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In the last lectures

@ Definition of Sobolev spaces

@ Differentiation rule for convolution of Sobolev functions.
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This lecture

@ Density results for Sobolev spaces.
@ Extension theorems for Sobolev functions.
@ Trace (boundary value) of Sobolev functions.

o Gagliardo-Nirenberg-Sobolev's inequality
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Approximation of identity in Sobolev spaces

Theorem (Approximation of identity)

Let ¢ be a non-negative function in C2°(R") such that [, 0= 1. For

e >0, let
(X)——1 (f)
Q¢ —6,,@ c)

If f € W5P(R™) for some k > 0 and 1 < p < oo, then
fx 0. € C°(R") N WkP(R") and

lm ||f * 0 — f||Wk,p(Rn) = 0

In particular C*(R") N WkP(R") is dense in W*P(R™).
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Approximation of identity in Sobolev spaces

Proof
o Let £ ="Ffxp..
* As p. € C°(R"), we have f, € C*(R").
x As f € LP(R") and g. € L}(R"), Young's inequality gives that
f. € LP(R").
* The approximation of identity theorem in LP gives that
|z — flltr — 0 ase — 0.

@ By the differentiation rule for convolution of Sobolev functions,
we have 0“f. = (0°f) x o. for |a| < k. Repeat the argument as
above, we have 0“f. € LP(R") and ||0*f. — 0°f||.,» — 0 as
e — 0.

@ We deduce that £ € W*P(R") and

p .
1= Fllwes = | 3 10 = 0°FI5,| =2 0.

o <k
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Meyers-Serrin’s theorem

Theorem (Meyers-Serrin)

Suppose Q2 is a domain in R", k >0 and 1 < p < co. Then

C>=(Q) N WkP(Q) is dense in W5P(Q2). Namely, for every

u € WHkP(Q) there exists a sequence (u,) C C*(Q) N W5P(Q) such
that u,, converges to u in W*P(Q).

Remark: No regularity on €2 is assumed.
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A question and an obstruction

Is C=(Q) N W*P(Q) dense in W*P(Q)?

Answer: Not always.

Consider u(x,y) = /rcos  where
(x,y) = (rcosf, rsinf).

ue C(Q).

u is discontinuous in Q.

One computes

Hquzz/Quzdxdy

1 27 9 T
2
Q= {2 +52 <13\ {(x0)lx > 0} :// r cos Efdfdez?
o Jo

O={F+y* <1}
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A question and an obstruction

Consider u(x,y) = \/rcos %.
ue C®(Q)and u g C(Q).
One computes ||ul|?, = %,
1 1
2 — ar 2 il a 2 _
IVl = (@) + (00 =

IVulf = [ Vul? e

1 271'1 T
—/0\/0 Erdrdﬁ—g,

12
0= (i en\(moxzo 90 U € WEH(Q).
G-+ <1} The jump discontinuity across § = 0
D=4yt <1} is an obstruction to approximate u

by functions in C*(). It is in fact
not possible, as u ¢ W12(D).
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The segment condition

e : a domain in R".

o (Q is said to satisfy the segment condition if every x; € 0L has a
neighborhood U,, and a non-zero vector y,, such that if
z€QnNU,, then z + ty, € Qforall t € (0,1).

;

%
Yo

@ Note that if Q is Lipschitz, then it satisfies the segment
condition.
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Approximation by functions in C*>°(Q)

Theorem (Global approximation by functions smooth up
to the boundary)

Suppose k > 1 and 1 < p < co. If Q satisfies the segment condition,
then the set of restrictions to Q of functions in C2°(R") is dense in
W*P(Q). In particular C>°(Q) N W*P(Q) is dense in W*P(Q).

@ An important consequence of the theorem is the statement that

C>(R") is dense in W*P(R") when 1 < p < co. In order words
WkP(R") = WP (R™).

@ You will do the special when € is star-shaped in Sheet 2.
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Extension by zero of functions in W,*?(Q)

Assume that k > 0 and 1 < p < co. If u € WP(Q), then its
extension by zero i to R" belongs to W, P(R").

Proof

o Suppose u € W,°P(Q) and let 7 be its extension by zero to R”.
It is tempted to say that, as & =0 in R"\ Q,

a- ) 0% inQ, "
? _{0 in R™\ Q ()

which belongs to LP(IR"), and call it the end of the proof. For
this to work, we need to show first that & is weakly differentiable!
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Extension by zero of functions in W,*?(Q)

Proof
o Let (uy,) C C=(Q) be such that u, — uin W5P(Q). Let iy, be
the extension by zero of u,, to R". Then &, € C(R") and

m,j—o00

0.

| Tm — Tl whemey = [[Um — Ujl|wrr(a)

@ We thus have that (@,,) is Cauchy in W*P(R") and thus
converges in WP to some i, € W*P(R").
@ To conclude, we show that 7, = 7 a.e. in R".

* As @, converges to I, in LP(R"), there is a subsequence U,
which converges a.e. to &, in R”. This implies that 7, = 0 a.e.
in R"\ Q and up,; converges a.e. to iy in Q.

+ Likewise, as Um, converges to u in LP(£2), we can extract yet
another subsequence Uy, which converges a.e. to v in Q. It
follows that 7, = u a.e. in Q.

* So =0, a.e. in R".
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More on extension

Theorem (Stein’s extension theorem)

Assume that € is a bounded Lipschitz domain. Then there exists a
linear operator E sending functions defined a.e. in 2 to functions
defined a.e. in R" such that for every k >0, 1 < p < oo and

u € W5P(Q) it hold that Eu = u a.e. in Q and

IEullwrr@n < Crpallullwer@)

The operator E is called a total extension for Q.
You will have the opportunity to see how to construct such extension
in a very specific case in Sheet 2.
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More on extension

@ There exists domain 2 for which there is no bounded linear
operator E : WkP(Q) — W*P(R") such that Eu = u a.e. in Q.

We knew that the function
u(x,y) = \/rcos? satisfies
*x u € C®(Q)N Wt2(Q).
* u ¢ WH2(D).
So no extension of u belongs to
. W12(R?).
2= {3 +y? <1\ {(x,0)lx > 0}
O={2+y2 <1}

D={x*+y><1}
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Values of Sobolev functions on the boundary

@ As prompted at the beginning of the course, in our later
applications in the analysis of PDEs, solutions will live in a
Sobolev space.

@ When discussing PDEs on a domain, one needs to specify
boundary conditions.

@ A complication arises:

* On one hand, Sobolev ‘functions’ are equivalent classes of
functions which are equal almost everywhere. Thus one can
redefine the value of a Sobolev function on set of measure zero
at will without changing the equivalent class it represents.

* On the other hand, the boundary of a domain usually has
measure zero. So the boundary value of a Sobolev function
cannot simply be defined by restricting as is the case for
continuous functions.
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Values of Sobolev functions on the boundary

Suppose 1 < p < 00, Q is a bounded smooth domain and let

(X, || - ||) be a normed vector space which contains C(0S2). There is
NO bounded linear operator T : LP(2) — X such that Tu = u|sq for
all ue C(Q).

Proof
@ Suppose by contradiction that such T exists. Consider

fm € C(Q) defined by

F(x) = mdist(x,0Q) if dist(x,00Q) < 1/m,
mX =1 if dist(x,00) > 1/m.

o Then ||f, — 1|7, q) < [{dist(x,0Q) < 1/m}| < & and so
fm — Lin LP(Q).
@ Nowas Tf,, =04 1= T1in X, T cannot be bounded.
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Values of Sobolev functions on the boundary

Suppose 1 < p < 00, and that ) is a bounded Lipschitz domain.
Then there exists a bounded linear operator T : WP(Q) — LP(0R),
called the trace operator, such that Tu = ulgq if

ue WHP(Q) N C(Q).

We will only proof a weaker statement in a simpler situation:
) , We would like to define the trace operator
Q={x=(",x): x| <2, . . .
0 < xp <2} relative to [': There exists a bounded linear
operator Tr : W1P(Q) — LP(T) such that

Tru = u|r for all u € CHQ).

={x=(x,0): x| <2}
={x=(x,0): x| <1}

MT 2022 17 /47
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Values of Sobolev functions on the boundary

Q:{x:(x’,xn):|x/| <2,
0< xp <2}

0 < (e CX(Bs2) such that ( =1in By

F={x=(x0:|x] <2}
r={x=(x',0):|x| <1}

@ We first prove the key estimate
HUH[_p(r) S CpHu”Wl,p(Q) fOI’ aII ue Cl(Q) (*)

* We have

/r|U|de'§ /ﬁC|u|”dx’: _/f [/Ozaxn(dulp) dx,,] dx’

_ / 0y, (Clul?) dx< Gy / [[u]? + | Dul[u]*~1] dix.
Q Q
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Values of Sobolev functions on the boundary

Q:{x:(x’,xn):|x/| <2,
0< xp <2}

¢ € CX(Bs)2) such that ( =1 in B;.

F={x=(x0:|x] <2}
r={x=(x',0):|x| <1}

@ We first prove the key estimate

lullory < Collullwingy for all u € CHQ). (*)
* We have / |ulP dx’ < Cp,c/[\u\p + |Dul|u|P~Y] dx.
r Q
* Using the inequality |a||b|P~! < %|a|p + p%f]bV’, we obtain

J[1ulP & < Goc [ 117 + D]

This proves (*).
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Values of Sobolev functions on the boundary

Q={x=(x,): x| <2,
0 < xp < 2}

={x=(x,0): x| <2}
={x=(x",0):|x| <1}

@ We have proved the key estimate
lullery < Collullwar(qy for all u € cH(Q). (*)

o It follows that the map u +— u|r =: Au is a bounded linear
operator from (C*(Q), || - ||we) into LP(T).

o As Q is Lipschitz, C*(Q) and hence C*(Q) is dense in WP(Q).
Thus there exists a unique bounded linear operator
Tr : WHP(Q) — LP(T) which extends A, i.e. Tru = ulr for all
ue CHQ).

Luc Nguyen (University of Oxford) C4.3 — Lectures 7-8 MT 2022 20 /47



IBP formula revisited

Proposition (Integration by parts)

Suppose that 1 < p < oo, Q is a bounded Lipschitz domain, n be the
outward unit normal to 00, T : WYP(Q) — LP(Q) is the trace
operator, and u € WYP(Q). Then

/6,-uvdx=/ Tuvn,-dS—/u@,-vdx for all v € CY(Q).
Q o0 Q

Proof
® We knew that C>(Q) is dense in W*(Q). Thus there exists
U € C(Q) such that u, — uin WP,
o Fix some v € C}(Q). We have

/(9,-umvdx:/ umvn,-dS—/um&-vdx.
Q aQ Q
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IBP formula revisited

Proof
o [oOiumvdx = [, unvnidS— [, um0ivdx.
e Note that O;u, — Oju, u, — uin LP(Q) and
Umloa = Tum — Tu in LP(02). We can thus argue using
Holder's inequality to send m — oo to obtain

/(9,-uvdx:/ Tuvn,-dS—/ua,-vdx
Q a0 Q

as wanted.
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Functions of zero trace

Theorem (Trace-zero functions in W1P)

Suppose that 1 < p < oo, S is a bounded Lipschitz domain,
T : WhP(Q) — LP(Q) is the trace operator, and u € W'P(Q). Then
u € WyP(Q) if and only if Tu = 0.

Proof

o (=) Suppose u € W;"(Q). By definition, there exists
Unm € C(Q) such that v, — v in WP, Clearly Tu,, = 0 and
so by continuity, Tu = 0.

@ (<) We will only consider the case 2 is the unit ball B. This
proof can be generalised fairly quickly to star-shaped domains.
The proof for Lipschitz domains is more challenging.
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Functions of zero trace

Proof
@ (<) Suppose that u € W'P(B) and Tu = 0. We would like to
construct a sequence u,, € C>°(B) such that u,, — v in WP,

* Let 0 be the extension by zero of u to R”.
* As Tu = 0, we have by the IBP formula that

/ Jiuvdx = —/ ud;v dx for all v € C1(B).
B B
It follows that
/ Jiuvdx = —/ adjvdx for all v € CZ°(R").
B B
By definition of weak derivatives, this means

oji = Oju in B in the weak sense.
0 elsewhere

So & € WLP(R").
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Functions of zero trace

Proof
@ (<) We would like to construct a sequence u, € C2°(B) such
that v, — u in WHP(B).

* Let &\(x) = d@(Ax). Observe that Supp(iy) C Byyy.

* In Sheet 1, you showed that &y — & in LP as A — 1.
Noting also that 0;ix(x) = AJju(Ax), we also have that
0;jay — O0;ju in LP as A — 1.

Hence @y — @ in W1P as A — 1.

* Fix Am > 1 such that [[dy, — l|wremgny < 1/m.

* Let (o:) be a family of mollifiers: p.(x) = e~ "p(x/e) with
0€ CX(B), [gno=1. Then Gy, * 0. — iy, in WP as e — 0.
Also, Supp(ix,, * 0c) C By-1,_. Thus, we can select ¢y,
sufficiently small such that up, := 0y, * 0., € C2°(B) and
lum — Gx, lwre@ny < 1/m.

* Now |[um — ul|wrrgy < 2/m and so we are done.
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Embeddings

Let X; and X, be two Banach spaces.

@ We say Xj is embedded in X, if X; C X.

@ We say X is continuously embedded in X5 if X; is embedded in
X5 and the identity map / : X; — X5 is a bounded linear
operator, i.e. there exists a constant C such that
HXHX2 < C”XHXI' We write Xl — X2.

@ We say X is compactly embedded in X, if Xj is embedded in X,
and the identity map / : X; — X5 is a compact bounded linear
operator. This means that / is continuous and every bounded

sequence (x,) C Xi has a subsequence which is convergent with
respect to the norm on Xj.

Our interest: The possibility of embedding W** in L9 or C°.
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Gagliardo-Nirenberg-Sobolev's inequality

Theorem (Gagliardo—Niren berg—SoboIev's inequality)

Assume 1 < p < n and let p* . Then there exists a constant
Cn p such that

HUHLP*(R”) S C'LPHVUHLP(R") for all u € Wl’p(Rn).

In particular, WHP(R") — LP"(R").

The number p* = "Tpp is called the Sobolev conjugate of p. It

satisfies = %3 — %
The case p = 1 is referred to as Gagliardo-Nirenberg's inequality.
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GNS'’s inequality — Why p < n and why p*?

For what p and q does it hold

lullany < Copgll Vullowny for all u e C°(R")? (*)

This will be answered by a scaling argument:

e Fix a non-zero function u € CX(R"). Define uy(x) = u(Ax).
Then uy € CZ(R") and so

luxl[eagrny < Cop,ql [V Urll o). (**)

o We compute

luxllfe =

1 —n
)l o= 55 [ Ju)I7 dy = Xl
R" Rn
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GNS'’s inequality — Why p < n and why p*?

e uy(x) = u(Ax) and
lurllLaeny < Crpgll Vurlleon). (**)

o We compute |luyl[e = A™"9|u| 1a-

@ Next,
IV, = / AV u(A)P? dx
= [ [VunP dy = Il
Rn

That is HVU)\”LP = )\1—n/p”quLp_
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GNS'’s inequality — Why p < n and why p*?

e Putting in (**), we get
A ullis < Cop APVl o,

Rearranging, we have

@ Since the last inequality is valid for all A\, we must have that
—1+3—-2=0ie qg= P > =p". As g >0, we must also
have p < n.

@ We conclude that a necessary condition in order for the
inequality (*) to hold is that p < nand g=0p

47

Luc Nguyen (University of Oxford) C4.3 — Lectures 7-8 MT 2022

30/



Proof of GNS's inequality

np
n—p

@ Recall that we would like to show, for 1 < p < n and p* =
that

ull o (mny < CopllVul|ony for all u € WhP(R™). (#)

e Claim 1: If (#) holds for functions in C2°(IR"), then it holds for
functions in WP(R™).

* Take an arbitrary u € WLHP(R™). As p < co, C°(R") is dense
in WLHP(R"). Hence, we can select u,, € C=°(R") such that
Uy — uin WLP.

* If (#) holds for functions in C2°(R"), then
Il < Copl Vit

* As u,, — uin WHP, we have djup, — Oju in LP and so
|Vuml|e = [|Vulle.

* Warning: It is tempted to try to show ||um||; 0+ — [|ul|;e*-
However, this is false in general.
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Proof of GNS's inequality

@ Proof of Claim 1:

* Numll o < CopllVuml| e

* ||Vuml|lee = [|Vul|Le.

* As Uy, — uin WP, we have u,, — v in LP, and so, we can
extract a subsequence (um,) which converges a.e. in R" to u.
By Fatou's lemma, we have

lulP” dx < lim inf/ |um:|P" dx.
R j—oo  JRrn J
* So

s < iminf lum o+ < Cop liminf [ Ve 1r = Copl| Ve

So (#) holds.
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Proof of GNS's inequality

e Claim 2: If (#) holds for p =1, then it holds for all 1 < p < n.

*

%

Take an arbitrary non-trivial u € C2°(R") and consider the
function v = |u|” with v > 1 to be fixed. Clearly

v € LYR™) N L®(R").

In Sheet 3, you will show that |u| is weakly differentiable and

Vu in {x:u(x) >0},
Viuf=4¢ —Vu in{x:u(x) <0},
0 in {x: u(x) = 0}.

It follows that Vv = ~v|u[""1V|u| € LI(R”) So v € WLHRM).
Applying (#) in W we get ||v|| 2, < Cof| V||
On the left side, we have

n—1
_ ot n_ Y
Mz ={ [ 17T 8} ™ = ol g,
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Proof of GNS's inequality

e Claim 2: If (#) holds for p =1, then it holds for all 1 < p < n.
AVl e < Gl Vv
* On the left side, we have [|v|| », = HUW%

* On the right side, we use the inequality |V|u|| < |Vul| and

compute using Holder's inequality:
1
{/ |V ulP dx}p
Rn

1
7

||VVHL1</ ~y|ul"™ 1|Vu|dx<7 / |u|(7 ”dx}

=l o IVl

* Now we select 7y such that (y —1)p’ =
obtain
-1
lullpe < Cavllull),

As u # 0, we can divide both side by |ul|7".
Step 2.

Lp* , and conclude
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Proof of GNS's inequality

@ In view of Claim 1 and Claim 2, it thus remains to show GNS's
inequality for smooth functions when p = 1. To better present
the idea of the proof, | will only give the proof when n =2, i.e.

]l 22y < Cl|[Vul|1(re) for all u € C§°(R2). Q)

(The case n > 3 can be dealt with in the same way (check
this!).)
* The starting point is the estimate

w0l =] [ dnutnm)an| < [ Futnaldn.

Likewise,

)l < [ IVuara)l dre

—00
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Proof of GNS's inequality

@ We are proving
HLI||L2(R2) < Cl|Vul|prey for all u € C>(R?). ()

* We have |u(x)| < [ |Vu(y1,x2)| dy1 and

lu(x)[ < f Vu( X1,)/2)’ dy>.
* Multiplying the two inequalities gives

) < { [ Vutom)ldaf{ [ Vata )l de ).

* Now note that the first integral on the right hand side is
independent of xj, and if one integrates the second integral on
the right hand side with respect to x;, one gets ||Vu||;:. Thus,
by integrating both side in x1, we get

| )P o < { [ 19utn ) ds bl

— 00 —0o0
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Proof of GNS's inequality

@ We are proving

||U||L2(R2) < C||Vu||L1(Rz) for all u € C?(]Rz). ()
* We have shown

| )P oo < { [ 19utn ) s bl

—0o0 —00

By the same line of argument, integrating the above in x» gives

/ / X1,X2 ’ dxy dxo < HVUHU,

which gives exactly () with C = 1.
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An improved Gagliardo-Nirenberg's inequality

By inspection, note that when p = 1, we actually prove the following
slightly stronger inequality:

1017 g ey < H 010y
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GNS'’s inequality for bounded domains

Theorem (Gagliardo-Nirenberg-Sobolev's inequality)

Assume that Q is a bounded Lipschitz domain and 1 < p < n. Then,
for every q € [1, p*], there exists C, , q.q such that

HU”Lq(Q) S Cn’p7q7Q”U”W1,p(Q) fOI’ all u € Wl’p(Q).

In particular, WHP(Q) — L9(Q).

Proof
o Let E: WLP(Q) — WLP(R") be an extension operator. Then

lullir(@) < [|Eulloe@ny < CopllEullwrngny < Copllullwsge).
o By Halder inequality, we have ||ul|rqq) < ||u||LP*(Q)\Q|%_pL*.

1

1
e We conclude the proof with C, 50 = G, ,|Q|a 7.
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GNS'’s inequality — Can p = n?

@ Consider now the case p = n. Does it hold that

lull ooy < Gl Vul|omny for all u € CZ°(R")? (1)
+x When n =1, this is true as

)l =| [ v@as]< [ el =1l

* We next show that (}) does not hold when n > 2.
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GNS'’s inequality — Can p = n?

e We know that if (1) holds then W1"(IR") < L>°(R"). Thus it
suffices to exhibit a function u € W1(R™) \ L>°(R").

e It is enough to find f € W"(B,) \ L°(By). The desired u then
takes the form u = f( for any ¢ € C°(B,) with ( =1 in B;.
@ We impose that f is rotationally symmetric so that

f(x) = f(|x|) = f(r). Then we need to find a function
f:(0,2) — R such that

2
/ [1F]" + |f'|"] r" *dr < oo but esssup |f| = oc.
0 (©0.1)
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GNS'’s inequality — Can p = n?

@ Then we need to find a function f : (0,2) — R such that

2
/ [1F]" + |f'|"] r" * dr < oo but esssup |f| = co.
0 (0,1)

@ The fact that |f'|"r""! is integrable implies that, near r = 0, f’
is ‘smaller’ than 1, so f is ‘smaller’ than Inr.

o If we try f = (In%)*, then |f/|"r"~1 = & (In 2)n(e=1) js
integrable for & < 2=%. Also, |f|"r"~! is continuous in [0,2] and
hence integrable. So f € W'"(B,) when a < =1,

@ On the other hand, if a > 0, then esssupq 1) |f| = co.
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Trudinger's inequality

Theorem (Trudinger's inequality)

There exists a small constant ¢, > 0 and a large constant C, > 0
such that if u € WYH(R"), then exp [(%) "_1] € L} _(R") and

”“”WLH(R" loc

Ch 1
sup / exp [(¢> 1] dx < C,.
x0€ER" J B (x0) ”u”Wl’"(R")
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A non-embedding theorem for unbounded domains

Suppose 1 < p < oo and Q C R" be an unbounded domain with
finite volume. Then WP(Q) does not embed into L(Q2) whenever
q>p.

Ideas

\

N e We may assume |Q| = 1. We need
\ .

| to construct a function

!

7

_ f e WHP(Q)\ L9(Q).

o |
L= @ Let rp = 0 and select r, such that
/ //I Q,:=QnN {rk < ‘X| < rk+1} has

n, rn, 3, 1

e B volume 7.
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A non-embedding theorem for unbounded domains

Sketch of proof

@ The function f will be of the form f(x) = f(|x|) which is
increasing in |x|. If we let b, = f(ry), then

171 = 3 [ 1P o< 3 el = 3 02
k k k P

Likewise, [|f]|f, > ) " bf2~*1.
k

e To make ||f]|.« = oo, we then require that b, = 2%/9 infinitely
many times.
If we also impose that by < 2*/9 for all k, then

)5 < Y2749 < .
k
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A non-embedding theorem for unbounded domains

Sketch of proof

o by = 2K/9 infinitely many times = ||f]|.s = oo,
b < 2K/9 for all k = ||f||r < c0.

e Consider now ||V f||.».

* On each Qy, we can arrange so that |Vf| ~ %.

* It is important to note that, for any fixed € > 0, the inequality
that i1 — re > 27K must hold infinitely frequently. (As
otherwise, ry /» 00.) Label them as k; < kp < ...

by..1—by.
* In Q. we have |VF| ~ 121 < 2ki(1/ate),

Mi+1—rk; —
* In Qi with k # k;, we control |Vf| by imposing bii1 = by so
that |[Vf| = 0.
* To meet the requirement in the first bullet point, we ask
bkj = 2ki/a,
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A non-embedding theorem for unbounded domains

Sketch of proof

o ||f]|e =00 and ||f]|r < 0.
e Consider ||V f]|e.
* Putting things together, we have

IV =S /Q VFIP dx
J kj

< Z oki(1/q+e)pg—ki—1 < Zz—kj(l—g—ap).
J J

Choosing ¢ < % — %, we see that this sum is finite.

e We conclude that f € WYP(Q) but f ¢ L9(Q).
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