
5. Epidemic modelling

To model spread of infectious diseases in a population, need to make assumptions about

how disease is spread, how it affects individuals, etc. Simplest model: SIR model.

• Closed population. Individuals do not enter population, and leave only by death

due to disease.

• Population in 3 compartments: Susceptible, Infective, or Removed (cured and now

immune, or dead).

• No spatial effects (uniform mixing), and no heterogeneity in activity (important in,

e.g., STDs such as AIDS).

• Negligible incubation time.

• Susceptibles move into Infective class at rate proportional to number of contacts

between Susceptibles and Infectives.

• Infectives removed at some rate γ into Removed class.

dS

dt
= −βSI β > 0

dI

dt
= βSI − γI γ > 0

dR

dt
= γI
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5.1.1 SIR epidemic: Model equations

dS

dt
= −βSI β > 0 (1)

dI

dt
= βSI − γI γ > 0 (2)

dR

dt
= γI (3)

(Kermack & McKendrick (1927)). Solve subject to initial conditions

S(0) = S0 > 0, I(0) = I0 > 0, R(0) = 0.

• We define an epidemic to occur if I(t) > I0 for some t > 0. Thus an epidemic will
occur if dI/dt > 0 at t = 0.

• Note: adding (1)–(3) gives conservation of population, S + I + R = N , constant,

and can eliminate one of variables from model.
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5.1.2 Nondimensionalise model

dS

dt
= −βSI β > 0

dI

dt
= βSI − γI γ > 0

dR

dt
= γI

S + I + R = N, constant

Dimensions:

• S, I, R numbers; scale with N : (S, I, R) = N(u, v, w)

• γ has dimensions t−1. Thus t = τ/γ gives suitable nondimensionalisation of time

(could also have used a timescale based on β).

• Model then becomes

du

dτ
= −r∗uv

dv

dτ
= (r∗u − 1)v

w = 1 − u − v

9

>>>=

>>>;

r∗ =
βN

γ

• r∗ is called the basic reproductive rate of infection = mean no. of secondary cases
of infection caused by a single infected case in a population without immunity.
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5.1.3 Phase plane analysis

du

dτ
= −r∗uv (4)

dv

dτ
= (r∗u − 1)v (5)

w = 1 − u − v (6)

• Since w ≥ 0, clearly u + v ≤ 1 by (6)

• If w(0) = 0 (no-one immune/dead initially) all initial states for system (4), (5)

satisfy u0 + v0 = 1.

• Eqns for u and v independent of w, thus can plot phase-plane for the (u, v) system
in triangular domain D = {u ≥ 0, v ≥ 0, u + v ≤ 1}.

• As for the predator-prey system, phase paths can be plotted directly, by dividing

eqns (4), (5) to obtain separable ODE for v(u), with solution

v =
1

r∗
ln(u/u0) − u + v0 + u0. (7)

• Different choices of initial conditions correspond to different phase paths within D.
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Phase trajectories (Maple)
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Phase trajectories of the system for two different values of r∗
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What if we don’t have access to Maple??

du

dτ
= −r∗uv

dv

dτ
= (r∗u − 1)v

9

>=

>;

u + v ≤ 1 (8)

• Alternative approach to obtain the phase portrait is to determine the critical points,

their type, and the nullclines of the system (8).

• Critical points:

(u, v) = (u0, 0) u0 ∈ [0, 1] arbitrary.

• Every point on u-axis is a possible equilibrium of the system (non-standard case).

• Consider the critical point (u0, 0). Linearise, writing

u = u0 + εx(τ) + O(ε2), v = εy(τ) + O(ε2), 0 < ε % 1

• Local behaviour of system satisfies

ẋ = Ax, A =

 

0 −r∗u0

0 r∗u0 − 1

!

x = (x, y)T .
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Linearised system

ẋ = Ax, A =

 

0 −r∗u0

0 r∗u0 − 1

!

• Solutions x = x0eλτ

• Eigenvalues of linearised system are

λ1 = 0, λ2 = r∗u0 − 1.

• Two cases:
• If r∗ < 1 then λ2 < 0 for all u0 ∈ [0, 1] and the critical points are all neutrally

stable.
• If r∗ > 1 then for 0 ≤ u0 < 1/r∗ critical points are again neutrally stable,

while for 1/r∗ < u0 ≤ 1 they are unstable (λ2 > 0).

• Next determine nullclines of system to determine turning-points of phase

trajectories.
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Nullclines of system

du

dτ
= −r∗uv

dv

dτ
= (r∗u − 1)v

9

>=

>;

u + v ≤ 1

• Nullclines u̇ = 0 given by the lines u = 0, v = 0

• Nullclines v̇ = 0 given by u = 1/r∗, v = 0

• That v = 0 is a nullcline for both variables reflects its exceptional nature as a line
of critical points, already analysed. Take care when plotting!

• Line u = 0 also slightly exceptional – it is a nullcline u̇ = 0 so phase paths must
cross it vertically, but it is itself vertical – so it must be a phase path, on which ODE

for u satisfied trivially, and v̇ = −v < 0.

• For the nullcline u = 1/r∗ (v̇ = 0), again two cases:
• If r∗ < 1 then nullcline u = 1/r∗ lies outside physically-relevant domain D

and has no significance. v̇ < 0 everywhere in D.

• If r∗ > 1 then nullcline lies partly within physical domain D, and phase

trajectories cross this vertical line horizontally.

• In the latter case r∗ > 1: In u > 1/r∗ we have v̇ > 0, while in u < 1/r∗ we
have v̇ < 0.
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Phase trajectories (sketch based on analysis)

Noting also that u̇ ≤ 0 everywhere, can now sketch phase paths.
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Phase trajectories of the system for two cases r∗ < 1, r∗ > 1
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Interpretation of phase diagram

• Each individual phase trajectory represents a solution of the system.

• Which trajectory the solution follows is dictated by initial conditions imposed.

• For r∗ < 1 both v (infectives) and u (susceptibles) decrease monotonically in time

until v = 0 and u = u∞ (0 < u∞ < u0).

• Since v decreases monotonically to zero, there is no epidemic, outbreak dies
away.

• Value of u∞ can be found by setting v = 0 in explicit expression for phase
paths with given values of r∗, u0, v0 (slide 5).

• For r∗ > 1, if the initial number of susceptibles u0 > 1/r∗ then although u again

decreases monotonically (to u∞ ∈ (0, 1/r∗)), v initially increases to some vmax

(epidemic), before decreasing ultimately to zero.

• Value of vmax found by setting u = 1/r∗ (the nullcline on which phase paths
horizontal) in explicit expression for phase-paths with given values of r∗, u0,

v0 (equation (7), slide 5).
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5.1.4 Infection control

Can prevent epidemics if r∗ = βN/γ < 1. Hence 3 possible control mechanisms:

1. Increase γ (rate of removal of infectives)

2. Decrease β (pairwise infectious contact rate)

3. Decrease effective value of N (decrease total population).

Foot and mouth epidemic employed all 3 tactics.

1. Infected animals slaughtered (increase γ)

2. Disinfectant and movement controls reduced β

3. Slaughtering potential infection carriers (esp. those adjacent to infected farms)

effectively reduced N .
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Infection control (ctd)

Another strategy is to vaccinate.

• Vaccination essentially removes a proportion p of initial susceptible class to the
removed class (that is, w(0) = p).

• Assuming r∗ > 1, so that an epidemic will potentially occur in an unvaccinated
population, after vaccination initial numbers of susceptibles and infectives satisfy

u0 + v0 = 1 − p.

• To avoid epidemic require u0 < 1/r∗, since then all phase trajectories have v
monotone decreasing.

• Thus to be sure of avoiding an epidemic we must vaccinate such that

1 − p < 1/r∗ ⇒ p > 1 − 1/r∗.

• Assuming a perfect vaccine, this is the proportion of the population we must

vaccinate to avoid an epidemic.
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5.2 SIR endemic model

• Endemic disease: one that is always present in a population.

• SIR epidemic model: implicitly assumed that duration of epidemic sufficiently short

that the population does not change much due to natural births and deaths during

epidemic.

• Endemic: interested in disease progress over long times – many generations

sometimes – so must include the “natural” population dynamics too.

• Consider population N with per capita birth rate b, and per capita death rates c
(from disease) and d (other causes).

• Assume c, d constant, and that disease not transferred from mother to foetus, so
all new births enter susceptible class. Schematically:

birth
bN−→ S

8

>>>>><

>>>>>:

βIS−→ I

8

>><

>>:

dI−→ natural death
γI−→ R

dR−→ natural death
cI−→ disease death

dS−→ natural death

• How might the population approach an endemic steady state?
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5.2.1 No death from disease (non-fatal)

birth
bN−→ S

8

>>>>><

>>>>>:

βIS−→ I

8

>><

>>:

dI−→ natural death
γI−→ R

dR−→ natural death
cI−→ disease death——————

dS−→ natural death

• Steady state in this case requires natural births to balance natural deaths.

• Let b = d and c = 0. Then the above schematic leads to model equations

dS

dt
= bN − βIS − bS,

dI

dt
= βIS − γI − bI,

dR

dt
= γI − bR.

• Easily verified that N = S + I + R is constant for this model.

• Scale population classes with N as before.

• Now however scale time with 1/(γ + b) to reflect the different rate at which
infectives now leave the I-class.
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5.2.2 Nondimensionalisation much as before. . .

dS

dt
= bN − βIS − bS,

dI

dt
= βIS − γI − bI,

dR

dt
= γI − bR,

(S, I, R) = N(u, v, w), t =
τ

γ + b
,

leads to

du

dτ
= b̂(1 − u) − r∗uv

dv

dτ
= (r∗u − 1)v

dw

dτ
= γ̂v − b̂w

9

>>>>=

>>>>;

b̂ =
b

(γ + b)
, γ̂ =

γ

(γ + b)
, r∗ =

βN

γ + b
.

• Note that γ̂ = 1 − b̂, so just 2 parameters in model.

• Again, r∗ is defined to be the basic reproductive rate of infection.
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5.2.3 Steady states and linear stability

du

dτ
= b̂(1 − u) − r∗uv

dv

dτ
= (r∗u − 1)v

w = 1 − u − v

9

>>>=

>>>;

γ̂ = 1 − b̂. (9)

• Again w = 1 − u − v uncouples from the system leaving a pair of ODEs to be

solved for u and v on domain D = {u ≥ 0, v ≥ 0, u + v ≤ 1}.
• Critical points of (9) at

(uc, vc) =

(

(1, 0) (disease-free state)

( 1
r∗

, b̂(1 − 1
r∗

)) (disease remains endemic in population).

• Endemic steady state exists only if r∗ > 1.

• Linearising about first critical point, find that eigenvalues at (1, 0) are

λ1 = −b̂, λ2 = r∗ − 1,

so the disease-free state is stable if r∗ < 1 (stable node) and unstable if r∗ > 1
(saddle).
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Endemic steady state stable when it exists (r∗ > 1)

du

dτ
= b̂(1 − u) − r∗uv

dv

dτ
= (r∗u − 1)v

• At endemic steady state critical point (1/r∗, b̂(1 − 1/r∗)) eigenvalues are

2λ1,2 = −b̂r∗ ± b̂r∗
„

1 −
4

b̂r∗
+

4

b̂r∗2

«1/2

.

• For stability require real part of both eigenvalues to be negative, that is,

stable ⇐⇒
„

1 −
4

b̂r∗
+

4

b̂r∗2

«

< 1 ⇐⇒ r∗ > 1.

• If unstable, critical point lies outside domain of interest and is irrelevant.

• If stable, it will either be a stable spiral (if square-rooted quantity is imaginary) or a

stable node. We have

(b̂r∗ − 2)2
<

>
4(1 − b̂) ≡ 4γ̂ ⇒

stable spiral

stable node
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Nullclines

du

dτ
= b̂(1 − u) − r∗uv

dv

dτ
= (r∗u − 1)v

• As usual, further information about phase-plane can be extracted by considering

nullclines of system:

u̇ = 0 on v =
b̂(1 − u)

r∗u
(hyperbola)

v̇ = 0 on v = 0, u =
1

r∗
(straight lines).

• Note that v = 0 is a solution trajectory of the system, on which u̇ = b̂(1 − u).

• Endemic steady state critical point at (1/r∗, b̂(1 − 1/r∗)) provided r∗ > 1.

• Typically in endemic diseases γ + b (people removed from I-class much more

quickly by recovery than by natural death), thus b̂ = b/(γ + b) % 1.

• Proportion of population who have the disease in the endemic steady state is

therefore usually small.
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5.2.4 Worked example

du

dτ
= b̂(1 − u) − r∗uv

dv

dτ
= (r∗u − 1)v

9

>=

>;

b̂ = 0.1, r∗ = 5. (10)

• Critical points at (uc, vc) = (1, 0), (uc, vc) = (0.2, 0.08)

• Critical point at (1, 0): Write (u, v) = (1 + εx, εy) and seek solutions
x = r exp(λτ). Linearised problem:

0 =

 

−b̂ − λ −r∗

0 r∗ − 1 − λ

!

r

which leads to eigenvalues and (unnormalised) eigenvectors

(λ1, λ2) = (−b̂, r∗ − 1) = (−0.1, 4), saddle-point

r1 = (1, 0)T , r2 = (r∗, 1 − b̂ − r∗)T = (5,−4.1)T .

• Eigenvectors give directions in which phase-paths enter or leave saddle-point.

• Since λ1 < 0, phase paths along +r1 enter the critical point. Note −r1 is outside

physical region.

• λ2 > 0 ⇒ paths along −r2 leave critical point. Note r2 is outside physical region.
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Worked example (ctd)

du

dτ
= b̂(1 − u) − r∗uv

dv

dτ
= (r∗u − 1)v

9

>=

>;

b̂ = 0.1, r∗ = 5.

• Critical point at (uc, vc) = (0.2, 0.08): Linearising gives eigenvalues

λ1,2 = −0.25 ± 0.581i, stable spiral

• Next consider nullclines of the system:

u̇ = 0 on v = 0.02(1/u − 1) (hyperbola)

v̇ = 0 on v = 0, u = 0.2, (straight lines).

• Hyperbola is easily sketched, since it must pass through the two critical points, and

asymptote to the v axis as u → 0.

• Putting all this information together we can sketch the phase plane.
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The phase plane
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Phase paths, together with the nullcline v̇ = 0. Since this nullcline lies very close to
u-axis near critical point (1, 0) it is difficult to distinguish where the phase-paths turn over
near this saddle point. That u = 1/r∗ = 0.2 is also a nullcline u̇ = 0 is also easily seen.
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5.2.5 Vaccination against endemics

• Again assume a non-fatal disease, and suppose the vaccination strategy is to

vaccinate a proportion p of susceptibles at birth.

• Governing equations are replaced by

dS

dt
= b(1 − p)N − βIS − bS

dI

dt
= βIS − γI − bI

dR

dt
= bpN + γI − bR

and again N = S + I + R is constant.

• With scalings as before

(S, I, R) = N(u, v, w), t =
τ

γ + b
,

we obtain du

dτ
= b̂(1 − p) − b̂u − r∗uv

dv

dτ
= (r∗u − 1)v

dw

dτ
= b̂p + γ̂v − b̂w.
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Steady states

du

dτ
= b̂(1 − p) − b̂u − r∗uv (11)

dv

dτ
= (r∗u − 1)v (12)

• Steady states of system (11), (12) given by

(uc, vc) = (1 − p, 0), (uc, vc) =

„
1

r∗
, b̂
`
1 − p −

1

r∗
´
«

.

• For successful vaccination, want disease-free state to be stable, and nontrivial
endemic state to be unstable, so that disease ultimately dies out.

• Stability results may be read off directly from non-vaccinated case if we note that

rescaling u = (1 − p)U , v = (1 − p)V , R∗ = (1 − p)r∗ leads to system

dU

dτ
= b̂(1 − U) − R∗UV,

dV

dτ
= (R∗U − 1)V

exactly equivalent to unvaccinated case.
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Stability results from previous analysis

dU

dτ
= b̂(1 − U) − R∗UV

dV

dτ
= (R∗U − 1)V

• Rescaling→ system identical to unvaccinated case.

• Thus we have stability of disease-free state and instability of endemic state if

R∗ = r∗(1 − p) < 1 ⇒ p > 1 −
1

r∗
(13)

• If R∗ > 1 the converse is true.

• Condition (13) holds trivially if r∗ < 1 — in this case endemic steady state does

not exist in non-vaccine model — so no need to vaccinate.

• Condition (13) gives minimum fraction of the population that must be vaccinated to

avoid endemic disease.
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Real data

Data exists from which values of r∗ (and hence critical value of p) may be estimated, for
many common diseases. Some examples (see Britton):

Infection r∗ p

Smallpox 3 to 5 0.67 to 0.8

Measles 12 to 13 0.92

Whooping cough 13 to 17 0.92 to 0.94

Rubella 6 to 7 0.83 to 0.86

Chickenpox 9 to 10 0.89 to 0.9

Diphtheria 4 to 6 0.75 to 0.83

Scarlet fever 5 to 7 0.8 to 0.86

Mumps 4 to 7 0.75 to 0.86

Poliomyelitis 6 0.83
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5.3 Criss-cross infection: STDs

Consider a simple model for gonorrhoea transmission. Make the following assumptions.

• Criss-cross infection – only males infect females, and vice-versa

• Incubation period short compared with length of infection.

Schematically,
Males S ! I

↖↙
Females S̃ ! Ĩ

9

>=

>;

no acquired immunity.

• Further assume that male and female populations closed.

• Simplest model equations are then

dS

dt
= −rSĨ
| {z }

+ aI
|{z}

dI

dt
= rSĨ − aI

infection recovery

dS̃

dt
=
z }| {

−r̃S̃I +
z}|{

ãĨ
dĨ

dt
= r̃S̃I − ãĨ

• Can show that

S + I = N, S̃ + Ĩ = Ñ, N, Ñ constant.
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5.3.1 Model equations

dS

dt
= −rSĨ + aI

dI

dt
= rSĨ − aI

dS̃

dt
= −r̃S̃I + ãĨ

dĨ

dt
= r̃S̃I − ãĨ

S + I = N S̃ + Ĩ = Ñ N, Ñ constant. (14)

• Using (14) can then reduce model to a pair of ODEs for infected M and F

populations:

dI

dt
= r(N − I)Ĩ − aI

dĨ

dt
= r̃(Ñ − Ĩ)I − ãĨ

• Steady states (exercise):

(I, Ĩ) = (0, 0), (I∗, Ĩ∗), where I∗ =
NÑ − ρρ̃

Ñ + ρ
, Ĩ∗ =

NÑ − ρρ̃

N + ρ̃
, ρ =

a

r
, ρ̃ =

ã

r̃

(nontrivial st.st. only realistic if NÑ > ρρ̃).
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5.3.2 Linear stability of steady state (0, 0)

Near (0, 0) approximate (linearised) equations are

dI

dt
= rNĨ − aI,

dĨ

dt
= r̃ÑI − ãĨ

so usual procedure of seeking solutions (I, Ĩ) = Rexp(λt) gives eigenvalue problem

0 =

˛
˛
˛
˛
˛

−a − λ rN

r̃Ñ −ã − λ

˛
˛
˛
˛
˛

⇒ 2λ = −(a + ã) ±

"

(a + ã)2 + 4aã

 

NÑ

ρρ̃
− 1

!#1/2

.

Hence stability depends on the value of NÑ/(ρρ̃).

• If NÑ/(ρρ̃) < 1 then both eigenvalues are negative: (0, 0) is stable and in fact is
the only steady state, so infection dies out in population.

• If NÑ/(ρρ̃) > 1 then one eigenvalue is positive and one is negative: (0, 0) is

unstable (saddle). In this case the nontrivial steady state (I∗, Ĩ∗) exists and must
be analysed.
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Linear stability of (I∗, Ĩ∗)

• Assume NÑ/(ρρ̃) > 1 and linearise about the steady state, writing I = I∗ + εx,

Ĩ = Ĩ∗ + εx̃, where 0 < ε % 1.

• Usual procedure leads to eigenvalue problem for λ, the growth-rate of (x, x̃):

0 = λ2 + λ(r̃I∗ + rĨ∗ + a + ã) + aã

 

1 −
NÑ

ρρ̃

!

+ rãĨ∗
„

1 +
N

ρ̃

«

+ r̃aI∗
 

1 +
Ñ

ρ

!

.

• Writing this quadratic as λ2 + Bλ + C = 0, the formula gives the solutions as

2λ1,2 = −B ±
p

B2 − 4C,

• Hence solutions are stable (.(λ) < 0) if C > 0. A little algebra reveals

C = −aã

 

1 −
NÑ

ρρ̃

!

> 0,

and the nontrivial steady state is stable, when it exists, while the trivial steady state

is unstable.
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5.3.3 Interpretation

• The parameter NÑ

ρρ̃
≡

NÑrr̃

aã

combines the effects of the promiscuity of the population as a whole and the

infectiveness of the disease.

• In terms of individual model parameters, 1/ã is the average period of infection of a
female. rN is the no. of males contacted who get the disease if all males are

susceptible (I = 0), per infected female.

• Similarly for females infected by males.

• It follows that

rN

ã
∼ No. of infectives produced per infected female,

r̃Ñ

a
∼ No. of infectives produced per infected male.

• The product of these two parameters must be > 1 for the disease to persist.

• Some data exists for these parameters. USA 1973: NÑ/(ρρ̃) ≈ 1.127 > 1.
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5.4 Overview of disease-spread modelling

• Epidemic models: Disease outbreak duration short compared with natural birth

and death processes, hence natural birth and death neglected.

• Compartment model – SIR, susceptibles, infectives, removed.
• Basic reproductive rate of infection r∗ determines whether or not epidemic

occurs. If r∗ > 1 have epidemic, otherwise not.
• Possible control strategies considered, specifically vaccination.

• Endemic models: Interested in situations where disease can persist indefinitely in

a population, hence natural birth and death processes important on such long

timescales.
• Steady state population if birth rate balances death rate – assumed this,

giving modified SIR model.

• Again find a critical parameter r∗, which determines whether or not disease
can remain endemic in population (nontrivial stable steady state).

• Vaccination again studied as a means of eliminating the endemic steady state.

• Criss-cross infection models considered in 2 closed populations. Again criterion

can be derived in terms of model parameters that predicts whether or not disease

can persist, or must die out.
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