
Stochastic Simulation: Lecture 9b

Christoph Reisinger

Oxford University Mathematical Institute

Modified from earlier slides by Prof. Mike Giles.

Details of MLMC code

We will now discuss the practical implementation of the multilevel
Monte Carlo method:

I mlmc.m / mlmc.py / mlmc.cpp:
“driver” code which performs the MLMC calculation using
a user routine to estimate E[P`−P`−1] using N` samples

I mlmc test.m / mlmc test.py / mlmc test.cpp:
routine which does a lot of tests and then calls mlmc to
perform a number of MLMC calculations

Details of MLMC code

mlmc test first performs a set of calculations using a fixed number
of samples on each level of resolution, and produces 4 plots:

I log2(V`) versus level `

If V` ∼ 2−β` then the slope of this line should asymptote
towards −β

I log2(|E[P`−P`−1]|) versus level `

If |E[P`−P`−1]| ∼ 2−α` then the slope of this line should
asymptote towards −α

I consistency check versus level

I kurtosis versus level

Consistency check

If a, b, c are estimates for E[P`−1], E[P`], E[P` − P`−1], then it
should be true that a− b + c ≈ 0.

The consistency check verifies that this is true, to within the
accuracy one would expect due to sampling error.

Since √
V[a− b + c] ≤

√
V[a] +

√
V[b] +

√
V[c]

it computes the ratio

|a− b + c |
3(
√

V[a] +
√
V[b] +

√
V[c])

The probability of this ratio being greater than 1 based on random
sampling errors is extremely small. If it is, it indicates a likely
programming error.

Kurtosis check

The MLMC approach needs a good estimate for
V` = V[P`−P`−1], but how many samples are need for this?

As few as 10 may be sufficient in many cases for a rough estimate,
but many more are needed when there are rare outliers.

When the number of samples N is large, the standard deviation of
the sample variance for a random variable X with zero mean is
approximately√

κ− 1

N
E[X 2] where kurtosis κ is defined as κ =

E[X 4]

(E[X 2])2

(http://mathworld.wolfram.com/SampleVarianceDistribution.html)

As well as computing κ`, mlmc test will give a warning if κ` is very large.

Kurtosis check

An extreme (but important) example is a digital option in which P
always takes the value 0 or 1.

In this case we have

X ≡ P` − P`−1 =


1, probability p
−1, probability q

0, probability 1−p−q

If p, q � 1, then E[X] ≈ 0, and

κ ≈ p + q

(p + q)2
= (p + q)−1 � 1

Therefore, many samples are required for a good estimate of V`,
and if we don’t have many samples, we may even get all X (n) = 0,
which will give an estimated variance of zero.

MLMC algorithm

start with L=2, and initial target of N0 samples
on levels ` = 0, 1, 2

while extra samples need to be evaluated do
evaluate extra samples on each level
compute/update estimates for V`, C`, ` = 0, . . . , L
define optimal N`, ` = 0, . . . , L
if no new samples needed then

test for weak convergence
if not converged then

if L == Lmax then
print warning message – failed to converge

else
set L := L+1, and initialise target NL

end if
end if

end if
end while

MLMC algorithm

Objective: to achieve

MSE =
L∑
`=0

V`/N` + (E[PL−P])2 ≤ ε2

by choosing L such that

(E[PL−P])2 ≤ θ ε2

and N` such that
L∑
`=0

V`/N` ≤ (1−θ) ε2

Use e.g. θ = 0.5 or θ = 0.25.

MLMC – optimal N`

Given L, optimal choice for N` is

N` =
1

1−θ
ε−2
√
V`/C`

L∑
`′=0

(√
V`′ C`′

)

V` is estimated from empirical variance.

In python code, C` = 2γ`, where γ is user input.

In MATLAB and C++ code user defines C`, for example by counting how many

random numbers are generated.

MLMC – convergence check

If E[P`−P`−1] ∝ 2−α` then the remaining error is

E[P−PL] =
∞∑

`=L+1

E[P` − P`−1] ≈ E[PL−PL−1]
∞∑
k=1

2−αk

= E[PL−PL−1] / (2α − 1)

We want |E[P−PL]| <
√
θ ε, so that gives the convergence test

|E[PL−PL−1]| / (2α − 1) <
√
θ ε

For robustness, we extend this check to extrapolate also from the
previous two data points E[PL−1−PL−2], E[PL−2−PL−3], and take
the maximum over all three as the estimated remaining error.

Details of MATLAB MLMC code

% function [P, Nl, cost] = mlmc(mlmc_l,N0,eps,Lmin,Lmax,

% alpha,beta,gamma, varargin)

%

% multi-level Monte Carlo estimation

%

% P = value

% Nl = number of samples at each level

% cost = total cost

%

% N0 = initial number of samples > 0

% eps = desired accuracy (rms error) > 0

% Lmin = minimum level of refinement >= 2

% Lmax = maximum level of refinement >= Lmin

%

% alpha -> weak error is O(2^{-alpha*l})

% beta -> variance is O(2^{-beta*l})

% gamma -> sample cost is O(2^{gamma*l})

%

% varargin = optional additional user variables to be passed to mlmc_l

%

% if alpha, beta, gamma are not positive, then they will be estimated

%

Details of MATLAB MLMC code

%

% mlmc_l = function for level l estimator

%

% [sums, cost] = mlmc_fn(l,N, varargin) low-level routine

%

% inputs: l = level

% N = number of samples

% varargin = optional additional user variables

%

% output: sums(1) = sum(Y)

% sums(2) = sum(Y.^2)

% where Y are iid samples with expected value:

% E[P_0] on level 0

% E[P_l - P_{l-1}] on level l>0

% cost = cost of N samples

Details of MATLAB MLMC code

function [P, Nl, Cl] = mlmc(mlmc_l,N0,eps,Lmin,Lmax, ...

alpha0,beta0,gamma0, varargin)

%

% check input parameters

%

if (Lmin<2)

error(’error: needs Lmin >= 2’);

end

if (Lmax<Lmin)

error(’error: needs Lmax >= Lmin’);

end

if (N0<=0 || eps<=0)

error(’error: needs N0>0, eps>0 \n’);

end

%

% initialisation

%

alpha = max(0, alpha0);

beta = max(0, beta0);

gamma = max(0, gamma0);

Details of MATLAB MLMC code

theta = 0.25;

L = Lmin;

Nl(1:L+1) = 0;

suml(1:2,1:L+1) = 0;

costl(1:L+1) = 0;

dNl(1:L+1) = N0;

while sum(dNl) > 0

%

% update sample sums

%

for l=0:L

if dNl(l+1) > 0

[sums cost] = mlmc_l(l,dNl(l+1), varargin{:});

Nl(l+1) = Nl(l+1) + dNl(l+1);

suml(1,l+1) = suml(1,l+1) + sums(1);

suml(2,l+1) = suml(2,l+1) + sums(2);

costl(l+1) = costl(l+1) + cost;

end

end

Details of MATLAB MLMC code

%

% compute absolute average, variance and cost

%

ml = abs(suml(1,:)./Nl);

Vl = max(0, suml(2,:)./Nl - ml.^2);

Cl = costl./Nl;

%

% fix to cope with possible zero values for ml and Vl

% (can happen in some applications when there are few samples)

%

for l = 3:L+1

ml(l) = max(ml(l), 0.5*ml(l-1)/2^alpha);

Vl(l) = max(Vl(l), 0.5*Vl(l-1)/2^beta);

end

Details of MATLAB MLMC code
%

% use linear regression to estimate alpha, beta, gamma if not given

%

A = repmat((1:L)’,1,2).^repmat(1:-1:0,L,1);

if alpha0 <= 0

x = A \ log2(ml(2:end))’;

alpha = max(0.5,-x(1));

end

if beta0 <= 0

x = A \ log2(Vl(2:end))’;

beta = max(0.5,-x(1));

end

if gamma0 <= 0

x = A \ log2(Cl(2:end))’;

gamma = max(0.5,x(1));

end

%

% set optimal number of additional samples

%

Ns = ceil(sqrt(Vl./Cl)*sum(sqrt(Vl.*Cl)) / ((1-theta)*eps^2));

dNl = max(0, Ns-Nl);

Details of MATLAB MLMC code
% if (almost) converged, estimate remaining error and decide

% whether a new level is required

%

if sum(dNl > 0.01*Nl) == 0

range = 0:min(2,L-1);

rem = max(ml(L+1-range) ./ 2.^(range*alpha)) / (2^alpha - 1);

if rem > sqrt(theta)*eps

if (L==Lmax)

fprintf(1,’*** failed to achieve weak convergence *** \n’);

else

L = L+1;

Vl(L+1) = Vl(L) / 2^beta;

Cl(L+1) = Cl(L) * 2^gamma;

Nl(L+1) = 0;

suml(1:2,L+1) = 0;

costl(L+1) = 0;

Ns = ceil(sqrt(Vl./Cl) * sum(sqrt(Vl.*Cl)) ...

/ ((1-theta)*eps^2));

dNl = max(0, Ns-Nl);

end

end

end

end

Details of MATLAB MLMC code

%

% finally, evaluate multilevel estimator

%

P = sum(suml(1,:)./Nl);

