Exercise sheet 3. Week 8. Chapters 1-12.

- Q1. Let $V_0 = Z(x_0x_3 x_1^2) \subseteq \mathbb{P}^3(k)$ and $V_1 = Z(x_1x_3 x_2^2) \subseteq \mathbb{P}^3(k)$. Let $C := V_0 \cap V_1 \subseteq \mathbb{P}^3(k)$. Let $U := \mathbb{P}^3 \setminus Z(x_0, x_1, x_2)$ and endow U with its structure of open subvariety of $\mathbb{P}^3(k)$. Let $g : U \to \mathbb{P}^2(k)$ be the morphism such that $g([X_0, X_1, X_2, X_3]) = [X_0, X_1, X_2]$ for all $[X_0, X_1, X_2, X_3] \in U$ (see Q2 of Sheet 2).
- (1) Show that the morphism $g|_{C\cap U}: C\cap U\to \mathbb{P}^2(k)$ extends to a morphism $f:C\to \mathbb{P}^2(k)$.
- (2) Show that f(C) is closed and that $f(C) = Z(z_0 z_2^2 z_1^3)$.
- (3) Show that the induced map $f: C \to f(C)$ is an isomorphism.
- **Q2**. (1) Let $f: X \to Y$ be a surjective morphism of quasi-projective varieties. Suppose that X is complete. Show that Y is also complete.
- (2) Show that a noetherian topological space only has finitely many connected components.
- (2) Let (V, \mathcal{O}_V) be a projective variety. Show that the k-vector space $\mathcal{O}_V(V)$ is finite-dimensional.
- **Q3**. Let V and W be quasi-projective varieties. Suppose that V is irreducible. Let Mor(V, W) be the set of morphisms from V to W and let $\rho : Mor(V, W) \to Rat(V, W)$ be the natural map (ie ρ sends a morphism to the rational map it represents). Show that ρ is injective.
- **Q4.** (1) Show that for any $m, n \ge 0$, $k^m \prod k^n \simeq k^{n+m}$.
- (2) Let $V \subseteq k^m$ and $W \subseteq k^n$ be algebraic sets. Show that $V \times W \subseteq k^{n+m}$ is an algebraic set and describe $\mathcal{I}(V \times W)$. Show that the affine variety associated with the algebraic set $V \times W \subseteq k^{n+m}$ is a product of the affines varieties associated with V and W.
- **Q5**. Let $a: X \to Y$ be a rational map between two varieties. Show that there is a unique representative $f: O \subseteq X$ of a (where $O \subseteq X$ is an open subvariety of X) such that if $f: U \to Y$ is a representative of a then $U \subseteq O$. The open set O is called the *open set of definition* of a.
- **Q6**. Let $n \ge 0$ and let $q: k^{n+1}\setminus\{0\} \to \mathbb{P}^n(k)$ be the map such that $q(\bar{v}) = [\bar{v}]$ for all $\bar{v} \in k^{n+1}\setminus\{0\}$. Let $V \subseteq \mathbb{P}^n(k)$ be a closed subset. Endow $k^{n+1}\setminus\{0\}$ with the structure of variety it inherits from k^{n+1} as an open subset.
- (1) Show that q is a morphism of varieties.
- (2) Show that $\mathcal{I}(V)$ is prime iff V is irreducible.
- (3) Show that $q^{-1}(V)$ is irreducible iff V is irreducible.
- **Q7**. (1) Let $U \subseteq \mathbb{P}^1(k)$ be an open subset (for the Zariski topology). Let $f: U \to \mathbb{P}^1(k)$ be a morphism of varieties. Show that there exists a morphism of varieties $g: \mathbb{P}^1(k) \to \mathbb{P}^1(k)$ such $g|_U = f$.
- (2) Show that every automorphism of $\mathbb{P}^1(k)$ is of the form described in Q7 of Sheet 2.
- (3) Show that k is not isomorphic to any of its proper open subvarieties (an open subvariety is proper if it is not equal to k).
- **Q8.** Show that k^2 is not homeomorphic to $\mathbb{P}^2(k)$.