Infinite Groups

Cornelia Druțu

University of Oxford

Part C course MT 2022

The Ancient Greeks believed that the world was ordered following a mathematical pattern, and that by discovering new theorems truths about the universe would be unlocked.

"Mathematics" comes from the Greek "mathematike", derived from "mathanein" which means "learn".

Galileo:

The Book of Nature is written in the language of Mathematics.

Proposition

Assume $G = \langle S | R \rangle$ finite presentation, and $G = \langle X | T \rangle$ is such that X is finite. Then \exists finite subset $T_0 \subset T$ such that $G = \langle X | T_0 \rangle$.

Proof. $\forall s \in S \exists a_s(X)$ word in X s.t. $s = a_s(X)$ in G. (involves a choice) The map $i_{SX} : S \to F(X)$, $i_{SX}(s) = a_s(X)$ extends to a unique homomorphism $p : F(S) \to F(X)$ (rewriting homomorphism). We have that $\pi_S = \pi_X \circ p$. Likewise, $\forall x \in X \exists b_x(S)$ in S s.t. $x = b_x(S)$. The map $i_{XS} : X \to F(S)$, $i_{XS}(x) = b_x(S)$, extends to homomorphism $q : F(X) \to F(S)$ (another rewriting homomorphism). As previously $\pi_S \circ q = \pi_X$.

Finite presentability is independent of the generating set 2

For every $x \in X$,

$$\pi_X(p(q(x))) = \pi_S(q(x)) = \pi_X(x).$$

Whence for every $x \in X$, $x^{-1}p(q(x)) \in \text{ker}(\pi_X)$. Let N be the normal subgroup of F(X) normally generated by

$$\{p(r) \mid r \in R\} \cup \{x^{-1}p(q(x)) \mid x \in X\}.$$

We have that $N \leq \ker(\pi_X)$. Goal: prove equality. There is a natural projection

$$Q:F(X)/N
ightarrow F(X)/\ker(\pi_X).$$

Finite presentability is independent of the generating set 3

Let $\bar{p}: F(S) \to F(X)/N$ be the homomorphism induced by p. $\bar{p}(r) = 1$ for all $r \in R \Rightarrow \bar{p}$ induces a homomorphism

 $Q': F(S)/\ker(\pi_S) \to F(X)/N.$

Note that the domain of Q' is isomorphic to G, and Q' is onto: F(X)/N is generated by xN = p(q(x))N, and the latter is the image under Q' of $q(x) \ker(\pi_S)$. Consider the homomorphism

$$Q \circ Q' : F(S) / \ker(\pi_S) o F(X) / \ker(\pi_X)$$

The isomorphism $G \to F(S)/\ker(\pi_S)$ sends every $x \in X$ to $q(x)\ker(\pi_S)$. The isomorphism $G \to F(X)/\ker(\pi_X)$ sends every $x \in X$ to $x \ker(\pi_X)$. Note that $Q \circ Q'(q(x)\ker(\pi_S)) = Q(xN) = x \ker(\pi_X)$, whence $Q \circ Q'$ isomorphism $\Rightarrow Q'$ injective $\Rightarrow Q'$ isomorphism $\Rightarrow Q$ isomorphism $\Rightarrow N = \ker(\pi_X)$.

Cornelia Druțu (University of Oxford)

Finite presentability is independent of the generating set 4

In particular, ker (π_X) is normally generated by the finite set of relators

$$\Re = \{p(r) \mid r \in R\} \cup \{x^{-1}p(q(x)) \mid x \in X\}.$$

Since $\Re \subset \langle \langle T \rangle \rangle$, every relator $\rho \in \Re$ can be written as a product

$$\prod_{i\in I_{\rho}}t_{i}^{\nu_{i}}$$

with $v_i \in F(X)$, $t_i \in T$ and I_ρ finite. Whence ker (π_X) normally generated by the finite subset

$$T_0 = \bigcup_{\rho \in \Re} \{ t_i \mid i \in I_\rho \}$$

of T.

Cornelia Druțu (University of Oxford)

Reformulation of Proposition:

Given a short exact sequence

$$1 \rightarrow N \rightarrow F(X) \rightarrow G \rightarrow 1$$

with X finite and G finitely presented, N is normally generated by finitely many elements n_1, \ldots, n_k .

This reformulation has a generalization to arbitrary short exact sequences that will appear later on.

Commutators

Notation

 $[x, y] = xyx^{-1}y^{-1} =$ the commutator of the elements x, y in a group G For subsets A, B in a group G, [A, B] = the subgroup of G generated by all the commutators $[a, b], a \in A, b \in B$.

For every x_1, \ldots, x_n in a group G we denote by $[x_1, \ldots, x_n]$ the n-fold left-commutator

$$[[[x_1, x_2], \ldots, x_{n-1}], x_n].$$

For subsets $A_1, \ldots A_n$ in a group G, $[A_1, \ldots, A_n] =$ the subgroup of G generated by all the commutators $[a_1, \ldots, a_n]$, $a_i \in A_i$.

Nilpotent Groups: first definition

There are two ways of defining nilpotent groups and of measuring "how far they are from being abelian".

First definition: from the group downwards. The lower central series of a group G,

$$C^1G \trianglerighteq C^2G \trianglerighteq \ldots \trianglerighteq C^nG \trianglerighteq \ldots,$$

is defined inductively by:

$$C^1G = G, \ C^{n+1}G = [C^nG, G].$$

Each $C^k G$ is a characteristic subgroup of G. (for every automorphism $\varphi : G \to G$, $\varphi(C^k G) = C^k G$). $C^2 G = [G, G] = G'$ is the commutator subgroup, or the derived subgroup, of G.

Nilpotent Groups 2

Definition

G is *k*-step nilpotent if $C^{k+1}G = \{1\}$. The minimal *k* for which *G* is *k*-step nilpotent is called the (nilpotency) class of *G*.

Examples

- Every non-trivial abelian group is nilpotent of class 1.
- The group U_n(K) of upper triangular n × n matrices with 1 on the diagonal and entries in a ring K, is nilpotent of class n − 1 (see Exercise Sheet 2).

• The integer Heisenberg group $H_{2n+1}(\mathbb{Z})$ is nilpotent of class 2.