Infinite Groups

Cornelia Druțu

University of Oxford

Part C course MT 2022

About Mathematics

Mathematics knows no physical bounds.
It allows us to push forever outward in our exploration, taking the measure of objects and phenomena far removed from our immediate grasp.

Using a well, a sundial and geometry Erathostenes could measure the circumference of the Earth with an error of 50 miles, in 230 BC.

Example of ping-pong producing a free group

Example

For any real number $r \geqslant 2$ the matrices

$$
g_{1}=\left(\begin{array}{ll}
1 & r \\
0 & 1
\end{array}\right) \text { and } g_{2}=\left(\begin{array}{ll}
1 & 0 \\
r & 1
\end{array}\right)
$$

generate a free subgroup of $S L(2, \mathbb{R})$.
The group $S L(2, \mathbb{R})$ acts on the upper half plane $\mathbb{H}^{2}=\{z \in \mathbb{C} \mid \Im(z)>0\}$ by linear fractional transformations

$$
z \mapsto \frac{a z+b}{c z+d}
$$

$g_{1}(z)=z+r, g_{2}(z)=\frac{z}{r z+1}$.
$I(z)=-\frac{1}{z}=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right) z, g_{2}=I \circ g_{1}^{-1} \circ I^{-1}$.

Why is $\left\langle g_{1}, g_{2}\right\rangle$ free.

Define quarter-planes

$$
B_{1}^{+}=\left\{z \in \mathbb{H}^{2}: \Re(z) \geqslant r / 2\right\}, \quad B_{1}^{-}=\left\{z \in \mathbb{H}^{2}: \Re(z) \leqslant-r / 2\right\}
$$

and half-disks

$$
B_{2}^{+}:=\left\{z \in \mathbb{H}^{2}:\left|z-\frac{1}{r}\right| \leqslant \frac{1}{r}\right\}, \quad B_{2}^{-}:=\left\{z \in \mathbb{H}^{2}:\left|z+\frac{1}{r}\right| \leqslant \frac{1}{r}\right\} .
$$

Example of ping-pong.

$g_{1}\left(\mathbb{H}^{2} \backslash B_{1}^{-}\right) \subset B_{1}^{+}, g_{1}^{-1}\left(\mathbb{H}^{2} \backslash B_{1}^{+}\right) \subset B_{1}^{-}$.
$g_{2}=I \circ g_{1}^{-1} \circ I^{-1} \cdot I\left(B_{1}^{+}\right)=B_{2}^{-}$and $I\left(B_{1}^{-}\right)=B_{2}^{+}$. Therefore $g_{2}\left(\mathbb{H}^{2} \backslash B_{2}^{-}\right) \subset B_{2}^{+} g_{2}^{-1}\left(\mathbb{H}^{2} \backslash B_{2}^{+}\right) \subset B_{2}^{-}$.

Example of ping-pong.

Take a reduced word in $\left\{g_{1}^{ \pm 1}, g_{2}^{ \pm 1}\right\}$, say $g_{1} g_{2}^{-1} g_{1} g_{2}$.
$B_{2}^{+} \sqcup B_{1}^{-} \sqcup B_{1}^{+} \xrightarrow{g_{2}} B_{2}^{+} \xrightarrow{g_{1}} B_{1}^{+} \xrightarrow{g_{2}^{-1}} B_{2}^{-} \xrightarrow{g_{1}} B_{1}^{+}$

General Ping-pong Lemma

Let $g_{1}, g_{2} \in \operatorname{Bij}(X)$ ("ping-pong partners") and $B_{i}^{ \pm} \subset X, \quad i=1,2$.
Given $i \in\{1,2\}$, let j be such that $\{i, j\}=\{1,2\}$.
Define

$$
C_{i}^{+}:=B_{i}^{+} \cup B_{j}^{-} \cup B_{j}^{+}, C_{i}^{-}:=B_{i}^{-} \cup B_{j}^{-} \cup B_{j}^{+} .
$$

Assume that: $C_{i}^{ \pm} \not \subset B_{j}^{ \pm}$and $C_{i}^{ \pm} \not \subset B_{j}^{\mp}$ for all choices of i, j and,.+-

Theorem (Ping-pong, or table-tennis, lemma)

If

$$
g_{i}^{ \pm 1}\left(C_{i}^{ \pm}\right) \subset B_{i}^{ \pm}, \quad i=1,2
$$

then the bijections g_{1}, g_{2} generate a free subgroup of $\operatorname{Bij}(X)$.

Proof of General Ping-pong Lemma

Let w be a non-empty reduced word in $\left\{g_{1}, g_{1}^{-1}, g_{2}, g_{2}^{-1}\right\}$, of length at least 2.
w has the form

$$
w=g_{i}^{ \pm 1} u g_{j}^{ \pm 1} .
$$

We prove by induction on the length of w that

$$
w\left(C_{j}^{ \pm}\right) \subset B_{i}^{ \pm}, \text {hence } w \neq \mathrm{id}
$$

Length 2. $w=g_{i}^{ \pm 1} g_{j}^{ \pm 1}$.
$C_{j}^{ \pm} \xrightarrow{g_{j}^{ \pm 1}} B_{j}^{ \pm} \xrightarrow{g_{i}^{ \pm 1}} B_{i}^{ \pm}$
The last transformation is true because the word is reduced, hence $B_{j}^{ \pm} \neq B_{i}^{\mp}$, hence $B_{j}^{ \pm}$is contained in $C_{i}^{ \pm}$.

Proof of General Ping-pong Lemma 2

Suppose it is true for all words w^{\prime} of length n, we prove it for words w of length $n+1$.

Such a w has the form

$$
w=g_{i}^{ \pm 1} w^{\prime}, \quad \text { length }\left(w^{\prime}\right)=n
$$

In its turn w^{\prime} can be written as

$$
w^{\prime}=g_{j}^{ \pm 1} u g_{k}^{ \pm 1}, \quad g_{j}^{ \pm 1} \neq g_{i}^{\mp 1} .
$$

By the induction hypothesis

$$
w^{\prime}\left(C_{k}^{ \pm}\right) \subset B_{j}^{ \pm}
$$

Since $g_{j}^{ \pm 1} \neq g_{i}^{\mp 1}$, we have that $B_{j}^{ \pm} \neq B_{i}^{\mp}$, therefore $B_{j}^{ \pm} \subset C_{i}^{ \pm}$and

$$
\left.w\left(C_{k}^{ \pm}\right)\right)=g_{i}^{ \pm 1} w^{\prime}\left(C_{k}^{ \pm}\right) \subset g_{i}^{ \pm 1}\left(C_{i}^{ \pm}\right) \subset B_{i}^{ \pm}
$$

Cayley graphs

Goal: Endow a group with a geometry, so first of all a metric.
Let $G=\langle S\rangle$, with $1 \notin S$ and $s^{-1} \in S$ for every $s \in S$.
We write the latter condition as $S^{-1}=S$.
The Cayley graph of G with respect to S is the directed/oriented graph Cayley $_{\text {dir }}(G, S)$ with

- set of vertices G;
- set of oriented edges $(g, g s)$, with $s \in S$.

We label the oriented edge $(g, g s)$ by s.
The underlying non-oriented graph Cayley (G, S) of Cayley $_{\text {dir }}(G, S)$ is the graph with

- set of vertices G;
- set of edges $\{g, h\}$ such that $h=g s$, with $s \in S$.

It is also called the Cayley graph of G with respect to S.
Occasionally we will use the notation $\overline{g h}$ and $[g, h]$ for the edge $\{g, h\}$.

Cayley graphs 2

- The definition of the graph makes sense for every $S \subset G$.
- $1 \notin S$ prevents edges from composing loops (monogons).
- $S^{-1}=S$ ensures that every edge in Cayley (G, S) appears in Cayley $_{\text {dir }}(G, S)$ with both orientations.
- By definition Cayley (G, S) is a simplicial graph if $1 \notin S$ (i.e. no monogons, no two edges with same endpoints).
- The valency of every vertex g in Cayley (G, S) (i.e. number of edges having g as an endpoint) is $k=\operatorname{card}(S)$. Thus Cayley (G, S) is k-regular (all vertices of same valency k).

Lemma

Cayley (G, S) is connected (i.e. every two vertices can be joined by an edge path) if and only if S generates G.

Cayley graphs of \mathbb{Z}^{2}

Example

Consider \mathbb{Z}^{2} and $S=\left\{a=(1,0), b=(0,1), a^{-1}, b^{-1}\right\}$.

The Cayley graph of \mathbb{Z}^{2} with respect to $\{ \pm(1,0), \pm(1,1)\}$ has the same set of vertices as the above, but the vertical lines are replaced by diagonal lines.

Cayley graph of a free non-abelian group

Example

Let G be the free group on two generators a, b. Take $X=\{a, b\}$, $G=F(X)$ and $S=X \sqcup X^{-1}$. The Cayley graph Cayley (G, S) is the 4-valent tree.

A tree is a simplicial connected graph with no circuits. A k-valent tree is a k-regular tree.

Word metric

Convention

When talking about Cayley graphs, the groups G is always assumed to be finitely generated, and S is always assumed to be finite.

We endow Cayley (G, S) with a distance such that edges have length 1 .

$$
\operatorname{dist}_{S}(x, y)=\text { length of the shortest path joining } x, y .
$$

The restriction of dists to $G \times G$ is called word metric.
Exercise
Prove that for every $g, h \in G, \operatorname{dist}_{s}(g, h)$ is the length k of the shortest word $w=s_{1} \ldots s_{k}$, where $s_{i} \in S, \forall i$, such that $g=h w$.

Word metric 2

Notation

- We denote by $|g|_{S}$ the distance $\operatorname{dist}_{s}(1, g)$, that is the shortest word in S representing g.
- We denote by $B_{S}(x, r)$ the closed ball centred in $x \in \operatorname{Cayley}(G, S)$ and of radius $r>0$ with respect to dists.

Proposition

The action of G on itself by multiplications to the left is an action by isometries, that is for every $g \in G$

$$
\operatorname{dist}(g x, g y)=\operatorname{dist}_{s}(x, y), \forall x, y \in G
$$

It extends to an action by isometries on Cayley (G, S)

Word metric 3

Exercise

(1) Prove that if S and \bar{S} are two finite generating sets of G, then the word metrics dists and dist \bar{s} on G are bi-Lipschitz equivalent, i.e. there exists $L>0$ such that

$$
\begin{equation*}
\frac{1}{L} \operatorname{dist}_{s}\left(g, g^{\prime}\right) \leqslant \operatorname{dist}_{\bar{s}}\left(g, g^{\prime}\right) \leqslant \operatorname{L\operatorname {dist}_{s}}\left(g, g^{\prime}\right), \forall g, g^{\prime} \in G . \tag{1}
\end{equation*}
$$

(2) Prove that an isomorphism between two finitely generated groups is a bi-Lipschitz map when the two groups are endowed with word metrics.

Proposition

A finite index subgroup of a finitely generated group is finitely generated.
Proof. Let $G=\langle S\rangle, S$ finite, and let $H \leqslant G$.

Finite index subgroup

We can write $G=H \sqcup \bigsqcup_{i=1}^{k} H g_{i}$ for some elements $g_{i} \in G$. Let $R=\max _{1 \leqslant i \leqslant k}\left|g_{i}\right|_{s}$.
$G=H B(1, R) \Leftrightarrow \forall g \in G, \exists h \in H$ such that dists $(g, h) \leqslant R$.
We prove that $X=H \cap B(1,2 R+1)$ is a generating set of H.
$\forall h \in H$, let $g_{0}=1, g_{1}, \ldots, g_{n}=h$ be consecutive vertices on a shortest path in Cayley (G, S) joining 1 and h.

For every $1 \leqslant i \leqslant n-1$ there exist $h_{i} \in H$ such that $\operatorname{dist}_{s}\left(g_{i}, h_{i}\right) \leqslant R$.Set $h_{0}=1$ and $h_{n}=h$.
$\operatorname{dist}_{S}\left(h_{i}, h_{i+1}\right) \leqslant 2 R+1$, hence $h_{i+1}=h_{i} x_{i}$ for some $x_{i} \in X$, for every $0 \leqslant i \leqslant n-1$.

It follows that $h=h_{n}=x_{1} x_{2} \cdots x_{n}$, whence X generates H.

