Infinite Groups

Cornelia Druțu

University of Oxford

Part C course MT 2022, Oxford

Cornelia Druțu (University of Oxford)

Part C course MT 2022, Oxford

 $\frac{1}{16}$

Finitely generated groups

Given $S \subset G$ and $H \leq G$, TFAE

• *H* is the smallest subgroup of *G* containing *S*;

•
$$H = \bigcap_{S \subset K \le G} K$$
;
• $H = \{ s_1^{\pm 1} s_2^{\pm 1} \dots s_n^{\pm 1} \mid n \in \mathbb{N}, s_i \in S \} \cup \{ \text{id} \}.$

H is called the subgroup generated by *S*. We write $H = \langle S \rangle$.

- If H = G then S is called generating set.
- If S finite then G is called finitely generated.
- If $S = \{x\}$ then $\langle x \rangle$ cyclic subgroup generated by x.
- Rank of G = minimal number of generators.

Finitely generated groups 2

- If G is finitely generated then G is countable.
- There are uncountably many non-isomorphic finitely generated groups.
- G finitely generated $\Rightarrow G/N$ finitely generated, for any N normal subgroup.
- Not inherited by subgroups (not even normal).
- G, H finitely generated ⇒ G ≀ H finitely generated (Ex. Sheet 1).
 But ⊕_{x∈H} G not finitely generated if H infinite.
- If N, H finitely generated and

$$\{1\} \longrightarrow N \xrightarrow{\varphi} G \xrightarrow{\psi} H \longrightarrow \{1\}, \qquad (1)$$

then G finitely generated (Ex. Sheet 1).

- What is "the largest infinite group" generated by *n* elements ? Finite sets: A larger than $B \Leftrightarrow card(A) \ge card(B) \Leftrightarrow$ there exists $f : A \rightarrow B$ onto.
- Infinite groups: We look for a group $G = \langle X \rangle$, card(X) = n, such that for every group $H = \langle Y \rangle$, card(Y) = n, a bijection $X \to Y$ extends to an onto group homomorphism.

Clearly cannot be done for any group G, e.g. if G is abelian then H would have to be abelian.

So G must be a group with no prescribed relation ("free").

 $X \neq \emptyset$. Its elements = letters/symbols.

Take inverse letters/symbols $X^{-1} = \{a^{-1} \mid a \in X\}.$

We call $X \sqcup X^{-1}$ an alphabet.

A word w in $X \cup X^{-1} = a$ finite (possibly empty) string of letters in $X \cup X^{-1}$

$$a_{i_1}^{\epsilon_1}a_{i_2}^{\epsilon_2}\cdots a_{i_k}^{\epsilon_k},$$

where $a_i \in X$, $\epsilon_i = \pm 1$.

The length of w is k.

We will use the notation 1 for the empty word (the word with no letters). We say it has length 0.

A word w is reduced if it contains no pair of consecutive letters of the form aa^{-1} or $a^{-1}a$.

The reduction of a word w is the deletion of all pairs of consecutive letters of the form aa^{-1} or $a^{-1}a$.

An insertion is the opposite operation: insert one or several pairs of consecutive letters of the form aa^{-1} or $a^{-1}a$.

Denote by X^* the set of words in the alphabet $X \cup X^{-1}$, empty word included.

Denote by F(X) the set of reduced words in $X \cup X^{-1}$, empty word included.

We define an equivalence relation on X^* by $w \sim w'$ if w can be obtained from w' by a finite sequence of reductions and insertions.

Proposition

Any word $w \in X^*$ is equivalent to a unique reduced word.

Proof. Existence: By induction on the length of a word.

- For words of length 0 and 1, clearly true.
- Assume true for words of length n and consider a word of length n+1, $w = a_1 \cdots a_n a_{n+1}$, where $a_i \in X \cup X^{-1}$.
- By the induction hypothesis, there exists a reduced word u = b₁ · · · b_k with b_j ∈ X ∪ X⁻¹ such that a₂ · · · a_{n+1} ~ u.
- If $a_1 \neq b_1^{-1}$ then a_1u is reduced. If $a_1 = b_1^{-1}$ then $a_1u \sim b_2 \cdots b_k$ and the latter word is reduced.

Uniqueness:

• For every $a \in X \cup X^{-1}$ we define a map $L_a : F(X) \to F(X)$ by

$$L_a(b_1 \cdots b_k) = \begin{cases} ab_1 \cdots b_k & \text{if } a \neq b_1^{-1}, \\ b_2 \cdots b_k & \text{if } a = b_1^{-1}. \end{cases}$$

- For every word $w = a_1 \cdots a_n$ define $L_w = L_{a_1} \circ \cdots \circ L_{a_n}$. For the empty word 1 define $L_1 = id$.
- $L_a \circ L_{a^{-1}} = \mathrm{id}$ for every $a \in X \cup X^{-1}$. Hence $v \sim w$ implies $L_v = L_w$.
- If w is reduced then w = L_w(1) (proof by induction on the length of w).
- If $v \sim w$ and w reduced then $w = L_v(1)$.
- This proves uniqueness.

Definition

The free group over X is the set F(X) endowed with the product * defined by: w * w' is the unique reduced word equivalent to the word ww'. The unit is the empty word.

Exercise

F(X) is non-abelian if and only if $card(X) \ge 2$.

Terminology: We call free non-abelian group a group F(X) with $card(X) \ge 2$.

9 / 16 [/]

Universal property of free groups

Proposition (Universal property of free groups)

A map $\varphi : X \to G$ from the set X to a group G can be extended to a homomorphism $\Phi : F(X) \to G$ and this extension is unique.

Proof. Existence.

- φ can be extended to a map on $X \cup X^{-1}$ by $\varphi(a^{-1}) = \varphi(a)^{-1}$.
- For every reduced word $w = a_1 \cdots a_n$ in F = F(X) define

$$\Phi(a_1\cdots a_n)=\varphi(a_1)\cdots\varphi(a_n).$$

• Set $\Phi(1_F) := 1_G$, the identity element of G.

• Exercise: check that Φ is a homomorphism.

Universal property of free groups

Uniqueness. Let $\Psi : F(X) \to G$ be a homomorphism such that $\Psi(x) = \varphi(x)$ for every $x \in X$.

Then for every reduced word $w = a_1 \cdots a_n$ in F(X),

$$\Psi(w) = \Psi(a_1) \cdots \Psi(a_n) = \varphi(a_1) \cdots \varphi(a_n) = \Phi(w).$$

This finishes the proof.

Terminology: If $\varphi(X) = Y$ is such that Φ is an injective homomorphism, $\Phi(F(X)) = H$, we say that $Y \subset G$ generates a free subgroup or that Y freely generates H.

Universal property of free groups

Corollary

An onto map $\varphi : X \to Y$, where Y is a generating set of a group G has a unique extension $\Phi : F(X) \to G$ that is an onto group homomorphism.

Corollary

Every group is a quotient of a free group.

Proof. Let $G = \langle X \rangle$. There exists $\Phi : F(X) \to G$ onto homomorphism.

Always split

Proposition

Every short exact sequence as below splits

$$\{1\} \longrightarrow N \xrightarrow{\varphi} G \xrightarrow{\psi} F(X) \longrightarrow \{1\}.$$
(2)

Proof. Ex. Sheet 1.

Corollary

Every short exact sequence as below splits

$$\{1\} \longrightarrow N \stackrel{\varphi}{\longrightarrow} G \stackrel{\psi}{\longrightarrow} \mathbb{Z} \longrightarrow \{1\}.$$
(3)

A main source of free groups: ping-pong

The ping-pong lemma is a simple, yet powerful, tool for constructing free groups acting on sets.

Before formulating it, we will illustrate how it works on an example.

Example

For any real number $r \ge 2$ the matrices

$$g_1=\left(egin{array}{cc} 1 & r \\ 0 & 1 \end{array}
ight)$$
 and $g_2=\left(egin{array}{cc} 1 & 0 \\ r & 1 \end{array}
ight)$

generate a free subgroup of $SL(2, \mathbb{R})$.

Why is $\langle g_1, g_2 \rangle$ free.

The group $SL(2, \mathbb{R})$ acts on the upper half plane $\mathbb{H}^2 = \{z \in \mathbb{C} \mid \Im(z) > 0\}$ by linear fractional transformations

$$z\mapsto rac{\mathsf{a} z+\mathsf{b}}{\mathsf{c} z+\mathsf{d}}$$
 .

$$g_1(z) = z + r, \ g_2(z) = \frac{z}{rz+1}.$$

$$I(z) = -\frac{1}{z} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} z, \ g_2 = I \circ g_1^{-1} \circ I^{-1}.$$

Define quarter-planes

$$B_1^+=\{z\in \mathbb{H}^2: \Re(z)\geqslant r/2\}, \quad B_1^-=\{z\in \mathbb{H}^2: \Re(z)\leqslant -r/2\}$$

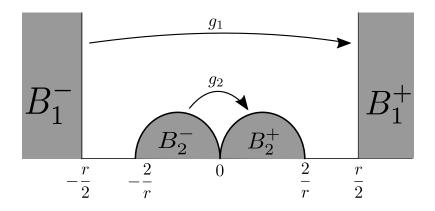
and half-disks

$$B_2^+ := \left\{ z \in \mathbb{H}^2 : |z - \frac{1}{r}| \leqslant \frac{1}{r} \right\}, \quad B_2^- := \left\{ z \in \mathbb{H}^2 : |z + \frac{1}{r}| \leqslant \frac{1}{r} \right\}$$

Cornelia Druțu (University of Oxford)

•

Example of ping-pong.



 $\begin{array}{l} g_1(\mathbb{H}^2\setminus B_1^-)\subset B_1^+,\ g_1^{-1}(\mathbb{H}^2\setminus B_1^+)\subset B_1^-.\\ g_2(\mathbb{H}^2\setminus B_2^-)\subset B_2^+\ g_2^{-1}(\mathbb{H}^2\setminus B_2^+)\subset B_2^-. \end{array}$