Infinite Groups

Cornelia Druțu

University of Oxford

Part C course MT 2022

Inspirational quotations about Mathematics again

William Thurston: "As one reads mathematics, one needs to have an active mind, asking questions, forming mental connections between the current topic and other ideas from other contexts, so as to develop a sense of the structure, not just familiarity with a particular tour through the structure."

Carl Friedrich Gauss: "It is not knowledge, but the act of learning, not possession but the act of getting there, which grants the greatest enjoyment."

Polycyclic groups

Definition

Let \mathcal{X} be a class of groups.

G is poly- \mathcal{X} if it admits a subnormal descending series:

$$G = N_0 \triangleright N_1 \triangleright \ldots \triangleright N_k \triangleright N_{k+1} = \{1\},$$

such that each N_i/N_{i+1} belongs to \mathcal{X} , up to isomorphism.

Polycyclic if $\mathcal{X} = \text{all cyclic groups.}$ Poly- C_{∞} if $\mathcal{X} = \{\mathbb{Z}\}$. Cyclic series of G= a series as in (1) with \mathcal{X} set of cyclic groups. Its length is the number of non-trivial groups. The length $\ell(G)$ of a polycyclic group is the least length of a cyclic series of G. C_{∞} series of G= a series as in (1) with $\mathcal{X} = \{\mathbb{Z}\}$.

 C_{∞} series of G = a series as in (1) with \mathcal{X} = By convention, {1} is poly- C_{∞} .

Cornelia Druţu (University of Oxford)

(1)

Further properties of polycyclic groups

Proposition

- Any subgroup H of a polycyclic group G is polycyclic (hence, finitely generated).
- **2** If $N \triangleleft G$, then G/N is polycyclic.
- § If $N \lhd G$ and both N and G/N are polycyclic then G is polycyclic.
- Properties (1) and (3) hold with 'polycyclic' replaced by 'poly-C_∞', but not (2): Z_k is a quotient of Z.

Proof. (1). Given a cyclic series for G as above, the intersections $H \cap N_i$ define a cyclic series for H.

Properties of polycyclic groups 4

(2). Proof is by induction on the length $\ell(G) = n$. For n = 1, G is cyclic and any quotient of G is also cyclic. Assume the statement is true for all $k \leq n$, and consider a group G with $\ell(G) = n + 1$.

Let N_1 be the first term distinct from G in this cyclic series. By the induction hypothesis, $N_1/(N_1 \cap N) \simeq N_1 N/N$ is polycyclic. The subgroup $N_1 N/N$ is normal in G/N and $(G/N)/(N_1 N/N) \simeq G/N_1 N$ is cyclic, as it is a quotient of G/N_1 . It follows that G/N is polycyclic.

(3) Consider the cyclic series

$$G/N = Q_0 \geqslant Q_1 \geqslant \cdots \geqslant Q_n = \{\overline{1}\}$$

and

$$N = N_0 \ge N_1 \ge \cdots \ge N_k = \{1\}.$$

Given $\pi: G \to G/N$ and $H_i := \pi^{-1}(Q_i)$, a cyclic series for G is:

$$G \ge H_1 \ge \ldots \ge H_n = N = N_0 \ge N_1 \ge \ldots \ge N_k = \{1\}.$$

Two key examples of polycyclic groups

Proposition

Every finitely generated nilpotent group is polycyclic.

Proof Consider the finite descending series with terms $C^k G$.

 For every k ≥ 1, C^kG/C^{k+1}G is finitely generated abelian, hence there exists a finite subnormal descending series

$$C^k G = A_0 \geqslant A_1 \geqslant \cdots \geqslant A_n \geqslant A_{n+1} = C^{k+1} G$$

such that every quotient A_i/A_{i+1} is cyclic.

• By inserting all these finite descending series into the one defined by the *C^kG*'s, we obtain a finite subnormal cyclic series for *G*.

Proposition

Given any homomorphism $\varphi : \mathbb{Z}^n \to \operatorname{Aut}(\mathbb{Z}^m)$, the semidirect product $\mathbb{Z}^m \rtimes_{\varphi} \mathbb{Z}^n$ is poly- C_{∞} .

Two key properties of polycyclic groups

Proposition

Polycyclic groups are finitely presented and residually finite.

Finite presentation is proved using a general property:

Proposition

Let $N \lhd G$. If both N and G/N are finitely presented then G is finitely presented.

Proof Let $N = \langle X | r_1, ..., r_k \rangle$, and $G/N = \langle \overline{Y} | \rho_1, ..., \rho_m \rangle$ be finite presentations, where Y is a finite subset of G s. t. $\overline{Y} = \{yN | y \in Y\}$. G is generated by $S = X \cup Y$. S satisfies the following relations:

$$r_i(X) = 1, 1 \leq i \leq k, \rho_j(Y) = u_j(X), 1 \leq j \leq m,$$
(2)

$$x^{y} = v_{xy}(X), x^{y^{-1}} = w_{xy}(X).$$
 (3)

We denote the above finite set of relations by T.

Cornelia Druțu (University of Oxford)

Infinite Groups

Proof continued

We claim that $G = \langle S | T \rangle$. Let $K = \langle \langle T \rangle \rangle$ in F(S). The epimorphism $\pi_S : F(S) \to G$ defines an epimorphism $\varphi : F(S)/K \to G$. Goal: to prove φ is an isomorphism. Let wK be an element in ker (φ) , w word in S. Relations (3) imply that there exist a word $w_1(X)$ in X and a word $w_2(Y)$ in Y, such that $wK = w_1(X)w_2(Y)K$.

Applying the projection $\pi : G \to G/N$, we see that $\pi(\varphi(wK)) = 1$, i.e. $\pi(\varphi(w_2(Y)K)) = 1$.

Therefore $w_2(Y)$ is a product of finitely many conjugates of $\rho_i(Y)$, hence $w_2(Y)K$ is a product of finitely many conjugates of $u_j(X)K$, by the set of relations in (2).

This and the relations (3) imply that $w_1(X)w_2(Y)K = v(X)K$ for some word v(X) in X.

Then the image $\varphi(wK) = \varphi(v(X)K)$ is in N; therefore, v(X) is a product of finitely many conjugates of relators $r_i(X)$. This implies that v(X)K = K.

Finite presentation continued

Remark

G finitely presented does not imply $H \leq G$ finitely presented or G/N finitely presented, for $N \triangleleft G$.

Proposition

Let G be a group, and $H \leq G$ such that |G : H| is finite. Then G is FP if and only if H is FP.