omega).$$

When p = 2, we also write $H_0^k(\Omega)$ for $W_0^{k,2}(\Omega)$.

- In other words, $u \in W_0^{k,p}(\Omega)$ if there exist $u_m \in C_c^{\infty}(\Omega)$ such that $||u_m u||_{W^{k,p}} \to 0$.
- When $k=0, 1 \leq p < \infty$, and Ω is a bounded domain, we have seen in Sheet 1 that $W_0^{0,p}(\Omega) = W^{0,p}(\Omega) = L^p(\Omega)$. In general, this is not true for $k \geq 1$. Roughly speaking, $W_0^{k,p}(\Omega)$ consists of functions f in $W^{k,p}(\Omega)$ such that

$$\partial^{\alpha} f = 0$$
 on $\partial \Omega'$ for all $|\alpha| \leq k - 1$.

IBP formula for Sobolev functions

Proposition (Integration by parts)

Let $u \in W^{k,p}(\Omega)$ and $v \in W_0^{k,p'}(\Omega)$ with $k \ge 0$, $1 and <math>\frac{1}{p} + \frac{1}{p'} = 1$. Then

$$\int_{\Omega} \partial^{\alpha} uv \ dx = (-1)^{|\alpha|} \int_{\Omega} u \partial^{\alpha} v \ dx \ \text{ for all } |\alpha| \leq k.$$

Proof

- By definition of $W_0^{k,p'}$, there exists $v_m \in C_c^{\infty}(\Omega)$ such that $v_m \to v$ in $W^{k,p'}$. In particular, $\partial^{\alpha} v_m \to \partial^{\alpha} v$ in $L^{p'}$ for all $|\alpha| \le k$.
- By the definition of weak derivatives,

$$\int_{\Omega} \partial^{\alpha} u v_m \, dx = (-1)^{|\alpha|} \int_{\Omega} u \partial^{\alpha} v_m \, dx \text{ for all } |\alpha| \le k.$$

IBP formula for Sobolev functions

Proof

- $\partial^{\alpha} v_m \to \partial^{\alpha} v$ in $L^{p'}$ for all $|\alpha| \le k$.
- $\int_{\Omega} \partial^{\alpha} u v_m \, dx = (-1)^{|\alpha|} \int_{\Omega} u \partial^{\alpha} v_m \, dx$ for all $|\alpha| \le k$.
- We can now pass $m \to \infty$ as in the proof of the completeness of Sobolev spaces.
 - ⋆ By Hölder's inequality

$$\left|\int_{\Omega} \partial^{\alpha} u(v_m - v) dx\right| \leq \|\partial^{\alpha} u\|_{L^p} \|v_m - v\|_{L^{p'}} \to 0.$$

So $\int_{\Omega} \partial^{\alpha} u v_m dx \to \int_{\Omega} \partial^{\alpha} u v dx$.

- * Similarly, $\int_{\Omega} u \partial^{\alpha} v_m dx \rightarrow \int_{\Omega} u \partial^{\alpha} v dx$.
- * We conclude that

$$\int_{\Omega} \partial^{\alpha} u v \, dx = (-1)^{|\alpha|} \int_{\Omega} u \partial^{\alpha} v \, dx.$$

Differentiation rule for convolution of Sobolev functions

- Suppose $k \ge 0$ and $1 \le p < \infty$.
- Let $f \in L^p(\mathbb{R}^n)$ and $g \in C_c^k(\mathbb{R}^n)$. We knew that $f * g \in C^k(\mathbb{R}^n)$ and

$$\partial^{\alpha}(f * g) = f * (\partial^{\alpha}g) \text{ for all } |\alpha| \leq k.$$

Lemma

Assume $f \in W^{k,p}(\mathbb{R}^n)$ and $g \in C_c^k(\mathbb{R}^n)$ for some $k \geq 0$ and $1 \leq p < \infty$, then

$$\partial^{\alpha}(f * g) = (\partial^{\alpha}f) * g \text{ for all } |\alpha| \leq k.$$

Differentiation rule for convolution of Sobolev functions

Proof

• We will only consider the case k = 1. We aim to prove that

$$\partial_{x_1}(f*g)=(\partial_{x_1}f)*g$$

We compute

$$\begin{split} \partial_{x_1}(f*g)(x) &= f*(\partial_{x_1}g)(x) = \int_{\mathbb{R}^n} f(y) \, \partial_{x_1}g(x-y) \, dy \\ &= -\int_{\mathbb{R}^n} f(y) \, \partial_{y_1}g(x-y) \, dy \\ &= \int_{\mathbb{R}^n} \partial_{y_1}f(y) \, g(x-y) \, dy = ((\partial_{x_1}f)*g)(x). \end{split}$$

So we are done.