

C4.3 Functional Analytic Methods for PDEs Lectures 7-8

Luc Nguyen luc.nguyen@maths

University of Oxford

MT 2022

- Definition of Sobolev spaces
- Differentiation rule for convolution of Sobolev functions.

- Density results for Sobolev spaces.
- Extension theorems for Sobolev functions.
- Trace (boundary value) of Sobolev functions.
- Gagliardo-Nirenberg-Sobolev's inequality

Theorem (Approximation of identity)

Let ρ be a non-negative function in $C_c^{\infty}(\mathbb{R}^n)$ such that $\int_{\mathbb{R}^n} \rho = 1$. For $\varepsilon > 0$, let

$$\varrho_{\varepsilon}(x) = \frac{1}{\varepsilon^n} \varrho\left(\frac{x}{\varepsilon}\right).$$

If $f \in W^{k,p}(\mathbb{R}^n)$ for some $k \ge 0$ and $1 \le p < \infty$, then $f * \varrho_{\varepsilon} \in C^{\infty}(\mathbb{R}^n) \cap W^{k,p}(\mathbb{R}^n)$ and

$$\lim_{\varepsilon\to 0} \|f*\varrho_{\varepsilon}-f\|_{W^{k,p}(\mathbb{R}^n)}=0.$$

In particular $C^{\infty}(\mathbb{R}^n) \cap W^{k,p}(\mathbb{R}^n)$ is dense in $W^{k,p}(\mathbb{R}^n)$.

Approximation of identity in Sobolev spaces

Proof

Let
$$f_{\varepsilon} = f * \varrho_{\varepsilon}$$
.
* As $\varrho_{\varepsilon} \in C_{c}^{\infty}(\mathbb{R}^{n})$, we have $f_{\varepsilon} \in C^{\infty}(\mathbb{R}^{n})$.

- * As $f \in L^{p}(\mathbb{R}^{n})$ and $\varrho_{\varepsilon} \in L^{1}(\mathbb{R}^{n})$, Young's inequality gives that $f_{\varepsilon} \in L^{p}(\mathbb{R}^{n})$.
- ★ The approximation of identity theorem in L^p gives that $\|f_{\varepsilon} f\|_{L^p} \to 0$ as $\varepsilon \to 0$.
- By the differentiation rule for convolution of Sobolev functions, we have ∂^αf_ε = (∂^αf) * ρ_ε for |α| ≤ k. Repeat the argument as above, we have ∂^αf_ε ∈ L^p(ℝⁿ) and ||∂^αf_ε − ∂^αf||_{L^p} → 0 as ε → 0.
- We deduce that $f_{arepsilon}\in \mathcal{W}^{k,p}(\mathbb{R}^n)$ and

$$\|f_{\varepsilon}-f\|_{W^{k,p}}=\Big[\sum_{|lpha|\leq k}\|\partial^{lpha}f_{\varepsilon}-\partial^{lpha}f\|_{L^{p}}^{p}\Big]^{1/p}\stackrel{\varepsilon\to 0}{\longrightarrow} 0.$$

Theorem (Meyers-Serrin)

Suppose Ω is a domain in \mathbb{R}^n , $k \ge 0$ and $1 \le p < \infty$. Then $C^{\infty}(\Omega) \cap W^{k,p}(\Omega)$ is dense in $W^{k,p}(\Omega)$. Namely, for every $u \in W^{k,p}(\Omega)$ there exists a sequence $(u_m) \subset C^{\infty}(\Omega) \cap W^{k,p}(\Omega)$ such that u_m converges to u in $W^{k,p}(\Omega)$.

Remark: No regularity on Ω is assumed.

A question and an obstruction

Question

Is
$$C^{\infty}(\overline{\Omega}) \cap W^{k,p}(\Omega)$$
 dense in $W^{k,p}(\Omega)$?

Answer: Not always.

Consider
$$u(x, y) = \sqrt{r} \cos \frac{\theta}{2}$$
 where
 $(x, y) = (r \cos \theta, r \sin \theta).$
 $u \in C^{\infty}(\Omega).$
 u is discontinuous in $\overline{\Omega}$.
One computes

$$u\|_{L^{2}}^{2} = \int_{\Omega} u^{2} \, dx \, dy$$

= $\int_{0}^{1} \int_{0}^{2\pi} r \cos^{2} \frac{\theta}{2} \, r \, dr \, d\theta = \frac{\pi}{3},$

A question and an obstruction

Consider
$$u(x, y) = \sqrt{r} \cos \frac{\theta}{2}$$
.
 $u \in C^{\infty}(\Omega)$ and $u \notin C(\overline{\Omega})$.
One computes $||u||_{L^2}^2 = \frac{\pi}{3}$,
 $||\nabla u||^2 = (\partial_r u)^2 + \frac{1}{r^2} (\partial_\theta u)^2 = \frac{1}{4r}$,
 $||\nabla u||_{L^2}^2 = \int_{\Omega} ||\nabla u||^2 dx dy$
 $= \int_0^1 \int_0^{2\pi} \frac{1}{4r} r dr d\theta = \frac{\pi}{2}$,

$$\begin{split} \Omega &= \{x^2 + y^2 < 1\} \setminus \{(x,0) | x \geq 0\} \\ &\bar{\Omega} = \{x^2 + y^2 \leq 1\} \\ &D &= \{x^2 + y^2 < 1\} \end{split}$$

So $u \in W^{1,2}(\Omega)$. The jump discontinuity across $\theta = 0$ is an obstruction to approximate uby functions in $C^{\infty}(\overline{\Omega})$. It is in fact not possible, as $u \notin W^{1,2}(D)$.

The segment condition

- Ω : a domain in \mathbb{R}^n .
- Ω is said to satisfy the segment condition if every $x_0 \in \partial \Omega$ has a neighborhood U_{x_0} and a non-zero vector y_{x_0} such that if $z \in \overline{\Omega} \cap U_{x_0}$, then $z + ty_{x_0} \in \Omega$ for all $t \in (0, 1)$.

• Note that if Ω is Lipschitz, then it satisfies the segment condition.

Luc Nguyen (University of Oxford)

Theorem (Global approximation by functions smooth up to the boundary)

Suppose $k \ge 1$ and $1 \le p < \infty$. If Ω satisfies the segment condition, then the set of restrictions to Ω of functions in $C_c^{\infty}(\mathbb{R}^n)$ is dense in $W^{k,p}(\Omega)$. In particular $C^{\infty}(\overline{\Omega}) \cap W^{k,p}(\Omega)$ is dense in $W^{k,p}(\Omega)$.

- An important consequence of the theorem is the statement that $C_c^{\infty}(\mathbb{R}^n)$ is dense in $W^{k,p}(\mathbb{R}^n)$ when $1 \leq p < \infty$. In order words $W^{k,p}(\mathbb{R}^n) = W_0^{k,p}(\mathbb{R}^n)$.
- You will do the special when Ω is star-shaped in Sheet 2.

Extension by zero of functions in $W_0^{k,p}(\Omega)$

Lemma

Assume that $k \ge 0$ and $1 \le p < \infty$. If $u \in W_0^{k,p}(\Omega)$, then its extension by zero \overline{u} to \mathbb{R}^n belongs to $W_0^{k,p}(\mathbb{R}^n)$.

Proof

• Suppose $u \in W_0^{k,p}(\Omega)$ and let \overline{u} be its extension by zero to \mathbb{R}^n . It is tempted to say that, as $\overline{u} \equiv 0$ in $\mathbb{R}^n \setminus \Omega$,

$$\partial^{\alpha}\bar{u} = \begin{cases} \partial^{\alpha}u & \text{in }\Omega, \\ 0 & \text{in }\mathbb{R}^{n}\setminus\Omega \end{cases}$$
(*)

which belongs to $L^{p}(\mathbb{R}^{n})$, and call it the end of the proof. For this to work, we need to show first that \overline{u} is weakly differentiable!

Extension by zero of functions in $W_0^{k,p}(\Omega)$

Proof

• Let $(u_m) \subset C_c^{\infty}(\Omega)$ be such that $u_m \to u$ in $W^{k,p}(\Omega)$. Let \overline{u}_m be the extension by zero of u_m to \mathbb{R}^n . Then $\overline{u}_m \in C_c^{\infty}(\mathbb{R}^n)$ and

$$\|\bar{u}_m-\bar{u}_j\|_{W^{k,p}(\mathbb{R}^n)}=\|u_m-u_j\|_{W^{k,p}(\Omega)}\stackrel{m,j\to\infty}{\longrightarrow}0.$$

- We thus have that (\bar{u}_m) is Cauchy in $W^{k,p}(\mathbb{R}^n)$ and thus converges in $W^{k,p}$ to some $\bar{u}_* \in W^{k,p}(\mathbb{R}^n)$.
- To conclude, we show that $\bar{u}_* = \bar{u}$ a.e. in \mathbb{R}^n .
 - * As \bar{u}_m converges to \bar{u}_* in $L^p(\mathbb{R}^n)$, there is a subsequence \bar{u}_{m_j} which converges a.e. to \bar{u}_* in \mathbb{R}^n . This implies that $\bar{u}_* = 0$ a.e. in $\mathbb{R}^n \setminus \Omega$ and u_{m_i} converges a.e. to \bar{u}_* in Ω .
 - * Likewise, as u_{m_j} converges to u in $L^p(\Omega)$, we can extract yet another subsequence $u_{m_{j_l}}$ which converges a.e. to u in Ω . It follows that $\bar{u}_* = u$ a.e. in Ω .

* So
$$\bar{u} = \bar{u}_*$$
 a.e. in \mathbb{R}^n .

Theorem (Stein's extension theorem)

Assume that Ω is a bounded Lipschitz domain. Then there exists a linear operator E sending functions defined a.e. in Ω to functions defined a.e. in \mathbb{R}^n such that for every $k \ge 0$, $1 \le p < \infty$ and $u \in W^{k,p}(\Omega)$ it hold that Eu = u a.e. in Ω and

$$\|Eu\|_{W^{k,p}(\mathbb{R}^n)} \leq C_{k,p,\Omega} \|u\|_{W^{k,p}(\Omega)}$$

The operator E is called a total extension for Ω . You will have the opportunity to see how to construct such extension in a very specific case in Sheet 2.

More on extension

There exists domain Ω for which there is no bounded linear operator E : W^{k,p}(Ω) → W^{k,p}(ℝⁿ) such that Eu = u a.e. in Ω.

We knew that the function

$$u(x, y) = \sqrt{r} \cos \frac{\theta}{2}$$
 satisfies
 $\star \ u \in C^{\infty}(\Omega) \cap W^{1,2}(\Omega).$
 $\star \ u \notin W^{1,2}(D).$

So no extension of u belongs to $W^{1,2}(\mathbb{R}^2)$.

- As prompted at the beginning of the course, in our later applications in the analysis of PDEs, solutions will live in a Sobolev space.
- When discussing PDEs on a domain, one needs to specify boundary conditions.
- A complication arises:
 - On one hand, Sobolev 'functions' are equivalent classes of functions which are equal almost everywhere. Thus one can redefine the value of a Sobolev function on set of measure zero at will without changing the equivalent class it represents.
 - On the other hand, the boundary of a domain usually has measure zero. So the boundary value of a Sobolev function cannot simply be defined by restricting as is the case for continuous functions.

Remark

Suppose $1 \le p < \infty$, Ω is a bounded smooth domain and let $(X, \|\cdot\|)$ be a normed vector space which contains $C(\partial\Omega)$. There is NO <u>bounded</u> linear operator $T : L^p(\Omega) \to X$ such that $Tu = u|_{\partial\Omega}$ for all $u \in C(\overline{\Omega})$.

Proof

• Suppose by contradiction that such T exists. Consider $f_m \in C(\overline{\Omega})$ defined by

$$f_m(x) = \begin{cases} m \operatorname{dist}(x, \partial \Omega) & \text{if } \operatorname{dist}(x, \partial \Omega) < 1/m, \\ 1 & \text{if } \operatorname{dist}(x, \partial \Omega) \ge 1/m. \end{cases}$$

Theorem

Suppose $1 \le p < \infty$, and that Ω is a bounded Lipschitz domain. Then there exists a <u>bounded</u> linear operator $T : W^{1,p}(\Omega) \to L^p(\partial\Omega)$, called the trace operator, such that $Tu = u|_{\partial\Omega}$ if $u \in W^{1,p}(\Omega) \cap C(\overline{\Omega})$.

We will only proof a weaker statement in a simpler situation:

 $\hat{\Gamma} = \{x = (x', 0) : |x'| < 2\}$ $\Gamma = \{x = (x', 0) : |x'| < 1\}$ We would like to define the trace operator relative to Γ : There exists a bounded linear operator $\mathcal{T}_{\Gamma} : W^{1,p}(\Omega) \to L^{p}(\Gamma)$ such that

$$T_{\Gamma}u = u|_{\Gamma}$$
 for all $u \in C^1(\overline{\Omega})$.

$$\Omega = \{x = (x', x_n) : |x'| < 2, \\ 0 < x_n < 2\}$$

$$0\leq \zeta\in \mathit{C}^\infty_c(\mathit{B}_{3/2})$$
 such that $\zeta\equiv 1$ in B_1

 $\hat{\Gamma} = \{x = (x', 0) : |x'| < 2\}$ $\Gamma = \{x = (x', 0) : |x'| < 1\}$

• We first prove the key estimate

$$\|u\|_{L^p(\Gamma)} \leq C_p \|u\|_{W^{1,p}(\Omega)}$$
 for all $u \in C^1(\overline{\Omega})$. (*)

★ We have

$$\int_{\Gamma} |u|^{p} dx' \leq \int_{\widehat{\Gamma}} \zeta |u|^{p} dx' = -\int_{\widehat{\Gamma}} \left[\int_{0}^{2} \partial_{x_{n}}(\zeta |u|^{p}) dx_{n} \right] dx'$$
$$= -\int_{\Omega} \partial_{x_{n}}(\zeta |u|^{p}) dx \leq C_{p,\zeta} \int_{\Omega} [|u|^{p} + |Du||u|^{p-1}] dx.$$

$$\Omega = \{x = (x', x_n) : |x'| < 2, \\ 0 < x_n < 2\}$$

$$\zeta \in \mathit{C}^\infty_{c}(\mathit{B}_{3/2})$$
 such that $\zeta \equiv 1$ in B_1 .

 $\hat{\Gamma} = \{x = (x', 0) : |x'| < 2\}$ $\Gamma = \{x = (x', 0) : |x'| < 1\}$

• We first prove the key estimate

$$\|u\|_{L^{p}(\Gamma)} \leq C_{p} \|u\|_{W^{1,p}(\Omega)} \text{ for all } u \in C^{1}(\bar{\Omega}).$$

$$\star \text{ We have } \int_{\Gamma} |u|^{p} dx' \leq C_{p,\zeta} \int_{\Omega} [|u|^{p} + |Du||u|^{p-1}] dx.$$

$$\star \text{ Using the inequality } |a||b|^{p-1} \leq \frac{1}{p} |a|^{p} + \frac{p-1}{p} |b|^{p}, \text{ we obtain}$$

$$\int |u|^{p} dx' \leq C_{p,\zeta} \int [|u|^{p} + |Du|^{p}] dx$$

$$\int_{\Gamma} |u|^p \, dx' \leq C_{p,\zeta} \int_{\Omega} [|u|^p + |Du|^p] \, dx$$

This proves (*).

• We have proved the key estimate

$$\|u\|_{L^p(\Gamma)} \leq C_p \|u\|_{W^{1,p}(\Omega)}$$
 for all $u \in C^1(\overline{\Omega})$. (*)

- It follows that the map u → u|_Γ =: Au is a bounded linear operator from (C¹(Ω), || · ||_{W^{1,p}}) into L^p(Γ).
- As Ω is Lipschitz, C[∞](Ω̄) and hence C¹(Ω̄) is dense in W^{1,p}(Ω). Thus there exists a unique bounded linear operator T_Γ : W^{1,p}(Ω) → L^p(Γ) which extends A, i.e. T_Γu = u|_Γ for all u ∈ C¹(Ω̄).

Proposition (Integration by parts)

Suppose that $1 \leq p < \infty$, Ω is a bounded Lipschitz domain, n be the outward unit normal to $\partial\Omega$, $T : W^{1,p}(\Omega) \to L^p(\Omega)$ is the trace operator, and $u \in W^{1,p}(\Omega)$. Then

$$\int_{\Omega} \partial_i u \, v \, dx = \int_{\partial \Omega} T u \, v \, n_i \, dS - \int_{\Omega} u \, \partial_i v \, dx \, \text{ for all } v \in C^1(\bar{\Omega}).$$

Proof

- We knew that $C^{\infty}(\overline{\Omega})$ is dense in $W^{1,p}(\Omega)$. Thus there exists $u_m \in C^{\infty}(\overline{\Omega})$ such that $u_m \to u$ in $W^{1,p}$.
- Fix some $v \in C^1(\overline{\Omega})$. We have

$$\int_{\Omega} \partial_i u_m \, v \, dx = \int_{\partial \Omega} u_m \, v \, n_i \, dS - \int_{\Omega} u_m \, \partial_i v \, dx.$$

٠

Proof

•
$$\int_{\Omega} \partial_i u_m v \, dx = \int_{\partial \Omega} u_m v \, n_i \, dS - \int_{\Omega} u_m \, \partial_i v \, dx.$$

• Note that $\partial_i u_m \to \partial_i u$, $u_m \to u$ in $L^p(\Omega)$ and $u_m|_{\partial\Omega} = Tu_m \to Tu$ in $L^p(\partial\Omega)$. We can thus argue using Hölder's inequality to send $m \to \infty$ to obtain

$$\int_{\Omega} \partial_i u \, v \, dx = \int_{\partial \Omega} T u \, v \, n_i \, dS - \int_{\Omega} u \, \partial_i v \, dx$$

as wanted.

Theorem (Trace-zero functions in $W^{1,p}$)

Suppose that $1 \le p < \infty$, Ω is a bounded Lipschitz domain, $T: W^{1,p}(\Omega) \to L^p(\Omega)$ is the trace operator, and $u \in W^{1,p}(\Omega)$. Then $u \in W_0^{1,p}(\Omega)$ if and only if Tu = 0.

Proof

- (\Rightarrow) Suppose $u \in W_0^{1,p}(\Omega)$. By definition, there exists $u_m \in C_c^{\infty}(\Omega)$ such that $u_m \to u$ in $W^{1,p}$. Clearly $Tu_m = 0$ and so by continuity, Tu = 0.
- (⇐) We will only consider the case Ω is the unit ball B. This proof can be generalised fairly quickly to star-shaped domains. The proof for Lipschitz domains is more challenging.

Functions of zero trace

Proof

- (\Leftarrow) Suppose that $u \in W^{1,p}(B)$ and Tu = 0. We would like to construct a sequence $u_m \in C_c^{\infty}(B)$ such that $u_m \to u$ in $W^{1,p}$.
 - * Let \bar{u} be the extension by zero of u to \mathbb{R}^n .
 - $\star\,$ As $\mathit{Tu}=0,$ we have by the IBP formula that

$$\int_B \partial_i u \, v \, dx = - \int_B u \, \partial_i v \, dx$$
 for all $v \in C^1(\bar{B}).$

It follows that

$$\int_B \partial_i u \, v \, dx = - \int_B \bar{u} \, \partial_i v \, dx \text{ for all } v \in C^\infty_c(\mathbb{R}^n).$$

By definition of weak derivatives, this means

$$\partial_i \bar{u} = \begin{cases} \partial_i u & \text{in } B\\ 0 & \text{elsewhere} \end{cases} \text{ in the weak sense.}$$

So $\bar{u} \in W^{1,p}(\mathbb{R}^n)$.

Functions of zero trace

Proof

- (\Leftarrow) We would like to construct a sequence $u_m \in C_c^{\infty}(B)$ such that $u_m \to u$ in $W^{1,p}(B)$.
 - \star Let $ar{u}_\lambda(x)=ar{u}(\lambda x).$ Observe that $Supp(ar{u}_\lambda)\subset B_{1/\lambda}.$
 - * In Sheet 1, you showed that $\bar{u}_{\lambda} \to \bar{u}$ in L^{p} as $\lambda \to 1$. Noting also that $\partial_{i}\bar{u}_{\lambda}(x) = \lambda \partial_{i}u(\lambda x)$, we also have that $\partial_{i}\bar{u}_{\lambda} \to \partial_{i}\bar{u}$ in L^{p} as $\lambda \to 1$. Hence $\bar{u}_{\lambda} \to \bar{u}$ in $W^{1,p}$ as $\lambda \to 1$.
 - * Fix $\lambda_m > 1$ such that $\|\bar{u}_{\lambda_m} \bar{u}\|_{W^{1,p}(\mathbb{R}^n)} \leq 1/m$.
 - * Let (ϱ_{ε}) be a family of mollifiers: $\varrho_{\varepsilon}(x) = \varepsilon^{-n} \varrho(x/\varepsilon)$ with $\varrho \in C_{c}^{\infty}(B), \ \int_{\mathbb{R}^{n}} \varrho = 1$. Then $\bar{u}_{\lambda_{m}} * \varrho_{\varepsilon} \to \bar{u}_{\lambda_{m}}$ in $W^{1,p}$ as $\varepsilon \to 0$. Also, $Supp(\bar{u}_{\lambda_{m}} * \varrho_{\varepsilon}) \subset B_{\lambda_{m}^{-1}+\varepsilon}$. Thus, we can select ε_{m} sufficiently small such that $u_{m} := \bar{u}_{\lambda_{m}} * \varrho_{\varepsilon_{m}} \in C_{c}^{\infty}(B)$ and $\|u_{m} - \bar{u}_{\lambda_{m}}\|_{W^{1,p}(\mathbb{R}^{n})} \leq 1/m$. * Now $\|u_{m} = u\|_{W^{1,p}(\mathbb{R}^{n})} \leq 2/m$ and so we are done
 - * Now $||u_m u||_{W^{1,p}(B)} \leq 2/m$ and so we are done.

Embeddings

Let X_1 and X_2 be two Banach spaces.

- We say X_1 is embedded in X_2 if $X_1 \subset X_2$.
- We say X₁ is continuously embedded in X₂ if X₁ is embedded in X₂ and the identity map I : X₁ → X₂ is a bounded linear operator, i.e. there exists a constant C such that ||x||_{X₂} ≤ C ||x||_{X₁}. We write X₁ → X₂.
- We say X₁ is compactly embedded in X₂ if X₁ is embedded in X₂ and the identity map I : X₁ → X₂ is a compact bounded linear operator. This means that I is continuous and every bounded sequence (x_n) ⊂ X₁ has a subsequence which is convergent with respect to the norm on X₂.

Our interest: The possibility of embedding $W^{k,p}$ in L^q or C^0 .

Theorem (Gagliardo-Nirenberg-Sobolev's inequality)

Assume $1 \le p < n$ and let $p^* = \frac{np}{n-p}$. Then there exists a constant $C_{n,p}$ such that

$$\|u\|_{L^{p^*}(\mathbb{R}^n)} \leq C_{n,p} \|\nabla u\|_{L^p(\mathbb{R}^n)}$$
 for all $u \in W^{1,p}(\mathbb{R}^n)$.

In particular, $W^{1,p}(\mathbb{R}^n) \hookrightarrow L^{p^*}(\mathbb{R}^n)$.

The number $p^* = \frac{np}{n-p}$ is called the Sobolev conjugate of p. It satisfies $\frac{1}{p^*} = \frac{1}{p} - \frac{1}{n}$. The case p = 1 is referred to as Gagliardo-Nirenberg's inequality.

GNS's inequality – Why p < n and why p^* ?

Question

For what p and q does it hold

$$\|u\|_{L^q(\mathbb{R}^n)} \leq C_{n,p,q} \|
abla u\|_{L^p(\mathbb{R}^n)}$$
 for all $u \in C^\infty_c(\mathbb{R}^n)$?

This will be answered by a scaling argument:

• Fix a non-zero function $u \in C_c^{\infty}(\mathbb{R}^n)$. Define $u_{\lambda}(x) = u(\lambda x)$. Then $u_{\lambda} \in C_c^{\infty}(\mathbb{R}^n)$ and so

$$\|u_{\lambda}\|_{L^{q}(\mathbb{R}^{n})} \leq C_{n,p,q} \|\nabla u_{\lambda}\|_{L^{p}(\mathbb{R}^{n})}.$$
(**)

• We compute

$$\|u_{\lambda}\|_{L^q}^q = \int_{\mathbb{R}^n} |u(\lambda x)|^q \, dx = \frac{1}{\lambda^n} \int_{\mathbb{R}^n} |u(y)|^q \, dy = \lambda^{-n} \|u\|_{L^q}^q.$$

GNS's inequality – Why p < n and why p^* ?

•
$$u_{\lambda}(x) = u(\lambda x)$$
 and

$$\|u_{\lambda}\|_{L^{q}(\mathbb{R}^{n})} \leq C_{n,p,q} \|\nabla u_{\lambda}\|_{L^{p}(\mathbb{R}^{n})}.$$
(**)

• We compute
$$\|u_{\lambda}\|_{L^q} = \lambda^{-n/q} \|u\|_{L^q}.$$

Next,

$$\begin{split} \|\nabla u_{\lambda}\|_{L^{p}}^{p} &= \int_{\mathbb{R}^{n}} |\lambda \nabla u(\lambda x)|^{p} dx \\ &= \lambda^{p-n} \int_{\mathbb{R}^{n}} |\nabla u(y)|^{p} dy = \lambda^{p-n} \|\nabla u\|_{L^{p}}^{p}. \end{split}$$

That is $\|\nabla u_{\lambda}\|_{L^p} = \lambda^{1-n/p} \|\nabla u\|_{L^p}$.

GNS's inequality – Why p < n and why p^* ?

• Putting in (**), we get

$$\lambda^{-n/q} \|u\|_{L^q} \leq C_{n,p,q} \lambda^{1-n/p} \|\nabla u\|_{L^p}.$$

Rearranging, we have

$$\lambda^{-1+\frac{n}{p}-\frac{n}{q}} \leq \frac{C_{n,p,q} \|\nabla u\|_{L^p}}{\|u\|_{L^q}}.$$

- Since the last inequality is valid for all λ , we must have that $-1 + \frac{n}{p} \frac{n}{q} = 0$, i.e. $q = \frac{np}{n-p} = p^*$. As q > 0, we must also have $p \le n$.
- We conclude that a necessary condition in order for the inequality (*) to hold is that p ≤ n and q = p*.

• Recall that we would like to show, for $1 \le p < n$ and $p^* = \frac{np}{n-p}$ that

$$\|u\|_{L^{p^*}(\mathbb{R}^n)} \leq C_{n,p} \|\nabla u\|_{L^p(\mathbb{R}^n)} \text{ for all } u \in W^{1,p}(\mathbb{R}^n). \qquad (\#)$$

- Claim 1: If (#) holds for functions in C[∞]_c(ℝⁿ), then it holds for functions in W^{1,p}(ℝⁿ).
 - ★ Take an arbitrary $u \in W^{1,p}(\mathbb{R}^n)$. As $p < \infty$, $C_c^{\infty}(\mathbb{R}^n)$ is dense in $W^{1,p}(\mathbb{R}^n)$. Hence, we can select $u_m \in C_c^{\infty}(\mathbb{R}^n)$ such that $u_m \to u$ in $W^{1,p}$.
 - * If (#) holds for functions in $C_c^{\infty}(\mathbb{R}^n)$, then $\|u_m\|_{L^{p^*}} \leq C_{n,p} \|\nabla u_m\|_{L^p}$.
 - * As $u_m \to u$ in $W^{1,p}$, we have $\partial_i u_m \to \partial_i u$ in L^p and so $\|\nabla u_m\|_{L^p} \to \|\nabla u\|_{L^p}$.
 - * Warning: It is tempted to try to show $||u_m||_{L^{p^*}} \rightarrow ||u||_{L^{p^*}}$. However, this is false in general.

• Proof of Claim 1:

*
$$||u_m||_{L^{p^*}} \leq C_{n,p} ||\nabla u_m||_{L^p}.$$

$$\star \|\nabla u_m\|_{L^p} \to \|\nabla u\|_{L^p}.$$

* As $u_m \to u$ in $W^{1,p}$, we have $u_m \to u$ in L^p , and so, we can extract a subsequence (u_{m_j}) which converges a.e. in \mathbb{R}^n to u. By Fatou's lemma, we have

$$\int_{\mathbb{R}^n} |u|^{p^*} dx \leq \liminf_{j\to\infty} \int_{\mathbb{R}^n} |u_{m_j}|^{p^*} dx.$$

* So

$$\|u\|_{L^{p^*}} \leq \liminf_{j \to \infty} \|u_{m_j}\|_{L^{p^*}} \leq C_{n,p} \liminf_{j \to \infty} \|\nabla u_{m_j}\|_{L^p} = C_{n,p} \|\nabla u\|_{L^p}.$$

So (#) holds.

- Claim 2: If (#) holds for p = 1, then it holds for all 1 .
 - * Take an arbitrary non-trivial $u \in C_c^{\infty}(\mathbb{R}^n)$ and consider the function $v = |u|^{\gamma}$ with $\gamma > 1$ to be fixed. Clearly $v \in L^1(\mathbb{R}^n) \cap L^{\infty}(\mathbb{R}^n)$.
 - \star In Sheet 3, you will show that |u| is weakly differentiable and

$$\nabla |u| = \begin{cases} \nabla u & \text{in } \{x : u(x) > 0\}, \\ -\nabla u & \text{in } \{x : u(x) < 0\}, \\ 0 & \text{in } \{x : u(x) = 0\}. \end{cases}$$

- * It follows that $\nabla v = \gamma |u|^{\gamma-1} \nabla |u| \in L^1(\mathbb{R}^n)$. So $v \in W^{1,1}(\mathbb{R}^n)$.
- * Applying (#) in $W^{1,1}$ we get $\|v\|_{L^{\frac{n}{n-1}}} \leq C_n \|\nabla v\|_{L^1}$.
- ⋆ On the left side, we have

$$\|v\|_{L^{\frac{n}{n-1}}} = \left\{ \int_{\mathbb{R}^n} |v|^{\frac{n}{n-1}} \, dx \right\}^{\frac{n-1}{n}} = \|u\|_{L^{\frac{n\gamma}{n-1}}}^{\gamma}.$$

- Claim 2: If (#) holds for p = 1, then it holds for all 1 . $* <math>\|v\|_{L^{\frac{n}{p-1}}} \leq C_n \|\nabla v\|_{L^1}$.
 - * On the left side, we have $\|v\|_{L^{\frac{n}{n-1}}} = \|u\|_{L^{\frac{n}{n-1}}}^{\gamma}$.

* On the right side, we use the inequality $|\overline{\nabla}|u|| \leq |\nabla u|$ and compute using Hölder's inequality:

$$\begin{split} \|\nabla v\|_{L^{1}} &\leq \int_{\mathbb{R}^{n}} \gamma |u|^{\gamma-1} |\nabla u| \, dx \leq \gamma \Big\{ \int_{\mathbb{R}^{n}} |u|^{(\gamma-1)p'} \, dx \Big\}^{\frac{1}{p'}} \Big\{ \int_{\mathbb{R}^{n}} |\nabla u|^{p} \, dx \Big\}^{\frac{1}{p}} \\ &= \gamma \|u\|_{L^{(\gamma-1)p'}}^{\gamma-1} \|\nabla u\|_{L^{p}}. \end{split}$$

* Now we select γ such that $(\gamma - 1)p' = \frac{n\gamma}{n-1}$, i.e. $\gamma = \frac{(n-1)p}{n-p}$ and obtain

$$\|u\|_{L^{p^*}}^{\gamma} \leq C_n \gamma \|u\|_{L^{p^*}}^{\gamma-1} \|\nabla u\|_{L^p}.$$

As $u \neq 0$, we can divide both side by $||u||_{L^{p^*}}^{\gamma-1}$, and conclude Step 2.

• In view of Claim 1 and Claim 2, it thus remains to show GNS's inequality for smooth functions when p = 1. To better present the idea of the proof, I will only give the proof when n = 2, i.e.

$$\|u\|_{L^2(\mathbb{R}^2)} \le C \|\nabla u\|_{L^1(\mathbb{R}^2)} \text{ for all } u \in C^\infty_c(\mathbb{R}^2). \qquad (\diamondsuit)$$

(The case $n \ge 3$ can be dealt with in the same way (check this!).)

 $\star\,$ The starting point is the estimate

$$|u(x)| = \left|\int_{-\infty}^{x_1} \partial_{x_1} u(y_1, x_2) \, dy_1\right| \leq \int_{-\infty}^{\infty} |\nabla u(y_1, x_2)| \, dy_1.$$

Likewise,

$$|u(x)| \leq \int_{-\infty}^{\infty} |\nabla u(x_1, y_2)| \, dy_2.$$

• We are proving

$$\|u\|_{L^2(\mathbb{R}^2)} \le C \|\nabla u\|_{L^1(\mathbb{R}^2)}$$
 for all $u \in C^\infty_c(\mathbb{R}^2)$. (\diamondsuit)

- * We have $|u(x)| \leq \int_{-\infty}^{\infty} |\nabla u(y_1, x_2)| dy_1$ and $|u(x)| \leq \int_{-\infty}^{\infty} |\nabla u(x_1, y_2)| dy_2.$
- ★ Multiplying the two inequalities gives

$$|u(x_1, x_2)|^2 \leq \Big\{ \int_{-\infty}^{\infty} |\nabla u(y_1, x_2)| \, dy_1 \Big\} \Big\{ \int_{-\infty}^{\infty} |\nabla u(x_1, y_2)| \, dy_2 \Big\}.$$

* Now note that the first integral on the right hand side is independent of x_1 , and if one integrates the second integral on the right hand side with respect to x_1 , one gets $\|\nabla u\|_{L^1}$. Thus, by integrating both side in x_1 , we get

$$\int_{-\infty}^{\infty} |u(x_1, x_2)|^2 dx_1 \leq \Big\{ \int_{-\infty}^{\infty} |\nabla u(y_1, x_2)| dy_1 \Big\} \|\nabla u\|_{L^1}.$$

• We are proving

$$\|u\|_{L^2(\mathbb{R}^2)} \le C \|\nabla u\|_{L^1(\mathbb{R}^2)} \text{ for all } u \in C^\infty_c(\mathbb{R}^2).$$
 (\diamondsuit)

 \star We have shown

$$\int_{-\infty}^{\infty} |u(x_1, x_2)|^2 dx_1 \le \Big\{ \int_{-\infty}^{\infty} |\nabla u(y_1, x_2)| dy_1 \Big\} \|\nabla u\|_{L^1}$$

By the same line of argument, integrating the above in x_2 gives

$$\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}|u(x_1,x_2)|^2\,dx_1\,dx_2\leq \|\nabla u\|_{L^1}^2,$$

which gives exactly (\diamondsuit) with C = 1.

An improved Gagliardo-Nirenberg's inequality

Remark

By inspection, note that when p = 1, we actually prove the following slightly stronger inequality:

$$\|u\|_{L^{\frac{n}{n-1}}(\mathbb{R}^n)}^n \leq \prod_{i=1}^n \|\partial_i u\|_{L^1(\mathbb{R}^n)}.$$

GNS's inequality for bounded domains

Theorem (Gagliardo-Nirenberg-Sobolev's inequality)

Assume that Ω is a bounded Lipschitz domain and $1 \le p < n$. Then, for every $q \in [1, p^*]$, there exists $C_{n,p,q,\Omega}$ such that

$$\|u\|_{L^q(\Omega)} \leq C_{n,p,q,\Omega} \|u\|_{W^{1,p}(\Omega)}$$
 for all $u \in W^{1,p}(\Omega)$.

In particular, $W^{1,p}(\Omega) \hookrightarrow L^q(\Omega)$.

Proof

- Let $E: W^{1,p}(\Omega) \to W^{1,p}(\mathbb{R}^n)$ be an extension operator. Then $\|u\|_{L^{p*}(\Omega)} \le \|Eu\|_{L^{p*}(\mathbb{R}^n)} \le C_{n,p}\|Eu\|_{W^{1,p}(\mathbb{R}^n)} \le C_{n,p}\|u\|_{W^{1,p}(\Omega)}.$
- By Hölder inequality, we have $\|u\|_{L^q(\Omega)} \leq \|u\|_{L^{p^*}(\Omega)} |\Omega|^{\frac{1}{q} \frac{1}{p^*}}$.
- We conclude the proof with $C_{n,p,q,\Omega} = C_{n,p} |\Omega|^{\frac{1}{q} \frac{1}{p^*}}$.

• Consider now the case p = n. Does it hold that

$$\|u\|_{L^{\infty}(\mathbb{R}^n)} \leq C_n \|\nabla u\|_{L^n(\mathbb{R}^n)}$$
 for all $u \in C^{\infty}_c(\mathbb{R}^n)$? (†)

 \star When n = 1, this is true as

$$|u(x)| = \left|\int_{-\infty}^{x} u'(s) \, ds\right| \leq \int_{-\infty}^{\infty} |u'(s)| \, ds = \|u'\|_{L^1(\mathbb{R})}.$$

* We next show that (†) does not hold when $n \ge 2$.

GNS's inequality – Can p = n?

- We know that if (†) holds then W^{1,n}(ℝⁿ) → L[∞](ℝⁿ). Thus it suffices to exhibit a function u ∈ W^{1,n}(ℝⁿ) \ L[∞](ℝⁿ).
- It is enough to find $f \in W^{1,n}(B_2) \setminus L^{\infty}(B_1)$. The desired *u* then takes the form $u = f\zeta$ for any $\zeta \in C_c^{\infty}(B_2)$ with $\zeta \equiv 1$ in B_1 .
- We impose that f is rotationally symmetric so that f(x) = f(|x|) = f(r). Then we need to find a function $f: (0,2) \rightarrow \mathbb{R}$ such that

$$\int_0^2 [|f|^n + |f'|^n] r^{n-1} dr < \infty \text{ but } \operatorname{ess\,sup}_{(0,1)} |f| = \infty.$$

• Then we need to find a function $f:(0,2)
ightarrow \mathbb{R}$ such that

$$\int_0^2 [|f|^n + |f'|^n] r^{n-1} dr < \infty \text{ but } \operatorname{ess \, sup}_{(0,1)} |f| = \infty.$$

- The fact that $|f'|^n r^{n-1}$ is integrable implies that, near r = 0, f' is 'smaller' than $\frac{1}{r}$, so f is 'smaller' than $\ln r$.
- If we try $f = (\ln \frac{4}{r})^{\alpha}$, then $|f'|^n r^{n-1} = \frac{\alpha^n}{r} (\ln \frac{4}{r})^{n(\alpha-1)}$ is integrable for $\alpha \leq \frac{n-1}{n}$. Also, $|f|^n r^{n-1}$ is continuous in [0, 2] and hence integrable. So $f \in W^{1,n}(B_2)$ when $\alpha \leq \frac{n-1}{n}$.
- On the other hand, if $\alpha > 0$, then $\operatorname{ess\,sup}_{(0,1)} |f| = \infty$.

Theorem (Trudinger's inequality)

There exists a small constant $c_n > 0$ and a large constant $C_n > 0$ such that if $u \in W^{1,n}(\mathbb{R}^n)$, then $\exp\left[\left(\frac{c_n|u|}{\|u\|_{W^{1,n}(\mathbb{R}^n)}}\right)^{\frac{n}{n-1}}\right] \in L^1_{loc}(\mathbb{R}^n)$ and $\sup_{x_0 \in \mathbb{R}^n} \int_{B_1(x_0)} \exp\left[\left(\frac{c_n|u|}{\|u\|_{W^{1,n}(\mathbb{R}^n)}}\right)^{\frac{n}{n-1}}\right] dx \le C_n.$

Fact

Suppose $1 \le p < \infty$ and $\Omega \subset \mathbb{R}^n$ be an unbounded domain with finite volume. Then $W^{1,p}(\Omega)$ does not embed into $L^q(\Omega)$ whenever q > p.

Ideas

- We may assume |Ω| = 1. We need to construct a function f ∈ W^{1,p}(Ω) \ L^q(Ω).
- Let $r_0 = 0$ and select r_k such that $\Omega_k := \Omega \cap \{r_k \le |x| < r_{k+1}\}$ has volume $\frac{1}{2^{k+1}}$.

A non-embedding theorem for unbounded domains

Sketch of proof

• The function f will be of the form f(x) = f(|x|) which is increasing in |x|. If we let $b_k = f(r_k)$, then

$$\|f\|_{L^p}^p = \sum_k \int_{\Omega_k} |f|^p \, dx \le \sum_k b_{k+1}^p |\Omega_k| = \sum_k b_{k+1}^p 2^{-k-1}.$$

Likewise,
$$||f||_{L^q}^q \ge \sum_k b_k^q 2^{-k-1}.$$

To make ||f||_{L^q} = ∞, we then require that b_k = 2^{k/q} infinitely many times.
 If we also impose that b_k < 2^{k/q} for all k, then

$$\|f\|_{L^p}^p \leq \sum_k 2^{-k(1-\frac{p}{q})} < \infty.$$

A non-embedding theorem for unbounded domains

Sketch of proof

- $b_k = 2^{k/q}$ infinitely many times $\Rightarrow ||f||_{L^q} = \infty$, $b_k \le 2^{k/q}$ for all $k \Rightarrow ||f||_{L^p} < \infty$.
- Consider now $\|\nabla f\|_{L^p}$.
 - * On each Ω_k , we can arrange so that $|\nabla f| \sim \frac{b_{k+1}-b_k}{r_{k+1}-r_k}$.
 - * It is important to note that, for any fixed $\varepsilon > 0$, the inequality that $r_{k+1} r_k > 2^{-\varepsilon k}$ must hold infinitely frequently. (As otherwise, $r_k \not\to \infty$.) Label them as $k_1 < k_2 < \ldots$
 - \star In Ω_{k_j} , we have $|\nabla f| \sim rac{b_{k_j+1}-b_{k_j}}{r_{k_j+1}-r_{k_j}} \leq 2^{k_j(1/q+arepsilon)}$.
 - * In Ω_k with $k \neq k_j$, we control $|\nabla f|$ by imposing $b_{k+1} = b_k$ so that $|\nabla f| = 0$.
 - ★ To meet the requirement in the first bullet point, we ask $b_{k_j} = 2^{k_j/q}$.

A non-embedding theorem for unbounded domains

Sketch of proof

•
$$\|f\|_{L^q} = \infty$$
 and $\|f\|_{L^p} < \infty$.

• Consider $\|\nabla f\|_{L^p}$.

 $\star\,$ Putting things together, we have

$$\begin{aligned} \|\nabla f\|_{L^p}^p &= \sum_j \int_{\Omega_{k_j}} |\nabla f|^p \, dx \\ &\leq \sum_j 2^{k_j (1/q+\varepsilon)p} 2^{-k_j - 1} \leq \sum_j 2^{-k_j (1-\frac{p}{q}-\varepsilon p)}. \end{aligned}$$

Choosing $\varepsilon < \frac{1}{p} - \frac{1}{q}$, we see that this sum is finite. • We conclude that $f \in W^{1,p}(\Omega)$ but $f \notin L^q(\Omega)$.