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In the last lectures

Definition of Sobolev spaces

Differentiation rule for convolution of Sobolev functions.
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This lecture

Density results for Sobolev spaces.

Extension theorems for Sobolev functions.

Trace (boundary value) of Sobolev functions.

Gagliardo-Nirenberg-Sobolev’s inequality
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Approximation of identity in Sobolev spaces

Theorem (Approximation of identity)

Let % be a non-negative function in C∞c (Rn) such that
∫
Rn % = 1. For

ε > 0, let

%ε(x) =
1

εn
%
(x
ε

)
.

If f ∈ W k,p(Rn) for some k ≥ 0 and 1 ≤ p <∞, then
f ∗ %ε ∈ C∞(Rn) ∩W k,p(Rn) and

lim
ε→0
‖f ∗ %ε − f ‖W k,p(Rn) = 0.

In particular C∞(Rn) ∩W k,p(Rn) is dense in W k,p(Rn).
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Approximation of identity in Sobolev spaces

Proof
Let fε = f ∗ %ε.
? As %ε ∈ C∞c (Rn), we have fε ∈ C∞(Rn).
? As f ∈ Lp(Rn) and %ε ∈ L1(Rn), Young’s inequality gives that

fε ∈ Lp(Rn).
? The approximation of identity theorem in Lp gives that
‖fε − f ‖Lp → 0 as ε→ 0.

By the differentiation rule for convolution of Sobolev functions,
we have ∂αfε = (∂αf ) ∗ %ε for |α| ≤ k . Repeat the argument as
above, we have ∂αfε ∈ Lp(Rn) and ‖∂αfε − ∂αf ‖Lp → 0 as
ε→ 0.

We deduce that fε ∈ W k,p(Rn) and

‖fε − f ‖W k,p =
[ ∑
|α|≤k

‖∂αfε − ∂αf ‖pLp
]1/p ε→0−→ 0.
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Meyers-Serrin’s theorem

Theorem (Meyers-Serrin)

Suppose Ω is a domain in Rn, k ≥ 0 and 1 ≤ p <∞. Then
C∞(Ω) ∩W k,p(Ω) is dense in W k,p(Ω). Namely, for every
u ∈ W k,p(Ω) there exists a sequence (um) ⊂ C∞(Ω) ∩W k,p(Ω) such
that um converges to u in W k,p(Ω).

Remark: No regularity on Ω is assumed.
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A question and an obstruction

Question

Is C∞(Ω̄) ∩W k,p(Ω) dense in W k,p(Ω)?

Answer: Not always.

Ω = {x2 + y2 < 1} \ {(x, 0)|x ≥ 0}

Ω̄ = {x2 + y2 ≤ 1}

u =
√

r

u = −
√

r

Consider u(x , y) =
√
r cos θ

2
where

(x , y) = (r cos θ, r sin θ).
u ∈ C∞(Ω).
u is discontinuous in Ω̄.
One computes

‖u‖2
L2 =

∫
Ω

u2 dx dy

=

∫ 1

0

∫ 2π

0

r cos2 θ

2
r dr dθ =

π

3
,
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A question and an obstruction

Ω = {x2 + y2 < 1} \ {(x, 0)|x ≥ 0}

Ω̄ = {x2 + y2 ≤ 1}

D = {x2 + y2 < 1}

u =
√

r

u = −
√

r

Consider u(x , y) =
√
r cos θ

2
.

u ∈ C∞(Ω) and u 6∈ C (Ω̄).
One computes ‖u‖2

L2 = π
3

,

|∇u|2 = (∂ru)2 +
1

r 2
(∂θu)2 =

1

4r
,

‖∇u‖2
L2 =

∫
Ω

|∇u|2 dx dy

=

∫ 1

0

∫ 2π

0

1

4r
r dr dθ =

π

2
,

So u ∈ W 1,2(Ω).
The jump discontinuity across θ = 0
is an obstruction to approximate u
by functions in C∞(Ω̄). It is in fact
not possible, as u 6∈ W 1,2(D).
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The segment condition

Ω: a domain in Rn.

Ω is said to satisfy the segment condition if every x0 ∈ ∂Ω has a
neighborhood Ux0 and a non-zero vector yx0 such that if
z ∈ Ω̄ ∩ Ux0 , then z + tyx0 ∈ Ω for all t ∈ (0, 1).

Ω

x0

Ux0

yx0

zz + yx0

Note that if Ω is Lipschitz, then it satisfies the segment
condition.
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Approximation by functions in C∞(Ω̄)

Theorem (Global approximation by functions smooth up
to the boundary)

Suppose k ≥ 1 and 1 ≤ p <∞. If Ω satisfies the segment condition,
then the set of restrictions to Ω of functions in C∞c (Rn) is dense in
W k,p(Ω). In particular C∞(Ω̄) ∩W k,p(Ω) is dense in W k,p(Ω).

An important consequence of the theorem is the statement that
C∞c (Rn) is dense in W k,p(Rn) when 1 ≤ p <∞. In order words
W k,p(Rn) = W k,p

0 (Rn).

You will do the special when Ω is star-shaped in Sheet 2.
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Extension by zero of functions in W k ,p
0 (Ω)

Lemma

Assume that k ≥ 0 and 1 ≤ p <∞. If u ∈ W k,p
0 (Ω), then its

extension by zero ū to Rn belongs to W k,p
0 (Rn).

Proof

Suppose u ∈ W k,p
0 (Ω) and let ū be its extension by zero to Rn.

It is tempted to say that, as ū ≡ 0 in Rn \ Ω,

∂αū =

{
∂αu in Ω,
0 in Rn \ Ω

(*)

which belongs to Lp(Rn), and call it the end of the proof. For
this to work, we need to show first that ū is weakly differentiable!
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Extension by zero of functions in W k ,p
0 (Ω)

Proof

Let (um) ⊂ C∞c (Ω) be such that um → u in W k,p(Ω). Let ūm be
the extension by zero of um to Rn. Then ūm ∈ C∞c (Rn) and

‖ūm − ūj‖W k,p(Rn) = ‖um − uj‖W k,p(Ω)
m,j→∞−→ 0.

We thus have that (ūm) is Cauchy in W k,p(Rn) and thus
converges in W k,p to some ū∗ ∈ W k,p(Rn).

To conclude, we show that ū∗ = ū a.e. in Rn.
? As ūm converges to ū∗ in Lp(Rn), there is a subsequence ūmj

which converges a.e. to ū∗ in Rn. This implies that ū∗ = 0 a.e.
in Rn \ Ω and umj converges a.e. to ū∗ in Ω.

? Likewise, as umj converges to u in Lp(Ω), we can extract yet
another subsequence umjl

which converges a.e. to u in Ω. It
follows that ū∗ = u a.e. in Ω.

? So ū = ū∗ a.e. in Rn.
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More on extension

Theorem (Stein’s extension theorem)

Assume that Ω is a bounded Lipschitz domain. Then there exists a
linear operator E sending functions defined a.e. in Ω to functions
defined a.e. in Rn such that for every k ≥ 0, 1 ≤ p <∞ and
u ∈ W k,p(Ω) it hold that Eu = u a.e. in Ω and

‖Eu‖W k,p(Rn) ≤ Ck,p,Ω‖u‖W k,p(Ω)

The operator E is called a total extension for Ω.
You will have the opportunity to see how to construct such extension
in a very specific case in Sheet 2.
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More on extension

There exists domain Ω for which there is no bounded linear
operator E : W k,p(Ω)→ W k,p(Rn) such that Eu = u a.e. in Ω.

Ω = {x2 + y2 < 1} \ {(x, 0)|x ≥ 0}

Ω̄ = {x2 + y2 ≤ 1}

D = {x2 + y2 < 1}

u =
√

r

u = −
√

r

We knew that the function
u(x , y) =

√
r cos θ

2
satisfies

? u ∈ C∞(Ω) ∩W 1,2(Ω).

? u /∈ W 1,2(D).

So no extension of u belongs to
W 1,2(R2).
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Values of Sobolev functions on the boundary

As prompted at the beginning of the course, in our later
applications in the analysis of PDEs, solutions will live in a
Sobolev space.

When discussing PDEs on a domain, one needs to specify
boundary conditions.

A complication arises:

? On one hand, Sobolev ‘functions’ are equivalent classes of
functions which are equal almost everywhere. Thus one can
redefine the value of a Sobolev function on set of measure zero
at will without changing the equivalent class it represents.

? On the other hand, the boundary of a domain usually has
measure zero. So the boundary value of a Sobolev function
cannot simply be defined by restricting as is the case for
continuous functions.
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Values of Sobolev functions on the boundary

Remark
Suppose 1 ≤ p <∞, Ω is a bounded smooth domain and let
(X , ‖ · ‖) be a normed vector space which contains C (∂Ω). There is
NO bounded linear operator T : Lp(Ω)→ X such that Tu = u|∂Ω for
all u ∈ C (Ω̄).

Proof

Suppose by contradiction that such T exists. Consider
fm ∈ C (Ω̄) defined by

fm(x) =

{
mdist(x , ∂Ω) if dist(x , ∂Ω) < 1/m,
1 if dist(x , ∂Ω) ≥ 1/m.

Then ‖fm − 1‖pLp(Ω) ≤ |{dist(x , ∂Ω) < 1/m}| ≤ C
m

and so

fm → 1 in Lp(Ω).

Now as Tfm = 0 6→ 1 = T1 in X , T cannot be bounded.
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Values of Sobolev functions on the boundary

Theorem
Suppose 1 ≤ p <∞, and that Ω is a bounded Lipschitz domain.
Then there exists a bounded linear operator T : W 1,p(Ω)→ Lp(∂Ω),
called the trace operator, such that Tu = u|∂Ω if
u ∈ W 1,p(Ω) ∩ C (Ω̄).

We will only proof a weaker statement in a simpler situation:

Γ̂ = {x = (x′, 0) : |x′| < 2}
Γ = {x = (x′, 0) : |x′| < 1}

Ω = {x = (x′, xn) : |x′| < 2,

0 < xn < 2}

We would like to define the trace operator
relative to Γ: There exists a bounded linear
operator TΓ : W 1,p(Ω)→ Lp(Γ) such that

TΓu = u|Γ for all u ∈ C 1(Ω̄).
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Values of Sobolev functions on the boundary

Γ̂ = {x = (x′, 0) : |x′| < 2}
Γ = {x = (x′, 0) : |x′| < 1}

Ω = {x = (x′, xn) : |x′| < 2,

0 < xn < 2}

ζ ≡ 1

ζ ≡ 0

0 ≤ ζ ∈ C∞c (B3/2) such that ζ ≡ 1 in B1

We first prove the key estimate

‖u‖Lp(Γ) ≤ Cp‖u‖W 1,p(Ω) for all u ∈ C 1(Ω̄). (*)

? We have∫
Γ

|u|p dx ′≤
∫

Γ̂

ζ|u|p dx ′= −
∫

Γ̂

[ ∫ 2

0

∂xn(ζ|u|p) dxn
]
dx ′

= −
∫

Ω

∂xn(ζ|u|p) dx≤ Cp,ζ

∫
Ω

[|u|p + |Du||u|p−1] dx .
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Values of Sobolev functions on the boundary

Γ̂ = {x = (x′, 0) : |x′| < 2}
Γ = {x = (x′, 0) : |x′| < 1}

Ω = {x = (x′, xn) : |x′| < 2,

0 < xn < 2}

ζ ≡ 1

ζ ≡ 0

ζ ∈ C∞c (B3/2) such that ζ ≡ 1 in B1.

We first prove the key estimate

‖u‖Lp(Γ) ≤ Cp‖u‖W 1,p(Ω) for all u ∈ C 1(Ω̄). (*)

? We have

∫
Γ
|u|p dx ′ ≤ Cp,ζ

∫
Ω

[|u|p + |Du||u|p−1] dx .

? Using the inequality |a||b|p−1 ≤ 1
p |a|

p + p−1
p |b|

p, we obtain∫
Γ
|u|p dx ′ ≤ Cp,ζ

∫
Ω

[|u|p + |Du|p] dx

This proves (*).
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Values of Sobolev functions on the boundary

Γ̂ = {x = (x′, 0) : |x′| < 2}
Γ = {x = (x′, 0) : |x′| < 1}

Ω = {x = (x′, xn) : |x′| < 2,

0 < xn < 2}

We have proved the key estimate

‖u‖Lp(Γ) ≤ Cp‖u‖W 1,p(Ω) for all u ∈ C 1(Ω̄). (*)

It follows that the map u 7→ u|Γ =: Au is a bounded linear
operator from (C 1(Ω̄), ‖ · ‖W 1,p) into Lp(Γ).
As Ω is Lipschitz, C∞(Ω̄) and hence C 1(Ω̄) is dense in W 1,p(Ω).
Thus there exists a unique bounded linear operator
TΓ : W 1,p(Ω)→ Lp(Γ) which extends A, i.e. TΓu = u|Γ for all
u ∈ C 1(Ω̄).
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IBP formula revisited

Proposition (Integration by parts)

Suppose that 1 ≤ p <∞, Ω is a bounded Lipschitz domain, n be the
outward unit normal to ∂Ω, T : W 1,p(Ω)→ Lp(Ω) is the trace
operator, and u ∈ W 1,p(Ω). Then∫

Ω

∂iu v dx =

∫
∂Ω

Tu v ni dS −
∫

Ω

u ∂iv dx for all v ∈ C 1(Ω̄).

Proof

We knew that C∞(Ω̄) is dense in W 1,p(Ω). Thus there exists
um ∈ C∞(Ω̄) such that um → u in W 1,p.

Fix some v ∈ C 1(Ω̄). We have∫
Ω

∂ium v dx =

∫
∂Ω

um v ni dS −
∫

Ω

um ∂iv dx .
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IBP formula revisited

Proof∫
Ω
∂ium v dx =

∫
∂Ω

um v ni dS −
∫

Ω
um ∂iv dx .

Note that ∂ium → ∂iu, um → u in Lp(Ω) and
um|∂Ω = Tum → Tu in Lp(∂Ω). We can thus argue using
Hölder’s inequality to send m→∞ to obtain∫

Ω

∂iu v dx =

∫
∂Ω

Tu v ni dS −
∫

Ω

u ∂iv dx

as wanted.
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Functions of zero trace

Theorem (Trace-zero functions in W 1,p)

Suppose that 1 ≤ p <∞, Ω is a bounded Lipschitz domain,
T : W 1,p(Ω)→ Lp(Ω) is the trace operator, and u ∈ W 1,p(Ω). Then
u ∈ W 1,p

0 (Ω) if and only if Tu = 0.

Proof

(⇒) Suppose u ∈ W 1,p
0 (Ω). By definition, there exists

um ∈ C∞c (Ω) such that um → u in W 1,p. Clearly Tum = 0 and
so by continuity, Tu = 0.

(⇐) We will only consider the case Ω is the unit ball B . This
proof can be generalised fairly quickly to star-shaped domains.
The proof for Lipschitz domains is more challenging.
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Functions of zero trace

Proof

(⇐) Suppose that u ∈ W 1,p(B) and Tu = 0. We would like to
construct a sequence um ∈ C∞c (B) such that um → u in W 1,p.

? Let ū be the extension by zero of u to Rn.
? As Tu = 0, we have by the IBP formula that∫

B
∂iu v dx = −

∫
B
u ∂iv dx for all v ∈ C 1(B̄).

It follows that∫
B
∂iu v dx = −

∫
B
ū ∂iv dx for all v ∈ C∞c (Rn).

By definition of weak derivatives, this means

∂i ū =

{
∂iu in B
0 elsewhere

in the weak sense.

So ū ∈W 1,p(Rn).
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Functions of zero trace

Proof

(⇐) We would like to construct a sequence um ∈ C∞c (B) such
that um → u in W 1,p(B).

? Let ūλ(x) = ū(λx). Observe that Supp(ūλ) ⊂ B1/λ.
? In Sheet 1, you showed that ūλ → ū in Lp as λ→ 1.

Noting also that ∂i ūλ(x) = λ∂iu(λx), we also have that
∂i ūλ → ∂i ū in Lp as λ→ 1.
Hence ūλ → ū in W 1,p as λ→ 1.

? Fix λm > 1 such that ‖ūλm − ū‖W 1,p(Rn) ≤ 1/m.
? Let (%ε) be a family of mollifiers: %ε(x) = ε−n%(x/ε) with
% ∈ C∞c (B),

∫
Rn % = 1. Then ūλm ∗ %ε → ūλm in W 1,p as ε→ 0.

Also, Supp(ūλm ∗ %ε) ⊂ Bλ−1
m +ε. Thus, we can select εm

sufficiently small such that um := ūλm ∗ %εm ∈ C∞c (B) and
‖um − ūλm‖W 1,p(Rn) ≤ 1/m.

? Now ‖um − u‖W 1,p(B) ≤ 2/m and so we are done.
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Embeddings

Let X1 and X2 be two Banach spaces.

We say X1 is embedded in X2 if X1 ⊂ X2.

We say X1 is continuously embedded in X2 if X1 is embedded in
X2 and the identity map I : X1 → X2 is a bounded linear
operator, i.e. there exists a constant C such that
‖x‖X2 ≤ C‖x‖X1 . We write X1 ↪→ X2.

We say X1 is compactly embedded in X2 if X1 is embedded in X2

and the identity map I : X1 → X2 is a compact bounded linear
operator. This means that I is continuous and every bounded
sequence (xn) ⊂ X1 has a subsequence which is convergent with
respect to the norm on X2.

Our interest: The possibility of embedding W k,p in Lq or C 0.
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Gagliardo-Nirenberg-Sobolev’s inequality

Theorem (Gagliardo-Nirenberg-Sobolev’s inequality)

Assume 1 ≤ p < n and let p∗ = np
n−p . Then there exists a constant

Cn,p such that

‖u‖Lp∗ (Rn) ≤ Cn,p‖∇u‖Lp(Rn) for all u ∈ W 1,p(Rn).

In particular, W 1,p(Rn) ↪→ Lp
∗
(Rn).

The number p∗ = np
n−p is called the Sobolev conjugate of p. It

satisfies 1
p∗

= 1
p
− 1

n
.

The case p = 1 is referred to as Gagliardo-Nirenberg’s inequality.
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GNS’s inequality – Why p < n and why p∗?

Question
For what p and q does it hold

‖u‖Lq(Rn) ≤ Cn,p,q‖∇u‖Lp(Rn) for all u ∈ C∞c (Rn)? (*)

This will be answered by a scaling argument:

Fix a non-zero function u ∈ C∞c (Rn). Define uλ(x) = u(λx).
Then uλ ∈ C∞c (Rn) and so

‖uλ‖Lq(Rn) ≤ Cn,p,q‖∇uλ‖Lp(Rn). (**)

We compute

‖uλ‖qLq =

∫
Rn

|u(λx)|q dx =
1

λn

∫
Rn

|u(y)|q dy = λ−n‖u‖qLq .
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GNS’s inequality – Why p < n and why p∗?

uλ(x) = u(λx) and

‖uλ‖Lq(Rn) ≤ Cn,p,q‖∇uλ‖Lp(Rn). (**)

We compute ‖uλ‖Lq = λ−n/q‖u‖Lq .

Next,

‖∇uλ‖pLp =

∫
Rn

|λ∇u(λx)|p dx

= λp−n
∫
Rn

|∇u(y)|p dy = λp−n‖∇u‖pLp .

That is ‖∇uλ‖Lp = λ1−n/p‖∇u‖Lp .
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GNS’s inequality – Why p < n and why p∗?

Putting in (**), we get

λ−n/q‖u‖Lq ≤ Cn,p,qλ
1−n/p‖∇u‖Lp .

Rearranging, we have

λ−1+ n
p
− n

q ≤ Cn,p,q‖∇u‖Lp
‖u‖Lq

.

Since the last inequality is valid for all λ, we must have that
−1 + n

p
− n

q
= 0, i.e. q = np

n−p = p∗. As q > 0, we must also
have p ≤ n.

We conclude that a necessary condition in order for the
inequality (*) to hold is that p ≤ n and q = p∗.
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Proof of GNS’s inequality

Recall that we would like to show, for 1 ≤ p < n and p∗ = np
n−p

that

‖u‖Lp∗ (Rn) ≤ Cn,p‖∇u‖Lp(Rn) for all u ∈ W 1,p(Rn). (#)

Claim 1: If (#) holds for functions in C∞c (Rn), then it holds for
functions in W 1,p(Rn).

? Take an arbitrary u ∈W 1,p(Rn). As p <∞, C∞c (Rn) is dense
in W 1,p(Rn). Hence, we can select um ∈ C∞c (Rn) such that
um → u in W 1,p.

? If (#) holds for functions in C∞c (Rn), then
‖um‖Lp∗ ≤ Cn,p‖∇um‖Lp .

? As um → u in W 1,p, we have ∂ium → ∂iu in Lp and so
‖∇um‖Lp → ‖∇u‖Lp .

? Warning: It is tempted to try to show ‖um‖Lp∗ → ‖u‖Lp∗ .
However, this is false in general.
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Proof of GNS’s inequality

Proof of Claim 1:

? ‖um‖Lp∗ ≤ Cn,p‖∇um‖Lp .
? ‖∇um‖Lp → ‖∇u‖Lp .
? As um → u in W 1,p, we have um → u in Lp, and so, we can

extract a subsequence (umj ) which converges a.e. in Rn to u.
By Fatou’s lemma, we have∫

Rn

|u|p∗ dx ≤ lim inf
j→∞

∫
Rn

|umj |
p∗ dx .

? So

‖u‖Lp∗ ≤ lim inf
j→∞

‖umj‖Lp∗ ≤ Cn,p lim inf
j→∞

‖∇umj‖Lp = Cn,p‖∇u‖Lp .

So (#) holds.
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Proof of GNS’s inequality

Claim 2: If (#) holds for p = 1, then it holds for all 1 < p < n.

? Take an arbitrary non-trivial u ∈ C∞c (Rn) and consider the
function v = |u|γ with γ > 1 to be fixed. Clearly
v ∈ L1(Rn) ∩ L∞(Rn).

? In Sheet 3, you will show that |u| is weakly differentiable and

∇|u| =


∇u in {x : u(x) > 0},
−∇u in {x : u(x) < 0},
0 in {x : u(x) = 0}.

? It follows that ∇v = γ|u|γ−1∇|u| ∈ L1(Rn). So v ∈W 1,1(Rn).
? Applying (#) in W 1,1 we get ‖v‖

L
n

n−1
≤ Cn‖∇v‖L1 .

? On the left side, we have

‖v‖
L

n
n−1

=
{∫

Rn

|v |
n

n−1 dx
} n−1

n
= ‖u‖γ

L
nγ
n−1

.
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Proof of GNS’s inequality

Claim 2: If (#) holds for p = 1, then it holds for all 1 < p < n.

? ‖v‖
L

n
n−1
≤ Cn‖∇v‖L1 .

? On the left side, we have ‖v‖
L

n
n−1

= ‖u‖γ
L

nγ
n−1

.

? On the right side, we use the inequality |∇|u|| ≤ |∇u| and
compute using Hölder’s inequality:

‖∇v‖L1 ≤
∫
Rn

γ|u|γ−1|∇u| dx ≤ γ
{∫

Rn

|u|(γ−1)p′ dx
} 1

p′
{∫

Rn

|∇u|p dx
} 1

p

= γ‖u‖γ−1

L(γ−1)p′‖∇u‖Lp .

? Now we select γ such that (γ − 1)p′ = nγ
n−1 , i.e. γ = (n−1)p

n−p and
obtain

‖u‖γ
Lp∗
≤ Cnγ‖u‖γ−1

Lp∗
‖∇u‖Lp .

As u 6≡ 0, we can divide both side by ‖u‖γ−1
Lp∗

, and conclude
Step 2.
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Proof of GNS’s inequality

In view of Claim 1 and Claim 2, it thus remains to show GNS’s
inequality for smooth functions when p = 1. To better present
the idea of the proof, I will only give the proof when n = 2, i.e.

‖u‖L2(R2) ≤ C‖∇u‖L1(R2) for all u ∈ C∞c (R2). (♦)

(The case n ≥ 3 can be dealt with in the same way (check
this!).)

? The starting point is the estimate

|u(x)| =
∣∣∣ ∫ x1

−∞
∂x1u(y1, x2) dy1

∣∣∣ ≤ ∫ ∞
−∞
|∇u(y1, x2)| dy1.

Likewise,

|u(x)| ≤
∫ ∞
−∞
|∇u(x1, y2)| dy2.

Luc Nguyen (University of Oxford) C4.3 – Lectures 7-8 MT 2022 35 / 47



Proof of GNS’s inequality

We are proving

‖u‖L2(R2) ≤ C‖∇u‖L1(R2) for all u ∈ C∞c (R2). (♦)

? We have |u(x)| ≤
∫∞
−∞ |∇u(y1, x2)| dy1 and

|u(x)| ≤
∫∞
−∞ |∇u(x1, y2)| dy2.

? Multiplying the two inequalities gives

|u(x1, x2)|2 ≤
{∫ ∞
−∞
|∇u(y1, x2)| dy1

}{∫ ∞
−∞
|∇u(x1, y2)| dy2

}
.

? Now note that the first integral on the right hand side is
independent of x1, and if one integrates the second integral on
the right hand side with respect to x1, one gets ‖∇u‖L1 . Thus,
by integrating both side in x1, we get∫ ∞
−∞
|u(x1, x2)|2 dx1 ≤

{∫ ∞
−∞
|∇u(y1, x2)| dy1

}
‖∇u‖L1 .
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Proof of GNS’s inequality

We are proving

‖u‖L2(R2) ≤ C‖∇u‖L1(R2) for all u ∈ C∞c (R2). (♦)

? We have shown∫ ∞
−∞
|u(x1, x2)|2 dx1 ≤

{∫ ∞
−∞
|∇u(y1, x2)| dy1

}
‖∇u‖L1

By the same line of argument, integrating the above in x2 gives∫ ∞
−∞

∫ ∞
−∞
|u(x1, x2)|2 dx1 dx2 ≤ ‖∇u‖2

L1 ,

which gives exactly (♦) with C = 1.
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An improved Gagliardo-Nirenberg’s inequality

Remark
By inspection, note that when p = 1, we actually prove the following
slightly stronger inequality:

‖u‖n
L

n
n−1 (Rn)

≤
n∏

i=1

‖∂iu‖L1(Rn).
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GNS’s inequality for bounded domains

Theorem (Gagliardo-Nirenberg-Sobolev’s inequality)

Assume that Ω is a bounded Lipschitz domain and 1 ≤ p < n. Then,
for every q ∈ [1, p∗], there exists Cn,p,q,Ω such that

‖u‖Lq(Ω) ≤ Cn,p,q,Ω‖u‖W 1,p(Ω) for all u ∈ W 1,p(Ω).

In particular, W 1,p(Ω) ↪→ Lq(Ω).

Proof

Let E : W 1,p(Ω)→ W 1,p(Rn) be an extension operator. Then

‖u‖Lp∗(Ω) ≤ ‖Eu‖Lp∗(Rn) ≤ Cn,p‖Eu‖W 1,p(Rn) ≤ Cn,p‖u‖W 1,p(Ω).

By Hölder inequality, we have ‖u‖Lq(Ω) ≤ ‖u‖Lp∗ (Ω)|Ω|
1
q
− 1

p∗ .

We conclude the proof with Cn,p,q,Ω = Cn,p|Ω|
1
q
− 1

p∗ .
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GNS’s inequality – Can p = n?

Consider now the case p = n. Does it hold that

‖u‖L∞(Rn) ≤ Cn‖∇u‖Ln(Rn) for all u ∈ C∞c (Rn)? (†)

? When n = 1, this is true as

|u(x)| =
∣∣∣ ∫ x

−∞
u′(s) ds

∣∣∣ ≤ ∫ ∞
−∞
|u′(s)| ds = ‖u′‖L1(R).

? We next show that (†) does not hold when n ≥ 2.
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GNS’s inequality – Can p = n?

We know that if (†) holds then W 1,n(Rn) ↪→ L∞(Rn). Thus it
suffices to exhibit a function u ∈ W 1,n(Rn) \ L∞(Rn).

It is enough to find f ∈ W 1,n(B2) \ L∞(B1). The desired u then
takes the form u = f ζ for any ζ ∈ C∞c (B2) with ζ ≡ 1 in B1.

We impose that f is rotationally symmetric so that
f (x) = f (|x |) = f (r). Then we need to find a function
f : (0, 2)→ R such that∫ 2

0

[|f |n + |f ′|n] rn−1 dr <∞ but ess sup
(0,1)

|f | =∞.
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GNS’s inequality – Can p = n?

Then we need to find a function f : (0, 2)→ R such that∫ 2

0

[|f |n + |f ′|n] rn−1 dr <∞ but ess sup
(0,1)

|f | =∞.

The fact that |f ′|nrn−1 is integrable implies that, near r = 0, f ′

is ‘smaller’ than 1
r
, so f is ‘smaller’ than ln r .

If we try f = (ln 4
r
)α, then |f ′|nrn−1 = αn

r
(ln 4

r
)n(α−1) is

integrable for α ≤ n−1
n

. Also, |f |nrn−1 is continuous in [0, 2] and
hence integrable. So f ∈ W 1,n(B2) when α ≤ n−1

n
.

On the other hand, if α > 0, then ess sup(0,1) |f | =∞.
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Trudinger’s inequality

Theorem (Trudinger’s inequality)

There exists a small constant cn > 0 and a large constant Cn > 0

such that if u ∈ W 1,n(Rn), then exp
[(

cn|u|
‖u‖W 1,n(Rn)

) n
n−1
]
∈ L1

loc(Rn) and

sup
x0∈Rn

∫
B1(x0)

exp
[( cn|u|
‖u‖W 1,n(Rn)

) n
n−1
]
dx ≤ Cn.
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A non-embedding theorem for unbounded domains

Fact
Suppose 1 ≤ p <∞ and Ω ⊂ Rn be an unbounded domain with
finite volume. Then W 1,p(Ω) does not embed into Lq(Ω) whenever
q > p.

Ideas

Ω

r1 r2 r3

1
2

1
4

1
8

We may assume |Ω| = 1. We need
to construct a function
f ∈ W 1,p(Ω) \ Lq(Ω).

Let r0 = 0 and select rk such that
Ωk := Ω ∩ {rk ≤ |x | < rk+1} has
volume 1

2k+1 .
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A non-embedding theorem for unbounded domains

Sketch of proof

The function f will be of the form f (x) = f (|x |) which is
increasing in |x |. If we let bk = f (rk), then

‖f ‖pLp =
∑
k

∫
Ωk

|f |p dx ≤
∑
k

bpk+1|Ωk | =
∑
k

bpk+12−k−1.

Likewise, ‖f ‖qLq ≥
∑
k

bqk2−k−1.

To make ‖f ‖Lq =∞, we then require that bk = 2k/q infinitely
many times.
If we also impose that bk ≤ 2k/q for all k , then

‖f ‖pLp ≤
∑
k

2−k(1− p
q

) <∞.
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A non-embedding theorem for unbounded domains

Sketch of proof

bk = 2k/q infinitely many times ⇒ ‖f ‖Lq =∞,
bk ≤ 2k/q for all k ⇒ ‖f ‖Lp <∞.

Consider now ‖∇f ‖Lp .

? On each Ωk , we can arrange so that |∇f | ∼ bk+1−bk
rk+1−rk .

? It is important to note that, for any fixed ε > 0, the inequality
that rk+1 − rk > 2−εk must hold infinitely frequently. (As
otherwise, rk 6→ ∞.) Label them as k1 < k2 < . . .

? In Ωkj , we have |∇f | ∼
bkj+1−bkj
rkj+1−rkj

≤ 2kj (1/q+ε).

? In Ωk with k 6= kj , we control |∇f | by imposing bk+1 = bk so
that |∇f | = 0.

? To meet the requirement in the first bullet point, we ask
bkj = 2kj/q.

Luc Nguyen (University of Oxford) C4.3 – Lectures 7-8 MT 2022 46 / 47



A non-embedding theorem for unbounded domains

Sketch of proof

‖f ‖Lq =∞ and ‖f ‖Lp <∞.

Consider ‖∇f ‖Lp .

? Putting things together, we have

‖∇f ‖pLp =
∑
j

∫
Ωkj

|∇f |p dx

≤
∑
j

2kj (1/q+ε)p2−kj−1 ≤
∑
j

2−kj (1− p
q
−εp)

.

Choosing ε < 1
p −

1
q , we see that this sum is finite.

We conclude that f ∈ W 1,p(Ω) but f /∈ Lq(Ω).
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