

C4.3 Functional Analytic Methods for PDEs Lectures 7-8

Luc Nguyen luc.nguyen@maths

University of Oxford

MT 2022

- Definition of Sobolev spaces
- Differentiation rule for convolution of Sobolev functions.
- Density results for Sobolev spaces.
- **•** Extension theorems for Sobolev functions.
- Trace (boundary value) of Sobolev functions.
- **•** Gagliardo-Nirenberg-Sobolev's inequality

Theorem (Approximation of identity)

Let ϱ be a non-negative function in $\mathcal{C}_c^\infty(\mathbb{R}^n)$ such that $\int_{\mathbb{R}^n} \varrho = 1$. For $\varepsilon > 0$, let

$$
\varrho_{\varepsilon}(x) = \frac{1}{\varepsilon^{n}} \varrho\left(\frac{x}{\varepsilon}\right).
$$

If $f \in W^{k,p}(\mathbb{R}^n)$ for some $k \geq 0$ and $1 \leq p < \infty$, then $f \ast \varrho_\varepsilon \in \mathit{C}^\infty(\mathbb{R}^n) \cap W^{k,p}(\mathbb{R}^n)$ and

$$
\lim_{\varepsilon\to 0}||f*\varrho_\varepsilon-f||_{W^{k,p}(\mathbb{R}^n)}=0.
$$

In particular $C^{\infty}(\mathbb{R}^n) \cap W^{k,p}(\mathbb{R}^n)$ is dense in $W^{k,p}(\mathbb{R}^n)$.

Approximation of identity in Sobolev spaces

Proof

• Let
$$
f_{\varepsilon} = f * \varrho_{\varepsilon}
$$
.

- \star As $\varrho_{\varepsilon} \in C_c^{\infty}(\mathbb{R}^n)$, we have $f_{\varepsilon} \in C^{\infty}(\mathbb{R}^n)$.
- \star As $f\in L^p(\mathbb{R}^n)$ and $\varrho_\varepsilon\in L^1(\mathbb{R}^n)$, Young's inequality gives that $f_{\varepsilon} \in L^p(\mathbb{R}^n)$.
- \star The approximation of identity theorem in L^p gives that $||f_{\varepsilon} - f||_{L^p} \to 0$ as $\varepsilon \to 0$.
- By the differentiation rule for convolution of Sobolev functions, we have $\partial^\alpha f_\varepsilon=(\partial^\alpha f)*\varrho_\varepsilon$ for $|\alpha|\leq k.$ Repeat the argument as above, we have $\partial^\alpha f_\varepsilon \in L^p(\mathbb{R}^n)$ and $\|\partial^\alpha f_\varepsilon - \partial^\alpha f\|_{L^p} \to 0$ as $\varepsilon \rightarrow 0$.
- We deduce that $f_\varepsilon\in\mathcal{W}^{k,p}(\mathbb{R}^n)$ and

$$
\|f_{\varepsilon}-f\|_{W^{k,p}}=\Big[\sum_{|\alpha|\leq k}\|\partial^{\alpha}f_{\varepsilon}-\partial^{\alpha}f\|_{L^{p}}^{p}\Big]^{1/p}\xrightarrow[\varepsilon\to 0]{}0.
$$

Theorem (Meyers-Serrin)

Suppose Ω is a domain in \mathbb{R}^n , $k \geq 0$ and $1 \leq p < \infty$. Then $C^{\infty}(\Omega) \cap W^{k,p}(\Omega)$ is dense in $W^{k,p}(\Omega)$. Namely, for every $u\in W^{k,p}(\Omega)$ there exists a sequence $(u_m)\subset\textit{C}^{\infty}(\Omega)\cap\textit{W}^{k,p}(\Omega)$ such that u_m converges to u in $W^{k,p}(\Omega)$.

Remark: No regularity on Ω is assumed.

A question and an obstruction

Question

$$
Is C^{\infty}(\bar{\Omega}) \cap W^{k,p}(\Omega) \text{ dense in } W^{k,p}(\Omega)
$$
?

Answer: Not always.

Consider
$$
u(x, y) = \sqrt{r} \cos \frac{\theta}{2}
$$
 where
\n $(x, y) = (r \cos \theta, r \sin \theta).$
\n $u \in C^{\infty}(\Omega).$
\n*u* is discontinuous in $\overline{\Omega}$.
\nOne computes

$$
||u||_{L^2}^2 = \int_{\Omega} u^2 dx dy
$$

=
$$
\int_0^1 \int_0^{2\pi} r \cos^2 \frac{\theta}{2} r dr d\theta = \frac{\pi}{3},
$$

A question and an obstruction

Consider
$$
u(x, y) = \sqrt{r} \cos \frac{\theta}{2}
$$
.
\n $u \in C^{\infty}(\Omega)$ and $u \notin C(\overline{\Omega})$.
\nOne computes $||u||_{L^2}^2 = \frac{\pi}{3}$,
\n
$$
|\nabla u|^2 = (\partial_r u)^2 + \frac{1}{r^2} (\partial_\theta u)^2 = \frac{1}{4r},
$$
\n
$$
||\nabla u||_{L^2}^2 = \int_{\Omega} |\nabla u|^2 dx dy
$$
\n
$$
= \int_0^1 \int_0^{2\pi} \frac{1}{4r} r dr d\theta = \frac{\pi}{2},
$$

 $\Omega = \{x^2 + y^2 < 1\} \setminus \{(x, 0)|x \ge 0\}$ $\bar{\Omega} = \{x^2 + y^2 \leq 1\}$ $D = \{x^2 + y^2 < 1\}$

So $u \in W^{1,2}(\Omega)$. The jump discontinuity across $\theta = 0$ is an obstruction to approximate u by functions in $C^{\infty}(\bar{\Omega})$. It is in fact not possible, as $u \notin W^{1,2}(D)$.

The segment condition

- $Ω: a domain in ℝⁿ.$
- \bullet Ω is said to satisfy the segment condition if every $x_0 \in \partial \Omega$ has a neighborhood U_{x_0} and a non-zero vector y_{x_0} such that if $z \in \bar{\Omega} \cap U_{x_0}$, then $z + ty_{x_0} \in \Omega$ for all $t \in (0,1)$.

• Note that if Ω is Lipschitz, then it satisfies the segment condition.

Luc Nguyen (University of Oxford) [C4.3 – Lectures 7-8](#page-0-0) MT 2022 9/47

Theorem (Global approximation by functions smooth up to the boundary)

Suppose $k \geq 1$ and $1 \leq p < \infty$. If Ω satisfies the segment condition, then the set of restrictions to Ω of functions in $C_c^{\infty}(\mathbb{R}^n)$ is dense in $W^{k,p}(\Omega)$. In particular $C^{\infty}(\overline{\Omega}) \cap W^{k,p}(\Omega)$ is dense in $W^{k,p}(\Omega)$.

- An important consequence of the theorem is the statement that $C_c^{\infty}(\mathbb{R}^n)$ is dense in $W^{k,p}(\mathbb{R}^n)$ when $1 \leq p < \infty$. In order words $W^{k,p}(\mathbb{R}^n) = W_0^{k,p}$ $b_0^{k,p}(\mathbb{R}^n)$.
- You will do the special when Ω is star-shaped in Sheet 2.

Extension by zero of functions in $W_0^{k,p}$ $\binom{\kappa,\rho}{0}(\Omega)$

Lemma

Assume that $k\geq 0$ and $1\leq p<\infty.$ If $u\in W^{k,p}_0$ $\binom{\kappa,\rho}{0}$ $($ $\Omega)$, then its extension by zero \bar{u} to \mathbb{R}^n belongs to $\mathcal{W}^{k,p}_0$ $a_0^{k,p}(\mathbb{R}^n)$.

Proof

Suppose $u \in W^{k,p}_0$ $\mathcal{O}_0^{k,p}(\Omega)$ and let \bar{u} be its extension by zero to \mathbb{R}^n . It is tempted to say that, as $\bar{u} \equiv 0$ in $\mathbb{R}^n \setminus \Omega$,

$$
\partial^{\alpha}\bar{u} = \begin{cases} \partial^{\alpha}u & \text{in } \Omega, \\ 0 & \text{in } \mathbb{R}^n \setminus \Omega \end{cases} (*)
$$

which belongs to $L^p(\mathbb{R}^n)$, and call it the end of the proof. For this to work, we need to show first that \bar{u} is weakly differentiable!

Extension by zero of functions in $W_0^{k,p}$ $\binom{\kappa,\rho}{0}(\Omega)$

Proof

Let $(u_m)\subset C_c^\infty(\Omega)$ be such that $u_m\to u$ in $W^{k,p}(\Omega)$. Let $\bar u_m$ be the extension by zero of u_m to \mathbb{R}^n . Then $\bar{u}_m\in \mathcal{C}_c^\infty(\mathbb{R}^n)$ and

$$
\|\bar{u}_m-\bar{u}_j\|_{W^{k,p}(\mathbb{R}^n)}=\|u_m-u_j\|_{W^{k,p}(\Omega)}\stackrel{m,j\to\infty}{\longrightarrow}0.
$$

- We thus have that (\bar{u}_m) is Cauchy in $W^{k,p}(\mathbb{R}^n)$ and thus converges in $W^{k,p}$ to some $\bar{u}_* \in W^{k,p}(\mathbb{R}^n)$.
- To conclude, we show that $\bar{u}_* = \bar{u}$ a.e. in \mathbb{R}^n .
	- \star As \bar{u}_m converges to \bar{u}_* in $L^p(\mathbb{R}^n)$, there is a subsequence \bar{u}_{m_j} which converges a.e. to \bar{u}_* in \mathbb{R}^n . This implies that $\bar{u}_* = 0$ a.e. in $\mathbb{R}^n \setminus \overline{\Omega}$ and u_{m_j} converges a.e. to \bar{u}_* in $\overline{\Omega}$.
	- \star Likewise, as u_{m_j} converges to u in $L^p(\Omega)$, we can extract yet another subsequence $u_{m_{j_l}}$ which converges a.e. to u in Ω . It follows that $\bar{u}_* = u$ a.e. in Ω .

$$
\star \ \text{So} \ \bar{u} = \bar{u}_* \ \text{a.e. in } \mathbb{R}^n.
$$

Theorem (Stein's extension theorem)

Assume that Ω is a bounded Lipschitz domain. Then there exists a linear operator E sending functions defined a.e. in Ω to functions defined a.e. in \mathbb{R}^n such that for every $k\geq 0$, $1\leq p<\infty$ and $u \in W^{k,p}(\Omega)$ it hold that $Eu = u$ a.e. in Ω and

$$
||Eu||_{W^{k,p}(\mathbb{R}^n)} \leq C_{k,p,\Omega} ||u||_{W^{k,p}(\Omega)}
$$

The operator E is called a total extension for Ω . You will have the opportunity to see how to construct such extension in a very specific case in Sheet 2.

More on extension

 \bullet There exists domain Ω for which there is no bounded linear operator $E: W^{k,p}(\Omega) \to W^{k,p}(\mathbb R^n)$ such that $Eu=u$ a.e. in $\Omega.$

We knew that the function
\n
$$
u(x, y) = \sqrt{r} \cos \frac{\theta}{2}
$$
 satisfies
\n $\star u \in C^{\infty}(\Omega) \cap W^{1,2}(\Omega)$.
\n $\star u \notin W^{1,2}(D)$.

So no extension of u belongs to $W^{1,2}(\mathbb{R}^2)$.

- As prompted at the beginning of the course, in our later applications in the analysis of PDEs, solutions will live in a Sobolev space.
- When discussing PDEs on a domain, one needs to specify boundary conditions.
- A complication arises:
	- \star On one hand, Sobolev 'functions' are equivalent classes of functions which are equal almost everywhere. Thus one can redefine the value of a Sobolev function on set of measure zero at will without changing the equivalent class it represents.
	- \star On the other hand, the boundary of a domain usually has measure zero. So the boundary value of a Sobolev function cannot simply be defined by restricting as is the case for continuous functions.

Remark

Suppose $1 \leq p \leq \infty$, Ω is a bounded smooth domain and let $(X, \|\cdot\|)$ be a normed vector space which contains $C(\partial\Omega)$. There is NO <u>bounded</u> linear operator T : L^p(Ω) \rightarrow X such that Tu = u|_{∂ Ω} for all $u \in C(\overline{\Omega})$.

Proof

• Suppose by contradiction that such T exists. Consider $f_m \in C(\Omega)$ defined by

$$
f_m(x) = \begin{cases} m \text{ dist}(x, \partial \Omega) & \text{if } \text{dist}(x, \partial \Omega) < 1/m, \\ 1 & \text{if } \text{dist}(x, \partial \Omega) \ge 1/m. \end{cases}
$$

Then $\|f_m-1\|^p_{L^p(\Omega)}\leq |\{\textit{dist}(x,\partial \Omega)<1/m\}|\leq \frac{C}{m}$ and so $f_m \to 1$ in $L^p(\Omega)$. • Now as $Tf_m = 0 \nleftrightarrow 1 = T1$ in X, T cannot be bounded.

Theorem

Suppose $1 \leq p \leq \infty$, and that Ω is a bounded Lipschitz domain. Then there exists a <u>bounded</u> linear operator $T: W^{1,p}(\Omega) \to L^p(\partial\Omega)$, called the trace operator, such that $Tu = u|_{\partial\Omega}$ if $u \in W^{1,p}(\Omega) \cap C(\overline{\Omega}).$

We will only proof a weaker statement in a simpler situation:

$$
\Omega = \{x = (x', x_n) : |x'| < 2, 0 < x_n < 2\}
$$

 $\hat{\Gamma} = \{x = (x', 0) : |x'| < 2\}$ $\Gamma = \{x = (x', 0) : |x'| < 1\}$ We would like to define the trace operator relative to Γ: There exists a bounded linear operator $\, T_{\Gamma}: \, W^{1,p}({\Omega}) \rightarrow L^p(\Gamma)\,$ such that

$$
T_{\Gamma}u=u|_{\Gamma} \text{ for all } u\in C^1(\bar{\Omega}).
$$

$$
0\leq \zeta\in \mathcal{C}_c^\infty(B_{3/2}) \text{ such that } \zeta\equiv 1 \text{ in } B_1
$$

- $\hat{\Gamma} = \{x = (x', 0) : |x'| < 2\}$ $\Gamma = \{x = (x', 0) : |x'| < 1\}$
- We first prove the key estimate

$$
||u||_{L^p(\Gamma)} \leq C_p ||u||_{W^{1,p}(\Omega)} \text{ for all } u \in C^1(\overline{\Omega}). \tag{*}
$$

 $*$ We have

$$
\int_{\Gamma} |u|^p dx' \leq \int_{\hat{\Gamma}} \zeta |u|^p dx' = - \int_{\hat{\Gamma}} \left[\int_0^2 \partial_{x_n} (\zeta |u|^p) dx_n \right] dx'
$$

=
$$
- \int_{\Omega} \partial_{x_n} (\zeta |u|^p) dx \leq C_{p,\zeta} \int_{\Omega} [|u|^p + |Du||u|^{p-1}] dx.
$$

 $\Gamma = \{x = (x', 0) : |x'| < 1\}$

$$
\zeta\in \mathcal{C}_c^\infty(B_{3/2})\,\,\text{such that}\,\, \zeta\equiv 1\,\, \text{in}\,\, B_1.
$$

• We first prove the key estimate

$$
||u||_{L^{p}(\Gamma)} \leq C_{p}||u||_{W^{1,p}(\Omega)} \text{ for all } u \in C^{1}(\overline{\Omega}).
$$

\n
$$
\star \text{ We have } \int_{\Gamma} |u|^{p} dx' \leq C_{p,\zeta} \int_{\Omega} [|u|^{p} + |Du||u|^{p-1}] dx.
$$

\n
$$
\star \text{ Using the inequality } |a||b|^{p-1} \leq \frac{1}{p} |a|^{p} + \frac{p-1}{p} |b|^{p}, \text{ we obtain}
$$

\n
$$
\int_{\Gamma} |u|^{p} dx' \leq C_{p,\zeta} \int_{\Omega} [|u|^{p} + |Du|^{p}] dx
$$

This proves (*).

• We have proved the key estimate

$$
||u||_{L^p(\Gamma)} \leq C_p ||u||_{W^{1,p}(\Omega)} \text{ for all } u \in C^1(\overline{\Omega}). \tag{*}
$$

- It follows that the map $u \mapsto u|_{\Gamma} =: Au$ is a bounded linear operator from $(\,C^1(\bar{\Omega}),\|\cdot\|_{W^{1,p}})\,$ into $\,L^p(\Gamma).$
- As Ω is Lipschitz, $\widetilde{C}^{\infty}(\bar{\Omega})$ and hence $C^{1}(\bar{\Omega})$ is dense in $W^{1,p}(\Omega).$ Thus there exists a unique bounded linear operator $T_{\Gamma}: W^{1,p}(\Omega) \to L^p(\Gamma)$ which extends A, i.e. $T_{\Gamma} u = u|_{\Gamma}$ for all $u \in C^1(\overline{\Omega}).$

Proposition (Integration by parts)

Suppose that $1 \leq p < \infty$, Ω is a bounded Lipschitz domain, n be the outward unit normal to $\partial\Omega$, $\mathcal{T} : W^{1,p}(\Omega) \rightarrow L^p(\Omega)$ is the trace operator, and $u\in W^{1,p}(\Omega).$ Then

$$
\int_{\Omega} \partial_i u \, v \, dx = \int_{\partial \Omega} \mathsf{T} u \, v \, n_i \, dS - \int_{\Omega} u \, \partial_i v \, dx \, \text{ for all } v \in C^1(\overline{\Omega}).
$$

Proof

- We knew that $C^\infty(\bar{\Omega})$ is dense in $W^{1,p}(\Omega).$ Thus there exists $u_m \in C^{\infty}(\bar{\Omega})$ such that $u_m \to u$ in $W^{1,p}$.
- Fix some $v \in C^1(\bar{\Omega})$. We have

$$
\int_{\Omega} \partial_i u_m v \, dx = \int_{\partial \Omega} u_m v \, n_i \, dS - \int_{\Omega} u_m \, \partial_i v \, dx.
$$

Proof

•
$$
\int_{\Omega} \partial_i u_m v \, dx = \int_{\partial \Omega} u_m v \, n_i \, dS - \int_{\Omega} u_m \partial_i v \, dx.
$$

Note that $\partial_i u_m \to \partial_i u$, $u_m \to u$ in $L^p(\Omega)$ and $|u_m|_{\partial\Omega} = Tu_m \rightarrow Tu$ in $L^p(\partial\Omega)$. We can thus argue using Hölder's inequality to send $m \to \infty$ to obtain

$$
\int_{\Omega} \partial_i u \, v \, dx = \int_{\partial \Omega} \mathsf{T} u \, v \, n_i \, dS - \int_{\Omega} u \, \partial_i v \, dx
$$

as wanted.

Theorem (Trace-zero functions in $\mathcal{W}^{1,p})$

Suppose that $1 \leq p \leq \infty$, Ω is a bounded Lipschitz domain, $T:W^{1,p}(\Omega)\to L^p(\Omega)$ is the trace operator, and $u\in W^{1,p}(\Omega)$. Then $u \in W_0^{1,p}$ $C_0^{1,p}(\Omega)$ if and only if $Tu = 0$.

Proof

- (\Rightarrow) Suppose $u \in W_0^{1,p}$ $C^{1,p}_0(\Omega)$. By definition, there exists $u_m\in C_c^\infty(\Omega)$ such that $u_m\to u$ in $W^{1,p}.$ Clearly $\mathcal{T}u_m=0$ and so by continuity, $Tu = 0$.
- \bullet (\Leftarrow) We will only consider the case Ω is the unit ball B. This proof can be generalised fairly quickly to star-shaped domains. The proof for Lipschitz domains is more challenging.

Functions of zero trace

Proof

- (\Leftarrow) Suppose that $u \in W^{1,p}(B)$ and $\mathcal{T} u = 0.$ We would like to construct a sequence $u_m\in \mathcal{C}_c^\infty(B)$ such that $u_m\to u$ in $\mathcal{W}^{1,p}.$
	- \star Let \bar{u} be the extension by zero of u to \mathbb{R}^n .
	- \star As Tu = 0, we have by the IBP formula that

$$
\int_B \partial_i u \, v \, dx = - \int_B u \, \partial_i v \, dx \text{ for all } v \in C^1(\bar{B}).
$$

It follows that

$$
\int_B \partial_i u \, v \, dx = - \int_B \bar{u} \, \partial_i v \, dx \text{ for all } v \in C_c^{\infty}(\mathbb{R}^n).
$$

By definition of weak derivatives, this means

$$
\partial_i \bar{u} = \begin{cases} \frac{\partial_i u}{\partial x_i} & \text{in } B \\ 0 & \text{elsewhere} \end{cases}
$$
 in the weak sense.

So $\bar{u} \in W^{1,p}(\mathbb{R}^n)$.

Functions of zero trace

Proof

- (\Leftarrow) We would like to construct a sequence $u_m \in \mathcal{C}^\infty_c(B)$ such that $u_m \to u$ in $W^{1,p}(B)$.
	- \star Let $\bar{u}_{\lambda}(x) = \bar{u}(\lambda x)$. Observe that $Supp(\bar{u}_{\lambda}) \subset B_{1/\lambda}$.
	- \star In Sheet 1, you showed that $\bar{u}_{\lambda} \to \bar{u}$ in L^p as $\lambda \to 1$. Noting also that $\partial_i \bar{u}_\lambda(x) = \lambda \partial_i u(\lambda x)$, we also have that $\partial_i \bar{u}_\lambda \to \partial_i \bar{u}$ in L^p as $\lambda \to 1$. Hence $\bar{u}_{\lambda} \rightarrow \bar{u}$ in $W^{1,p}$ as $\lambda \rightarrow 1.$
	- \star Fix $\lambda_m > 1$ such that $\|\bar{u}_{\lambda_m} \bar{u}\|_{W^{1,p}(\mathbb{R}^n)} \leq 1/m$.
	- \star Let (ϱ_ε) be a family of mollifiers: $\varrho_\varepsilon(x) = \varepsilon^{-n} \varrho(x/\varepsilon)$ with $\varrho\in \textit{\textsf{C}}_{\bm{c}}^{\infty}(\mathcal{B})$, $\int_{\mathbb{R}^n}\varrho=1.$ Then $\bar{\mathsf{u}}_{\lambda_m}*\varrho_\varepsilon\rightarrow \bar{\mathsf{u}}_{\lambda_m}$ in $\mathcal{W}^{1,p}$ as $\varepsilon\rightarrow 0.$ Also, $Supp(\bar{u}_{\lambda_m} * \varrho_\varepsilon) \subset B_{\lambda_m^{-1} + \varepsilon}$. Thus, we can select ε_m sufficiently small such that $u_m := \bar{u}_{\lambda_m} * \varrho_{\varepsilon_m} \in C_c^\infty(B)$ and $\|u_m - \bar u_{\lambda_m}\|_{W^{1,p}(\mathbb{R}^n)} \leq 1/m.$ \star Now $||u_m - u||_{W^{1,p}(B)} \leq 2/m$ and so we are done.

Let X_1 and X_2 be two Banach spaces.

- We say X_1 is embedded in X_2 if $X_1 \subset X_2$.
- We say X_1 is continuously embedded in X_2 if X_1 is embedded in X_2 and the identity map $I: X_1 \rightarrow X_2$ is a bounded linear operator, i.e. there exists a constant C such that $\|x\|_{X_2}\leq C\|x\|_{X_1}.$ We write $X_1\hookrightarrow X_2.$
- We say X_1 is compactly embedded in X_2 if X_1 is embedded in X_2 and the identity map $I: X_1 \rightarrow X_2$ is a compact bounded linear operator. This means that I is continuous and every bounded sequence $(x_n) \subset X_1$ has a subsequence which is convergent with respect to the norm on X_2 .

Our interest: The possibility of embedding $W^{k,p}$ in L^q or C^0 .

Theorem (Gagliardo-Nirenberg-Sobolev's inequality)

Assume $1 \leq p < n$ and let $p^* = \frac{np}{n-1}$ $\frac{np}{n-p}$. Then there exists a constant $C_{n,p}$ such that

$$
||u||_{L^{p^*}(\mathbb{R}^n)} \leq C_{n,p}||\nabla u||_{L^p(\mathbb{R}^n)} \text{ for all } u \in W^{1,p}(\mathbb{R}^n).
$$

In particular, $W^{1,p}(\mathbb{R}^n) \hookrightarrow L^{p^*}(\mathbb{R}^n)$.

The number $p^* = \frac{np}{n-1}$ $\frac{np}{n-p}$ is called the Sobolev conjugate of p . It satisfies $\frac{1}{p^*} = \frac{1}{p} - \frac{1}{n}$ $\frac{1}{n}$. The case $p = 1$ is referred to as Gagliardo-Nirenberg's inequality.

GNS's inequality – Why $p < n$ and why p^* ?

Question

For what p and q does it hold

$$
||u||_{L^q(\mathbb{R}^n)} \leq C_{n,p,q} ||\nabla u||_{L^p(\mathbb{R}^n)} \text{ for all } u \in C_c^{\infty}(\mathbb{R}^n)
$$
 (*)

This will be answered by a scaling argument:

Fix a non-zero function $u \in C_c^{\infty}(\mathbb{R}^n)$. Define $u_\lambda(x) = u(\lambda x)$. Then $u_{\lambda} \in C_c^{\infty}(\mathbb{R}^n)$ and so

$$
||u_\lambda||_{L^q(\mathbb{R}^n)} \leq C_{n,p,q} ||\nabla u_\lambda||_{L^p(\mathbb{R}^n)}.
$$

• We compute

$$
||u_\lambda||_{L^q}^q = \int_{\mathbb{R}^n} |u(\lambda x)|^q dx = \frac{1}{\lambda^n} \int_{\mathbb{R}^n} |u(y)|^q dy = \lambda^{-n} ||u||_{L^q}^q.
$$

GNS's inequality – Why $p < n$ and why p^* ?

•
$$
u_{\lambda}(x) = u(\lambda x)
$$
 and

$$
||u_\lambda||_{L^q(\mathbb{R}^n)} \leq C_{n,p,q}||\nabla u_\lambda||_{L^p(\mathbb{R}^n)}.
$$

• We compute
$$
||u_{\lambda}||_{L^q} = \lambda^{-n/q} ||u||_{L^q}
$$
.

Next,

$$
\|\nabla u_{\lambda}\|_{L^p}^p = \int_{\mathbb{R}^n} |\lambda \nabla u(\lambda x)|^p dx
$$

= $\lambda^{p-n} \int_{\mathbb{R}^n} |\nabla u(y)|^p dy = \lambda^{p-n} \|\nabla u\|_{L^p}^p.$

That is
$$
\|\nabla u_{\lambda}\|_{L^p} = \lambda^{1-n/p} \|\nabla u\|_{L^p}
$$
.

GNS's inequality – Why $p < n$ and why p^* ?

• Putting in $(**)$, we get

$$
\lambda^{-n/q}||u||_{L^q}\leq C_{n,p,q}\lambda^{1-n/p}||\nabla u||_{L^p}.
$$

Rearranging, we have

$$
\lambda^{-1+\frac{n}{p}-\frac{n}{q}}\leq \frac{C_{n,p,q}\|\nabla u\|_{L^p}}{\|u\|_{L^q}}.
$$

- Since the last inequality is valid for all λ , we must have that $-1+\frac{n}{\rho}-\frac{n}{q}=0$, i.e. $q=\frac{np}{n-\rho}=\rho^*$. As $q>0$, we must also have $p \leq n$.
- We conclude that a necessary condition in order for the inequality (*) to hold is that $p \leq n$ and $q = p^*$.

Recall that we would like to show, for $1 \leq p < n$ and $p^* = \frac{np}{n-1}$ n−p that

$$
||u||_{L^{p^*}(\mathbb{R}^n)} \leq C_{n,p}||\nabla u||_{L^p(\mathbb{R}^n)} \text{ for all } u \in W^{1,p}(\mathbb{R}^n). \qquad (\#)
$$

- Claim 1: If $(\#)$ holds for functions in $C_c^{\infty}(\mathbb{R}^n)$, then it holds for functions in $W^{1,p}(\mathbb{R}^n)$.
	- \star Take an arbitrary $u\in W^{1,p}(\mathbb{R}^n).$ As $p<\infty,~\mathcal{C}^\infty_c(\mathbb{R}^n)$ is dense in $W^{1,p}(\mathbb{R}^n).$ Hence, we can select $u_m\in \textit{\textsf{C}}_{c}^{\infty}(\mathbb{R}^n)$ such that $u_m \to u$ in $W^{1,p}$.
	- \star If $(\#)$ holds for functions in $C_c^\infty(\mathbb{R}^n)$, then $||u_m||_{L^{p^*}} \leq C_{n,p}||\nabla u_m||_{L^p}.$
	- \star As $u_m \to u$ in $W^{1,p}$, we have $\partial_i u_m \to \partial_i u$ in L^p and so $\|\nabla u_m\|_{L^p}\to \|\nabla u\|_{L^p}.$
	- * Warning: It is tempted to try to show $||u_m||_{L^{p^*}} \rightarrow ||u||_{L^{p^*}}$. However, this is false in general.

• Proof of Claim 1:

$$
\star \|u_m\|_{L^{p^*}} \leq C_{n,p} \|\nabla u_m\|_{L^p}.
$$

$$
\star \|\nabla u_m\|_{L^p}\to \|\nabla u\|_{L^p}.
$$

 \star As $u_m \to u$ in $W^{1,p}$, we have $u_m \to u$ in L^p , and so, we can extract a subsequence (u_{m_j}) which converges a.e. in \mathbb{R}^n to u . By Fatou's lemma, we have

$$
\int_{\mathbb{R}^n} |u|^{p^*} dx \leq \liminf_{j \to \infty} \int_{\mathbb{R}^n} |u_{m_j}|^{p^*} dx.
$$

 \star So

$$
||u||_{L^{p^*}} \leq \liminf_{j \to \infty} ||u_{m_j}||_{L^{p^*}} \leq C_{n,p} \liminf_{j \to \infty} ||\nabla u_{m_j}||_{L^p} = C_{n,p} ||\nabla u||_{L^p}.
$$

So $(\#)$ holds.

- Claim 2: If $(\#)$ holds for $p = 1$, then it holds for all $1 < p < n$.
	- \star Take an arbitrary non-trivial $u\in\mathcal{C}_{c}^{\infty}(\mathbb{R}^{n})$ and consider the function $v = |u|^\gamma$ with $\gamma > 1$ to be fixed. Clearly $v \in L^1(\mathbb{R}^n) \cap L^\infty(\mathbb{R}^n)$.
	- \star In Sheet 3, you will show that $|u|$ is weakly differentiable and

$$
\nabla |u| = \begin{cases}\n\nabla u & \text{in } \{x : u(x) > 0\}, \\
-\nabla u & \text{in } \{x : u(x) < 0\}, \\
0 & \text{in } \{x : u(x) = 0\}.\n\end{cases}
$$

- \star It follows that $\nabla v = \gamma |u|^{\gamma-1} \nabla |u| \in L^1(\mathbb{R}^n)$. So $v \in W^{1,1}(\mathbb{R}^n)$.
- \star Applying $(\#)$ in $W^{1,1}$ we get $||v||_{L^{\frac{n}{n-1}}} \leq C_n ||\nabla v||_{L^1}$.
- \star On the left side, we have

$$
\|v\|_{L^{\frac{n}{n-1}}}=\left\{\int_{\mathbb{R}^n}|v|^{\frac{n}{n-1}}\,dx\right\}^{\frac{n-1}{n}}=\|u\|_{L^{\frac{n\gamma}{n-1}}}^{\gamma}.
$$

- Claim 2: If $(\#)$ holds for $p = 1$, then it holds for all $1 < p < n$. $\star \|\nu\|_{L^{\frac{n}{n-1}}} \leq C_n \|\nabla \nu\|_{L^1}.$
	- \star On the left side, we have $\|v\|_{L^{\frac{n}{n-1}}} = \|u\|_{L^{\frac{n}{n}}}^{\gamma}$ $\frac{n\gamma}{\frac{n\gamma}{n-1}}$.

 \star On the right side, we use the inequality $|\bar{\nabla}|u|| < |\nabla u|$ and compute using Hölder's inequality:

$$
\|\nabla v\|_{L^{1}} \leq \int_{\mathbb{R}^{n}} \gamma |u|^{\gamma-1} |\nabla u| \, dx \leq \gamma \Big\{ \int_{\mathbb{R}^{n}} |u|^{(\gamma-1)p'} \, dx \Big\}^{\frac{1}{p'}} \Big\{ \int_{\mathbb{R}^{n}} |\nabla u|^{p} \, dx \Big\}^{\frac{1}{p'}} = \gamma \|u\|_{L^{(\gamma-1)p'}}^{\gamma-1} \|\nabla u\|_{L^{p}}.
$$

 \star Now we select γ such that $(\gamma - 1)p' = \frac{n\gamma}{n-1}$ $\frac{n\gamma}{n-1}$, i.e. $\gamma = \frac{(n-1)p}{n-p}$ $\frac{n-1}{n-p}$ and obtain

$$
||u||_{L^{p^*}}^{\gamma} \leq C_n \gamma ||u||_{L^{p^*}}^{\gamma-1} ||\nabla u||_{L^p}.
$$

As $u \not\equiv 0$, we can divide both side by $\|u\|_{L^{p^*}}^{\gamma-1}$, and conclude Step 2.

Luc Nguyen (University of Oxford) [C4.3 – Lectures 7-8](#page-0-0) MT 2022 34 / 47

• In view of Claim 1 and Claim 2, it thus remains to show GNS's inequality for smooth functions when $p = 1$. To better present the idea of the proof, I will only give the proof when $n = 2$, i.e.

$$
||u||_{L^2(\mathbb{R}^2)} \leq C||\nabla u||_{L^1(\mathbb{R}^2)} \text{ for all } u \in C_c^{\infty}(\mathbb{R}^2). \qquad (\diamondsuit)
$$

(The case $n > 3$ can be dealt with in the same way (check this!).)

 \star The starting point is the estimate

$$
|u(x)|=\Big|\int_{-\infty}^{x_1}\partial_{x_1}u(y_1,x_2)\,dy_1\Big|\leq\int_{-\infty}^{\infty}|\nabla u(y_1,x_2)|\,dy_1.
$$

Likewise,

$$
|u(x)| \leq \int_{-\infty}^{\infty} |\nabla u(x_1, y_2)| dy_2.
$$

• We are proving

$$
||u||_{L^2(\mathbb{R}^2)} \leq C||\nabla u||_{L^1(\mathbb{R}^2)} \text{ for all } u \in C_c^{\infty}(\mathbb{R}^2). \tag{3}
$$

- \star We have $|u(x)| \leq \int_{-\infty}^{\infty} |\nabla u(y_1, x_2)| dy_1$ and $|u(x)| \leq \int_{-\infty}^{\infty} |\nabla u(x_1, y_2)| dy_2.$
- \star Multiplying the two inequalities gives

$$
|u(x_1,x_2)|^2\leq \Big\{\int_{-\infty}^\infty |\nabla u(y_1,x_2)| dy_1\Big\}\Big\{\int_{-\infty}^\infty |\nabla u(x_1,y_2)| dy_2\Big\}.
$$

 \star Now note that the first integral on the right hand side is independent of x_1 , and if one integrates the second integral on the right hand side with respect to x_1 , one gets $\|\nabla u\|_{L^1}$. Thus, by integrating both side in x_1 , we get

$$
\int_{-\infty}^{\infty} |u(x_1,x_2)|^2 dx_1 \leq \Big\{\int_{-\infty}^{\infty} |\nabla u(y_1,x_2)| dy_1\Big\}\|\nabla u\|_{L^1}.
$$

• We are proving

$$
||u||_{L^2(\mathbb{R}^2)} \leq C||\nabla u||_{L^1(\mathbb{R}^2)} \text{ for all } u \in C_c^{\infty}(\mathbb{R}^2). \tag{6}
$$

 \star We have shown

$$
\int_{-\infty}^\infty |u(x_1,x_2)|^2\,dx_1\leq \Big\{\int_{-\infty}^\infty |\nabla u(y_1,x_2)|\,dy_1\Big\}\|\nabla u\|_{L^1}
$$

By the same line of argument, integrating the above in x_2 gives

$$
\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}|u(x_1,x_2)|^2\,dx_1\,dx_2\leq \|\nabla u\|_{L^1}^2,
$$

which gives exactly (\diamondsuit) with $C = 1$.

An improved Gagliardo-Nirenberg's inequality

Remark

By inspection, note that when $p = 1$, we actually prove the following slightly stronger inequality:

$$
||u||_{L^{\frac{n}{n-1}}(\mathbb{R}^n)}^n \leq \prod_{i=1}^n ||\partial_i u||_{L^1(\mathbb{R}^n)}.
$$

GNS's inequality for bounded domains

Theorem (Gagliardo-Nirenberg-Sobolev's inequality)

Assume that Ω is a bounded Lipschitz domain and $1 \leq p \leq n$. Then, for every $q\in[1,p^*]$, there exists $\mathcal{C}_{n,p,q,\Omega}$ such that

$$
||u||_{L^q(\Omega)} \leq C_{n,p,q,\Omega}||u||_{W^{1,p}(\Omega)} \text{ for all } u \in W^{1,p}(\Omega).
$$

In particular, $W^{1,p}(\Omega) \hookrightarrow L^q(\Omega)$.

Proof

- Let $E: W^{1,p}(\Omega) \to W^{1,p}(\mathbb{R}^n)$ be an extension operator. Then $||u||_{L^{p^*}(\Omega)} \leq ||Eu||_{L^{p^*}(\mathbb{R}^n)} \leq C_{n,p}||Eu||_{W^{1,p}(\mathbb{R}^n)} \leq C_{n,p}||u||_{W^{1,p}(\Omega)}.$
- By Hölder inequality, we have $\|u\|_{L^q(\Omega)}\leq \|u\|_{L^{p^*}(\Omega)} |\Omega|^{\frac{1}{q}-\frac{1}{p^*}}.$
- We conclude the proof with $\mathcal{C}_{n,p,q,\Omega}=\mathcal{C}_{n,p}|\Omega|^{\frac{1}{q}-\frac{1}{p^*}}.$

• Consider now the case $p = n$. Does it hold that

$$
||u||_{L^{\infty}(\mathbb{R}^n)} \leq C_n ||\nabla u||_{L^{n}(\mathbb{R}^n)} \text{ for all } u \in C_c^{\infty}(\mathbb{R}^n)? \qquad (\dagger)
$$

 \star When $n = 1$, this is true as

$$
|u(x)| = \Big|\int_{-\infty}^x u'(s) \, ds\Big| \leq \int_{-\infty}^\infty |u'(s)| \, ds = \|u'\|_{L^1(\mathbb{R})}.
$$

 \star We next show that (†) does not hold when $n \geq 2$.

GNS's inequality – Can $p = n$?

- We know that if (\dagger) holds then $\mathcal{W}^{1,n}(\mathbb{R}^n) \hookrightarrow L^\infty(\mathbb{R}^n).$ Thus it suffices to exhibit a function $u\in W^{1,n}(\mathbb{R}^n)\setminus L^\infty(\mathbb{R}^n).$
- It is enough to find $f\in W^{1,n}(B_2)\setminus L^\infty(B_1).$ The desired u then takes the form $u = f\zeta$ for any $\zeta \in C_c^{\infty}(B_2)$ with $\zeta \equiv 1$ in B_1 .
- \bullet We impose that f is rotationally symmetric so that $f(x) = f(|x|) = f(r)$. Then we need to find a function $f:(0,2)\to\mathbb{R}$ such that

$$
\int_0^2 [|f|^n + |f'|^n] r^{n-1} dr < \infty \text{ but } \operatorname{ess} \sup_{(0,1)} |f| = \infty.
$$

• Then we need to find a function $f:(0,2)\to\mathbb{R}$ such that

$$
\int_0^2 [|f|^n + |f'|^n] r^{n-1} dr < \infty \text{ but } \operatorname{ess} \sup_{(0,1)} |f| = \infty.
$$

- The fact that $|f'|^n r^{n-1}$ is integrable implies that, near $r=0$, f' is 'smaller' than $\frac{1}{r}$, so f is 'smaller' than $\ln r$.
- If we try $f = (\ln \frac{4}{r})^{\alpha}$, then $|f'|^n r^{n-1} = \frac{\alpha^n}{r}$ $\frac{\alpha^n}{r}$ (ln $\frac{4}{r}$)^{n(α -1)} is integrable for $\alpha \leq \frac{n-1}{n}$ $\frac{-1}{n}$. Also, $|f|^{n}r^{n-1}$ is continuous in $[0,2]$ and hence integrable. So $f \in W^{1,n}(B_2)$ when $\alpha \leq \frac{n-1}{n}$ $\frac{-1}{n}$.
- On the other hand, if $\alpha > 0$, then $\operatorname{ess \, sup}_{(0,1)} |f| = \infty$.

Theorem (Trudinger's inequality)

There exists a small constant $c_n > 0$ and a large constant $C_n > 0$ such that if $u\in W^{1,n}(\mathbb{R}^{n}),$ then $\exp\Bigg[\Big(\frac{c_{n}|u|}{\|u\|_{W^{1,n}(\mathbb{R}^{n})}}\Big)$ $\left[\begin{smallmatrix} \frac{n}{n-1} \end{smallmatrix}\right] \in L^1_{loc}(\mathbb{R}^n)$ and sup $x_0 \in \mathbb{R}^n$ Z $B_1(x_0)$ $\exp\left[\left(\frac{c_n|u|}{\ln\ln\frac{u}{u}}\right)\right]$ $\|u\|_{W^{1,n}(\mathbb{R}^n)}$ $\int_{0}^{\frac{n}{n-1}} dx \leq C_n$.

Fact

Suppose $1 \leq p < \infty$ and $\Omega \subset \mathbb{R}^n$ be an unbounded domain with finite volume. Then $W^{1,p}(\Omega)$ does not embed into $L^q(\Omega)$ whenever $q > p$.

Ideas

- We may assume $|\Omega| = 1$. We need to construct a function $f\in W^{1,p}(\Omega)\setminus L^q(\Omega).$
- Let $r_0 = 0$ and select r_k such that $Ω_k := Ω ∩ {r_k < |x| < r_{k+1}}$ has volume $\frac{1}{2^{k+1}}$.

A non-embedding theorem for unbounded domains

Sketch of proof

• The function f will be of the form $f(x) = f(|x|)$ which is increasing in |x|. If we let $b_k = f(r_k)$, then

$$
||f||_{L^p}^p = \sum_k \int_{\Omega_k} |f|^p \, dx \le \sum_k b_{k+1}^p |\Omega_k| = \sum_k b_{k+1}^p 2^{-k-1}.
$$

Likewise,
$$
||f||_{L^q}^q \ge \sum_k b_k^q 2^{-k-1}
$$
.

To make $\|f\|_{L^q}=\infty$, we then require that $b_k=2^{k/q}$ infinitely many times. If we also impose that $b_k \leq 2^{k/q}$ for all k, then

$$
||f||_{L^p}^p \le \sum_k 2^{-k(1-\frac{p}{q})} < \infty.
$$

A non-embedding theorem for unbounded domains

Sketch of proof

- $b_k = 2^{k/q}$ infinitely many times $\Rightarrow ||f||_{L^q} = \infty$, $b_k \leq 2^{k/q}$ for all $k \Rightarrow ||f||_{L^p} < \infty$.
- Consider now $\|\nabla f\|_{L^p}$.
	- \star On each Ω_k , we can arrange so that $|\nabla f| \sim \frac{b_{k+1}-b_k}{r_{k+1}-r_k}$.
	- \star It is important to note that, for any fixed $\varepsilon > 0$, the inequality that $r_{k+1} - r_k > 2^{-\varepsilon k}$ must hold infinitely frequently. (As otherwise, $r_k \nrightarrow \infty$.) Label them as $k_1 < k_2 < \ldots$
	- \star In Ω_{k_j} , we have $|\nabla f| \sim \frac{b_{k_j+1}-b_{k_j}}{r_{k_j+1}-r_{k_j}} \leq 2^{k_j(1/q+\varepsilon)}$.
	- \star In Ω_k with $k\neq k_j$, we control $|\nabla f|$ by imposing $b_{k+1}=b_k$ so that $|\nabla f| = 0$.
	- \star To meet the requirement in the first bullet point, we ask $b_{k_j} = 2^{k_j/q}$.

A non-embedding theorem for unbounded domains

Sketch of proof

•
$$
||f||_{L^q} = \infty
$$
 and $||f||_{L^p} < \infty$.

• Consider $\|\nabla f\|_{L_p}$.

 \star Putting things together, we have

$$
\begin{aligned} \|\nabla f\|_{L^p}^p &= \sum_j \int_{\Omega_{k_j}} |\nabla f|^p \, dx \\ &\le \sum_j 2^{k_j(1/q+\varepsilon)p} 2^{-k_j-1} \le \sum_j 2^{-k_j(1-\frac{p}{q}-\varepsilon p)} .\end{aligned}
$$

Choosing $\varepsilon < \frac{1}{p} - \frac{1}{q}$ $\frac{1}{q}$, we see that this sum is finite. We conclude that $f \in W^{1,p}(\Omega)$ but $f \notin L^q(\Omega)$.