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In the last lecture

Density results for Sobolev spaces.

Extension theorems for Sobolev functions.

Trace (boundary value) of Sobolev functions.

Gagliardo-Nirenberg-Sobolev’s inequality, 1 ≤ p < n.
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This lecture

Morrey’s inequality, n < p ≤ ∞.

Friedrichs’ inequality.

Rellich-Kondrachov’s compactness theorem.

Poincaré’s inequality.

(Local behavior of Sobolev functions.)
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Hölder and Lipschitz continuity

Let D be a subset of Rn.

For α ∈ (0, 1], we say that a function u : D → R is (uniformly)
α-Hölder continuous in D if there exists C ≥ 0 such that

|u(x)− u(y)| ≤ C |x − y |α for all x , y ∈ D.

The set of all α-Hölder continuous functions in D is denoted as
C 0,α(D).

When α = 1, we use the term ‘Lipschitz continuity’ instead of
‘1-Hölder continuity’.
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Hölder and Lipschitz continuity

Note that, in our notation, when Ω is a bounded domain,
C 0,α(Ω) = C 0,α(Ω̄).
In some text C 0,α(Ω) is used to denote the set of continuous
functions in Ω which is α-Hölder continuous on every compact
subsets of Ω. In this course, we will use instead C 0,α

loc (Ω) to
denote this latter set, if such occasion arises.

Luc Nguyen (University of Oxford) C4.3 – Lectures 9-10 MT 2022 5 / 63



C 0,α(D) is a Banach space

For u ∈ C 0,α(D), let

[u]C0,α(D) := sup
x ,y∈D,x 6=y

|u(x)− u(y)|
|x − y |α

<∞.

and
‖u‖C0,α(D) := sup

D
|u|+ [u]C0,α(D).

Proposition

Let D be a subset of Rn. Then (C 0,α(D), ‖ · ‖C0,α(D)) is a Banach
space.
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Hölder and Lipschitz continuity

Sketch of proof

Piece 1: ‖ · ‖C0,α(D) is a norm.
? We will only give a proof for the statement that [·]C0,α(D)

satisfies the triangle inequality (i.e. it is a semi-norm). The rest
is left as an exercise.

? Take u, v ∈ C 0,α(D). We want to show that
[u + v ]C0,α(D) ≤ a + b where a = [u]C0,α(D) and b = [v ]C0,α(D).

? Indeed, for any x 6= y ∈ D, we have |u(x)− u(y)| ≤ a|x − y |α
and |v(x)− v(y)| ≤ b|x − y |α. It follows that

|(u + v)(x)− (u + v)(y)| ≤ (a + b)|x − y |α.

Divide both sides by |x − y |α and take supremum we get

[u + v ]C0,α(D) = sup
x 6=y∈D

|u(x)− u(y)|
|x − y |α

≤ a + b,

as wanted.
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C 0,α(D) is a Banach space

Sketch of proof

Piece 2: C 0,α(D) is complete.
? Suppose that (um) is Cauchy in C 0,α(D).
? As ‖ · ‖sup ≤ ‖ · ‖C0,α(D), this implies that (um) is Cauchy in

C 0(D̄) and hence converges uniformly to some u ∈ C 0(D̄).
? Claim: u ∈ C 0,α(D). Fix ε > 0. For every x , y ∈ D, we have

|(um − uj)(x)− (um − uj)(y)| ≤ [um − uj ]C0,α(D)|x − y |α

≤ ε|x − y |α for large m, j .

Sending j →∞, we thus have

|(um − u)(x)− (um − u)(y)| ≤ ε|x − y |α for large m.

Choose one such m we arrive at

|u(x)− u(y)| ≤
(

[um]C0,α(D) + ε
)
|x − y |α.

So u ∈ C 0,α(D).
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C 0,α(D) is a Banach space

Sketch of proof

Piece 2: C 0,α(D) is complete.

? Finally, we show that um → u in C 0,α(D). As um converges to
u uniformly, it remains to show that [um − u]C0,α(D) → 0.

? Fix ε > 0. Recall from the previous slide that, for x , y ∈ D, we
have

|(um − u)(x)− (um − u)(y)| ≤ ε|x − y |α for large m.

Divide both sides by |x − y |α and take supremum, we have

[um − u]C0,α(D) ≤ ε for large m.

? As ε is arbitrary, we conclude that [um − u]C0,α(D) → 0.
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Morrey’s inequality

Theorem (Morrey’s inequality)

Assume that n < p ≤ ∞. Then every u ∈ W 1,p(Rn) has a
(1− n

p
)-Hölder continuous representative. Furthermore there exists a

constant Cn,p such that

‖u‖
C

0,1− n
p (Rn)

≤ Cn,p‖u‖W 1,p(Rn). (*)

In particular, W 1,p(Rn) ↪→ C 0,1− n
p (Rn).
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An integral mean value inequality

Lemma

Let Ω be a domain in Rn and suppose u ∈ C 1(Ω). Then∫
Br (x)

|u(y)− u(x)|dy ≤ 1

n
rn
∫
Br (x)

|∇u(y)|
|y − x |n−1

dy for all Br (x) ⊂ Ω.

Proof

It suffices to consider the case x = 0. We write y = sθ where
s ∈ [0, r) and θ ∈ Sn−1 ∈ Rn.
By the fundamental theorem of calculus, we have

u(sθ)− u(0) =

∫ s

0

d

dt
u(tθ) dt=

∫ s

0

θi∂iu(tθ) dt.

It follows that |u(sθ)− u(0)| ≤
∫ s

0

|∇u(tθ)| dt.
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An integral mean value inequality

Proof

|u(sθ)− u(0)| ≤
∫ s

0

|∇u(tθ)| dt.

Integrating over θ and using Tonelli’s theorem, we get∫
∂B1(0)

|u(sθ)− u(0)| dθ ≤
∫ s

0

∫
∂B1(0)

|∇u(tθ)| dθ dt

=

∫ s

0

∫
∂Bt(0)

|∇u(y)| dS(y)

tn−1
dt

=

∫
Bs(0)

|∇u(y)|
|y |n−1

dy .

Luc Nguyen (University of Oxford) C4.3 – Lectures 9-10 MT 2022 12 / 63



An integral mean value inequality

Proof∫
∂B1(0)

|u(sθ)− u(0)| dθ ≤
∫
Bs(0)

|∇u(y)|
|y |n−1

dy .

Multiplying both sides by sn−1 and integrating over s, we get∫
Br (0)

|u(y)− u(0)| dy =

∫ r

0

∫
∂B1(0)

|u(sθ)− u(0)| dθsn−1ds

≤
∫
Br (0)

|∇u(y)|
|y |n−1

dy

∫ r

0

sn−1 ds

=
1

n
rn
∫
Br (0)

|∇u(y)|
|y |n−1

dy .

This gives the desired integral mean value inequality.
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A corollary of the integral mean value inequality

Corollary

Suppose u ∈ C 1(Ω) ∩W 1,p(Ω) for some p > n. Then∫
Br (x)

|u(y)− u(x)| dy ≤ Cn,p‖∇u‖Lp(Br (x))r
n(p−1)

p
+1 for all Br (x) ⊂ Ω,

where the constant Cn,p depends only on n and p.

Proof

As in the previous proof, we assume without loss of generality
that x = 0. We start with the integral mean value inequality:∫

Br (0)

|u(y)− u(0)| dy ≤ rn

n

∫
Br (0)

|∇u(y)|
|y |n−1

dy .
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A corollary of the integral mean value inequality

Proof

By Hölder’s inequality this gives∫
Br (0)

|u(y)− u(0)| dy ≤ rn

n
‖∇u‖Lp(Br (0))

{∫
Br (0)

1

|y |(n−1)p′
dy
}1/p′

= Cnr
n‖∇u‖Lp(Br (0))

{∫ r

0

s−(n−1)(p′−1) ds
}1/p′

.

As p > n, we have that p′ < n
n−1

and so (n − 1)(p′ − 1) < 1.
Hence the integral in the curly braces converges to
Cn,pr

−(n−1)(p′−1)+1. After a simplification, this gives∫
Br (0)

|u(y)− u(0)| dy ≤ Cn,p‖∇u‖Lp(Br (0))r
n
p′+1

,

which is the conclusion.
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Morrey’s inequality

Theorem (Morrey’s inequality)

Assume that n < p ≤ ∞. Then every u ∈ W 1,p(Rn) has a
(1− n

p
)-Hölder continuous representative. Furthermore there exists a

constant Cn,p such that

‖u‖
C

0,1− n
p (Rn)

≤ Cn,p‖u‖W 1,p(Rn). (*)

In particular, W 1,p(Rn) ↪→ C 0,1− n
p (Rn).

Proof when p <∞. The case p =∞ will be dealt with later.

Step 1: Reduction to the case u ∈ C∞(Rn) ∩W 1,p(Rn).

? Suppose that (*) holds for functions in C∞(Rn) ∩W 1,p(Rn).
We show that this implies the theorem.
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Morrey’s inequality

Proof when p <∞.

Step 1: Reduction to the case u ∈ C∞(Rn) ∩W 1,p(Rn).

? Let u ∈W 1,p(Rn). As p <∞, we can find
um ∈ C∞(Rn) ∩W 1,p(Rn) such that um → u in W 1,p.

? Applying (*) to um − uj we have

‖um − uj‖
C

0,1− n
p (Rn)

≤ Cn,p‖um − uj‖W 1,p(Rn)
m,j→∞−→ 0.

This means that (um) is Cauchy in C 0,1− n
p (Rn), and hence

converges in C 0,1− n
p to some u∗ ∈ C 0,1− n

p (Rn).
? On the other hand, as um → u in Lp, a subsequence of it

converges a.e. in Rn to u.
? It follows that u = u∗ a.e. in Rn, i.e. u has a continuous

representative.
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Morrey’s inequality

Proof when p <∞.

Step 1: Reduction to the case u ∈ C∞(Rn) ∩W 1,p(Rn).

? We may thus assume henceforth that u is continuous, so that
um converges to u in both W 1,p and C 0,1− n

p .
? Now, applying (*) to um we have

‖um‖
C

0,1− n
p (Rn)

≤ Cn,p‖um‖W 1,p(Rn).

Sending m→∞, we hence have

‖u‖
C

0,1− n
p (Rn)

≤ Cn,p‖u‖W 1,p(Rn),

as wanted.
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Morrey’s inequality

Proof when p <∞.

Step 2: Proof of the C 0 bound in (*). We show that, for
u ∈ C∞(Rn) ∩W 1,p(Rn), it holds that

|u(x)| ≤ C‖u‖W 1,p(Rn) for all x ∈ Rn. (**)

? By triangle inequality, we have

|B1(x)||u(x)| ≤
∫
B1(x)

|u(y)− u(x)| dy +

∫
B1(x)

|u(y)|dy .

? By Hölder’s inequality, the last integral is bounded by
Cn,p‖u‖Lp(B1(x)).

? On the other hand, by the corollary to the integral mean value
inequality, the first integral on the right hand side is bounded by
Cn,p‖∇u‖Lp(B1(x)). The inequality (**) follows.
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Morrey’s inequality

Proof when p <∞.

Step 3: Proof of the C 0,1− n
p semi-norm bound in (*). We show

that, for u ∈ C∞(Rn) ∩W 1,p(Rn), it holds that

|u(x)−u(y)| ≤ C‖u‖W 1,p(Rn)|x−y |1−
n
p for all x , y ∈ Rn. (***)

x

Br (x)

y

Br (y)

W

? If x = y , there is nothing to show.
Suppose henceforth that r = |x − y | > 0
and let W = Br (x) ∩ Br (y).

? Let a be the average of u in W , i.e.

a =
1

|W |

∫
W

u(z) dz . Then

|u(x)− u(y)| ≤ |u(x)− a|+ |u(y)− a|.
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Morrey’s inequality

Proof when p <∞.

Step 3: Proof of the C 0,1− n
p semi-norm bound in (*).

? We estimate |u(x)− a| as follows:

|u(x)− a| ≤ 1

|W |

∫
W
|u(x)− u(z)|dz

≤ Cn

rn

∫
Br (x)

|u(x)− u(z)|dz .

By the corollary to the mean value inequality, the right hand
side is bounded by Cn,p‖∇u‖Lp(Br (x)) r

1− n
p . So

|u(x)− a| ≤ Cn,p‖∇u‖Lp(Br (x)) r
1− n

p

? Similarly, |u(y)− a| ≤ Cn,p‖∇u‖Lp(Br (y)) r
1− n

p .
? Putting these together and recalling that r = |x − y |, we arrive

at (***).
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Morrey’s inequality on domain for n < p <∞

Theorem (Morrey’s inequality)

Suppose that n < p <∞ and Ω is a bounded Lipschitz domain.
Then every u ∈ W 1,p(Ω) has a (1− n

p
)-Hölder continuous

representative and

‖u‖
C

0,1− n
p (Ω)
≤ Cn,p,Ω‖u‖W 1,p(Ω).

Indeed, let E : W 1,p(Ω)→ W 1,p(Rn) be an extension operator. Then
Eu has a continuous representative and

‖Eu‖
C

0,1− n
p (Ω)
≤ ‖Eu‖

C
0,1− n

p (Rn)

≤ Cn,p‖Eu‖W 1,p(Rn) ≤ Cn,p,Ω‖u‖W 1,p(Ω).
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An improved integral mean value inequality

Lemma

Suppose u ∈ C (BR(0)) ∩W 1,p(BR(0)) for some p > n. Then, for
every ball Br (x) ⊂ Rn, there holds∫

Br (x)

|u(y)− u(x)|dy ≤ 1

n
rn
∫
Br (x)

|∇u(y)|
|y − x |n−1

dy .

Proof

Replacing p by any p̃ ∈ (n, p), we may assume that p is finite.
Then we can find um ∈ C∞(BR(0)) ∩W 1,p(BR(0)) such that
um → u in W 1,p. Furthermore, arguing as in Step 1 in the proof
of Morrey’s inequality, we also have that um → u in
C 0,1− n

p (BR(0)).
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An improved integral mean value inequality

Proof

um → u in W 1,p(BR(0)) and in C 0,1− n
p (BR(0)).

By the integral mean value inequality for C 1 functions, we have∫
Br (x)

|um(y)− um(x)|dy ≤ 1

n
rn
∫
Br (x)

|∇um(y)|
|y − x |n−1

dy .

The left hand side converges to

∫
Br (x)

|u(y)− u(x)|dy since

um → u uniformly.

The right hand side converges to
1

n
rn
∫
Br (x)

|∇u(y)|
|y − x |n−1

dy since

∇um → ∇u in Lp and since the function y 7→ 1
|y−x |n−1 belongs to

Lp
′

(as noted in the proof of the corollary to the integral mean
value inequality). The conclusion follows.

Luc Nguyen (University of Oxford) C4.3 – Lectures 9-10 MT 2022 24 / 63



Morrey’s inequality

Theorem (Morrey’s inequality)

Assume that n < p ≤ ∞. Then every u ∈ W 1,p(Rn) has a
(1− n

p
)-Hölder continuous representative. Furthermore there exists a

constant Cn,p such that

‖u‖
C

0,1− n
p (Rn)

≤ Cn,p‖u‖W 1,p(Rn). (*)

In particular, W 1,p(Rn) ↪→ C 0,1− n
p (Rn).

Note that when p =∞ we can no longer use the previous proof, as
C∞(Rn) ∩W 1,∞(Rn) is not dense in W 1,∞(Rn).
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Morrey’s inequality

Proof when p =∞.

Suppose u ∈ W 1,∞(Rn). Then u ∈ W 1,s(BR) for all s <∞ and
all ball BR . By Morrey’s inequality in the case of finite p, we
thus have that u has a continuous representative, which we will
assume to be u itself.
By the improved integral mean value inequality, we have∫

Br (x)

|u(y)− u(x)|dy ≤ 1

n
rn
∫
Br (x)

|∇u(y)|
|y − x |n−1

dy .

Step 2 and Step 3 of the proof in the case p <∞ can now be
repeated to get

|u(x)| ≤ C‖u‖W 1,∞(Rn) for all x ∈ Rn. (**)

and

|u(x)− u(y)| ≤ C‖u‖W 1,∞(Rn)|x − y | for all x , y ∈ Rn. (***)
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Morrey’s inequality

Proof when p =∞.

It follows that

‖u‖C0,1(Rn) ≤ C‖u‖W 1,∞(Rn)

and we are done.
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Morrey’s inequality on domains

We make a couple of remarks:

If Ω and p are such that there exists a bounded linear extension
operator E : W 1,p(Ω)→ W 1,p(Rn) (in particular Eu = u a.e. in
Ω for all u ∈ W 1,p(Ω)), then

W 1,p(Ω) ↪→ C 0,1− n
p (Ω).

The same proof on the whole space work on balls without
establishing the existence of an extension operator. (Check this!)

For general domains, one only has

W 1,p(Ω) ↪→ C
0,1− n

p

loc (Ω).

(Revisit the example of the disk in R2 with a line segment
removed.)
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More on W 1,∞

We have the following important theorem for the space W 1,∞(Ω):

Theorem
Suppose that Ω ⊂ Rn is a bounded Lipschitz domain. Then

W 1,∞(Ω) = C 0,1(Ω).
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Friedrichs’ inequality

Theorem (Friedrichs’ inequality)

Assume that Ω is a bounded open set and 1 ≤ p <∞. Then, there
exists Cp,Ω such that

‖u‖Lp(Ω) ≤ Cp,Ω‖∇u‖Lp(Ω) for all u ∈ W 1,p
0 (Ω).

Note that
Only the derivatives of u appear on the right hand side.
The function u belongs to W 1,p

0 (Ω). The inequality is false for
u ∈ W 1,p(Ω).
By Friedrichs’ inequality, when Ω is bounded, if we define
|||u||| = ‖∇u‖Lp(Ω), then ||| · ||| is a norm on W 1,p

0 (Ω) which is
equivalent to the norm ‖ · ‖W 1,p(Ω).
In some text, Friedrichs’ inequality is referred to as Poincaré’s
inequality.
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Friedrichs’ inequality

Proof

xn

L

0 x′

Ω S

u ≡ 0 in S \ Ω

We may assume that Ω is contain in
the slab S := {(x ′, xn) : 0 < xn < L}.
As usual, using the density of C∞c (Ω)
is dense in W 1,p

0 (Ω), it suffices to
prove

‖u‖Lp(Ω) ≤ Cp,Ω‖∇u‖Lp(Ω)

for u ∈ C∞c (Ω).

Take an arbitrary u ∈ C∞c (Ω) and extend u by zero outside of Ω
so that u ∈ C∞c (S).
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Friedrichs’ inequality

Proof

xn

L

0 x′

Ω S

u ≡ 0 in S \ Ω

(x′, 0)

(x′, xn)

Now, for every fixed x ′, we have

|u(x ′, xn)| ≤
∫ xn

0

|∂nu(x ′, t)| dt ≤
{∫ xn

0

|∂nu(x ′, t)|p dt
}1/p

x1/p′

n

≤
{∫ L

0

|∂nu(x ′, t)|p dt
}1/p

x
p−1
p

n .

Luc Nguyen (University of Oxford) C4.3 – Lectures 9-10 MT 2022 32 / 63



Friedrichs’ inequality

Proof

|u(x ′, xn)| ≤
{∫ L

0

|∂nu(x ′, t)|p dt
}1/p

x
p−1
p

n .

It follows that∫ L

0

|u(x ′, xn)|p dxn ≤
1

p
Lp
∫ L

0

|∂nu(x ′, t)|p dt.

Integrating over x ′ then gives

‖u‖pLp(Ω) =

∫
Rn−1

∫ L

0

|u(x ′, xn)|p dxn dx ′

≤ 1

p
Lp
∫
Rn−1

∫ L

0

|Du(x ′, t)|p dt dx ′ =
1

p
Lp‖∇u‖pLp(Ω).

We are done.
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Friedrichs’ inequality

Theorem (Friedrichs’ inequality)

Assume that Ω is a bounded open set and 1 ≤ p <∞. Then, there
exists Cp,Ω such that

‖u‖Lp(Ω) ≤ Cp,Ω‖∇u‖Lp(Ω) for all u ∈ W 1,p
0 (Ω).
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Friedrichs-type inequality

Theorem (Friedrichs-type inequality)

Assume that Ω is a bounded open set and 1 ≤ p <∞. Suppose that
1 ≤ q ≤ p∗ if p < n, 1 ≤ q <∞ if p = n, and 1 ≤ q ≤ ∞ if p > n.
Then there exists Cn,p,q,Ω such that

‖u‖Lq(Ω) ≤ Cn,p,q,Ω‖∇u‖Lp(Ω) for all u ∈ W 1,p
0 (Ω).

Proof

Extend u by zero to Rn.
If p < n, we have by Gagliardo-Nirenberg-Sobolev’s inequality,
that

‖u‖Lp∗ (Ω) = ‖u‖Lp∗ (Rn) ≤ C‖∇u‖Lp(Rn) = C‖∇u‖Lp(Ω).

As Ω has finite measure, ‖u‖Lq(Ω) ≤ C‖u‖Lp∗ (Ω), and so we’re
done in this case.
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Friedrichs-type inequality

Proof

Note that, as Ω has finite measure, W 1,n(Ω) ↪→ W 1,p̂(Ω) for
any p̂ < p. The case p = n thus follows from the previous case.

When p > n, we have by Morrey’s inequality that

‖u‖L∞(Ω) = ‖u‖L∞(Rn) ≤ C‖u‖W 1,p(Rn) = C‖u‖W 1,p(Ω).

By Friedrichs’ inequality, we have ‖u‖W 1,p(Ω) ≤ C‖∇u‖Lp(Ω).
Also, as Ω has finite measure, ‖u‖Lq(Ω) ≤ C‖u‖L∞(Ω).
Putting these together we’re also done in this case.
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Rellich-Kondrachov’s theorem

Theorem (Rellich-Kondrachov’s compactness theorem)

Let Ω be a bounded Lipschitz domain and 1 ≤ p ≤ ∞. Suppose
1 ≤ q < p∗ when p < n, 1 ≤ q <∞ when p = n, and 1 ≤ q ≤ ∞
when p > n. Then the embedding W 1,p(Ω) ↪→ Lq(Ω) is compact, i.e.
every bounded sequence in W 1,p(Ω) contains a subsequence which
converges in Lq(Ω).
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Critical embedding is not compact

Remark
For 1 ≤ p < n, the embedding W 1,p(Ω) ↪→ Lp

∗
(Ω) is not compact.

Example by ‘concentration’

This example is by scaling. It is related to the argument in
Lecture 7 to inspect for which p and q the space W 1,p(Rn) is
embedded Lq(Rn).

We may assume that the origin lies inside Ω and Br0 ⊂ Ω. Take
an arbitrary non-zero function u ∈ C∞c (Rn) with Supp(u) ⊂ Br0 .
We define, for λ > 0, uλ(x) = u(λx).

We knew that

‖uλ‖Lq = λ−n/q‖u‖Lq and ‖∇uλ‖Lp = λ1−n/p‖∇u‖Lp .
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Critical embedding is not compact

Example by ‘concentration’

Hence, if we let ûλ = λ−1+n/puλ, then

‖ûλ‖Lp = λ−1‖u‖Lp ,
‖ûλ‖Lp∗ = ‖u‖Lp∗ ,
‖∇ûλ‖Lp = ‖∇u‖Lp .

In particular, as λ→∞,

‖ûλ‖W 1,p ≤ ‖u‖W 1,p and ‖ûλ‖Lp∗ = ‖u‖Lp∗ > 0.
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Critical embedding is not compact

Example by ‘concentration’

Now if the embedding W 1,p(Ω) ↪→ Lp
∗
(Ω) was compact, then as

(ûλ) is bounded in W 1,p, we could select a sequence λk →∞
such that (ûλk ) converges in Lp

∗
(Ω) to some limit u∗ ∈ Lp

∗
(Ω).

This would imply that

‖u∗‖Lp∗ = lim
k→∞
‖ûλk‖Lp∗ = ‖u‖Lp∗ > 0.

On the other hand, Supp(ûλ) ⊂ Br0/λ and so ûλ → 0 a.e. in Ω
as λ→∞. This would give that u∗ = 0 a.e. which contradicts
the above.
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Critical embedding is not compact

Remark
For 1 ≤ p < n, the embedding W 1,p(Rn) ↪→ Lp

∗
(Rn) is not compact.

Example by ‘translations’

Take again an arbitrary non-zero function u ∈ C∞c (Rn) and fix
some unit vector e. Let us(x) = u(x + se) = τseu(x).

Then ‖us‖W 1,p = ‖u‖W 1,p , ‖us‖Lp∗ = ‖u‖Lp∗ . Also
Supp(us) = {x − se : x ∈ Supp(u)} and so us → 0 a.e. on Rn

as s →∞.

By the same reasoning, there is no sequence sk →∞ such that
usk is convergent in Lp

∗
.
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Pre-compactness criterion in Lp(Ω)

Let us now do some preparation for the proof of Rellich-Kondrachov’s
theorem. Recall:

Theorem (Kolmogorov-Riesz-Fréchet’s theorem)

Let 1 ≤ p <∞ and Ω be an open bounded subset of Rn. Suppose
that a sequence (fi) of Lp(Ω) satisfies

(1) (Boundedness) supi ‖fi‖Lp(Ω) <∞,
(2) (Equi-continuity in Lp) For every ε > 0, there exists δ > 0 such

that ‖τy f̃i − f̃i‖Lp(Ω) < ε for all |y | < δ, where f̃i is the extension
by zero of fi to all of Rn.

Then, there exists a subsequence (fij ) which converges in Lp(Ω).

In the case we are considering, boundedness follows from the
embedding theorems. Let us now consider equi-continuity.
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Continuity of translation operators in W 1,p

Lemma

Let 1 ≤ p <∞. For every v ∈ W 1,p(Rn) and y ∈ Rn, it holds that

‖τyv − v‖Lp(Rn) ≤ |y |‖∇v‖Lp(Rn).

Proof

Using the density of C∞(Rn) ∩W 1,p(Rn) in W 1,p(Rn) for
p <∞, it suffices to consider v ∈ C∞(Rn) ∩W 1,p(Rn).

By the mean value theorem and Hölder’s inequality, we have

|v(y + x)− v(x)| ≤
∫ 1

0

| d
dt

v(ty + x)| dt =

∫ 1

0

|yi∂iv(ty + x)| dt

≤ |y |
{∫ 1

0

|∇v(ty + x)|p dt
}1/p

.
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Continuity of translation operators in W 1,p

Proof

|v(y + x)− v(x)|p ≤ |y |p
∫ 1

0

|∇v(ty + x)|p dt.

Integrating over x gives

‖τyv − v‖pLp =

∫
Rn

|v(y + x)− v(x)|p dx

≤ |y |p
∫
Rn

∫ 1

0

|∇v(ty + x)|p dt dx

= |y |p
∫ 1

0

∫
Rn

|∇v(ty + x)|p dx dt

= |y |p‖∇v‖pLp(Rn).

So we have ‖τyv − v‖Lp ≤ |y |‖∇v‖Lp(Rn) as wanted.
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Continuity of translation operators in W 1,p

Remark
We remarked in Lecture 3 that the map h 7→ τh is not a continuous
map from Rn into L (Lp(Rn), Lp(Rn)).
The above lemma implies that h 7→ τh is a continuous map from Rn

into L (W 1,p(Rn), Lp(Rn)).

Proof

Let X = L (W 1,p(Rn), Lp(Rn)). The statement amounts to
τy → Id in X as y → 0. So we need to show that

0 = lim
y→0
‖τy − Id‖X = lim

y→0
sup

u∈W 1,p(Rn):‖u‖W 1,p≤1

‖τyu − u‖Lp .

By the lemma, we have ‖τyu − u‖Lp ≤ |y |‖∇u‖Lp ≤ |y |
whenever ‖u‖W 1,p ≤ 1. So the point above is clear.
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Characterisation of W 1,p using translation

operators

Theorem
Assume that 1 < p <∞ and v ∈ Lp(Rn). Suppose that there exist
small r > 0 and large C such that

‖τyv − v‖Lp(Rn) ≤ C |y | for all |y | ≤ r .

Then
v ∈ W 1,p(Rn) and ‖∇v‖Lp(Rn) ≤ C .

Sketch of proof

Fix a direction ei . By hypothesis qt := 1
t
[τteiv − v ] is bounded in

Lp for |t| ≤ r . By the weak sequential compactness property in
Lp, we have along a sequence tk → 0 that qtk converges weakly
in Lp to some wi ∈ Lp(Rn).
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Characterisation of W 1,p using translation

operators

Sketch of proof

qtk = 1
|tk |

[τtkeiv − v ] ⇀ wi in Lp.

The key point is the following identity∫
Rn

[τtkeiv − v ]ϕ dx = −
∫
Rn

v [ϕ− τ−tkeiϕ] dx .

Now divide both side by tk and sending k →∞, we then get∫
Rn

wiϕ dx = −
∫
Rn

v∂iϕ dx for all ϕ ∈ C∞c (Rn).

This proves ∂iv = wi ∈ Lp(Rn). The conclusion follows.
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Rellich-Kondrachov’s theorem

Theorem (Rellich-Kondrachov’s compactness theorem)

Let Ω be a bounded Lipschitz domain and 1 ≤ p ≤ ∞. Suppose
1 ≤ q < p∗ when p < n, 1 ≤ q <∞ when p = n, and 1 ≤ q ≤ ∞
when p > n. Then the embedding W 1,p(Ω) ↪→ Lq(Ω) is compact, i.e.
every bounded sequence in W 1,p(Ω) contains a subsequence which
converges in Lq(Ω).

We reiterate that, when p < n, the endpoint embedding
W 1,p(Ω) ↪→ Lp

∗
(Ω) is not compact.

When p > n, we have W 1,p(Ω) ↪→ C 0,1− n
p (Ω), so the above is a

consequence of Ascoli-Arzelà’s theorem. (Check this!)
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Rellich-Kondrachov’s theorem

Proof of the case q = p ≤ n.

Suppose that (um) is bounded in W 1,p(Ω). We need to
construct a subsequence (umj

) which converges in Lp(Ω).

As (um) is bounded in Lp(Ω), we would be done by
Kolmogorov-Riesz-Fréchet’s theorem if (um) is equi-continuous
in Lp sense.

To make use of the continuity property of translation operators
in W 1,p(Rn), we let E : W 1,p(Ω)→ W 1,p(Rn) be a bounded
linear extension operator. Then the family (Eum) is bounded in
Lp(Rn) and is equi-continuous in Lp(Rn) sense. But as Rn is
unbounded, we cannot apply Kolmogorov-Riesz-Fréchet’s
theorem to this family.
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Rellich-Kondrachov’s theorem

Proof of the case q = p ≤ n.

We proceed as follows: Take a large ball BR containing Ω̄ and
select a cut-off function ζ ∈ C∞c (BR) such that ζ ≡ 1 in Ω. Let

vm = ζEum.

Clearly vm = um a.e. in Ω, Supp(vm) ⊂ BR and (vm) is bounded
in W 1,p(Rn).
We aim to apply Kolmogorov-Riesz-Fréchet’s theorem to
(vm|BR

).
? It is clear that (vm|BR

) is bounded in Lp(BR).
? Also, by the continuity of translation operators in W 1,p, we have

‖τyvm − vm‖Lp(Rn) ≤ |y |‖Dvm‖Lp(Rn) ≤ |y |‖vm‖W 1,p(Rn).

Therefore, for every ε > 0, there exists δ > 0 such that
‖τyvm − vm‖Lp(BR) ≤ ε for all m and all |y | < δ, i.e. (vm|BR

) is
equi-continuous in Lp sense. We’re done.
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Rellich-Kondrachov’s theorem

Proof of the general case for p ≤ n.

Suppose that 1 ≤ q < p∗ if p < n, 1 ≤ q <∞ if p = n. By the
embedding theorems, we know that there exists q̂ > q such that
W 1,p(Ω) ↪→ Lq̂(Ω).

Suppose that (um) is bounded in W 1,p(Ω). We need to
construct a subsequence (umj

) which converges in Lq(Ω).

We knew from the previous case that there is a subsequence
(umj

) which converges in Lp(Ω) to some u ∈ Lp(Ω). Passing to
a subsequence if necessary, we may also assume that (umj

)
converges to u a.e. in Ω.

To conclude, we show that u ∈ Lq(Ω) and (umj
) converges in

Lq(Ω) to u.

If q ≤ p, the above follows from Hölder’s inequality. We assume
henceforth that q > p.
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Rellich-Kondrachov’s theorem

Proof of the general case for p ≤ n.

We now show that u ∈ Lq(Ω). In fact, we show that u ∈ Lq̂(Ω).

? By the embedding W 1,p(Ω) ↪→ Lq̂(Ω), we have that um is
bounded in Lq̂(Ω).

? By Fatou’s lemma, we have∫
Ω
|u|q̂ dx ≤ lim inf

j→∞

∫
Ω
|umj |

q̂ dx <∞.

Hence u ∈ Lq̂(Ω).
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Rellich-Kondrachov’s theorem

Proof of the general case for p ≤ n.

Finally, we show that umj
→ u in Lq(Ω).

We observe that umj − u converges to 0 in Lp(Ω) and is

bounded in Lq̂(Ω) with p < q < q̂.
Now we write, for θ ∈ (0, 1) to be fixed

‖umj − u‖qLq =

∫
Ω
|umj − u|q dx =

∫
Ω
|umj − u|qθ|umj − u|q(1−θ) dx

and apply Hölder’s inequality with some pair of conjugate
exponents r and r ′ to be fixed:

‖umj − u‖qLq ≤
{∫

Ω
|umj − u|qθr dx

}1/r{∫
Ω
|umj − u|q(1−θ)r ′ dx

}1/r ′

.
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Rellich-Kondrachov’s theorem

Proof of the general case for p ≤ n.
...we are showing that umj

→ u in Lq(Ω).

umj − u → 0 in Lp(Ω) and umj − u is bounded in Lq̂(Ω) with
p < q < q̂.
‖umj − u‖Lq ≤ ‖umj − u‖θLqθr ‖umj − u‖1−θ

Lq(1−θ)r′ .

Now, if we can chose θ ∈ (0, 1) and r > 1 such that qθr = p
and q(1− θ)r ′ = q̂, then the first factor on the right hand side
goes to zero and the second factor remains bounded, and so
umj → u in Lq(Ω) as wanted.
To solve for θ and r , we first eliminate r to obtain

1 =
1

r
+

1

r ′
= θ

p

q
+ (1− θ)

q̂

q
.

As p
q < 1 < q̂

q , we can certainly select θ ∈ (0, 1) satisfying the

above. The exponent r is given by r = q
pθ . This concludes the

proof.
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Poincaré’s inequality

Theorem (Poincaré’s inequality)

Suppose that 1 ≤ p ≤ ∞ and Ω is a bounded Lipschitz domain.
There exists a constant Cn,p,Ω > 0 such that

‖u − ūΩ‖Lp(Ω) ≤ Cn,p,Ω‖∇u‖Lp(Ω) for all u ∈ W 1,p(Ω),

where ūΩ is the average of u in Ω:

ūΩ :=
1

|Ω|

∫
Ω

u(x) dx .

When p =∞, the theorem is a consequence of the fact that
W 1,∞(Ω) = C 0,1(Ω). (Check this!)
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Poincaré’s inequality

Proof for p <∞.

We argue by contradiction. Suppose the conclusion is not true.
Then there exists a sequence (um) ⊂ W 1,p(Ω) such that

‖um − ūm‖Lp > m‖∇um‖Lp ,

where ūm is the average of um in Ω.

Replacing um by um − ūm, we may assume that um has zero
average, so that ‖um‖Lp > m‖∇um‖Lp .

Replacing um by 1
‖um‖Lp

um, we may assume that ‖um‖Lp = 1.

The above implies that ‖∇um‖Lp ≤ 1
m

and so (um) is bounded in
W 1,p(Ω).

By Rellich-Kondrachov’s compactness theorem, we can find a
subsequence (umj

) which converges in Lp(Ω), say to u.
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Poincaré’s inequality

Proof for p <∞.
By the strong convergence of umj

to u, we have that

‖u‖Lp = lim
j→∞
‖umj
‖Lp = 1,

and ∫
Ω

u dx = lim
j→∞

∫
Ω

umj
dx = 0.

On the other hand, as ‖∇um‖Lp < 1
m

, we have for every
ϕ ∈ C∞c (Ω) that∫

Ω

u∂iϕ dx = lim
j→∞

∫
Ω

umj
∂iϕ dx = − lim

j→∞

∫
Ω

∂iumj
ϕ dx = 0.

Hence u is weakly differentiable and ∇u = 0 in Ω. In Sheet 2,
we show that this implies u is constant.
As u has zero average, we must then have u = 0 in Ω, which
contradicts the assertion that ‖u‖Lp = 1.
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Local differentiability of Sobolev functions

Theorem
Suppose Ω is a domain in Rn and n < p ≤ ∞. Assume that
u ∈ W 1,p(Ω) ∩ C (Ω). Then u is differentiable a.e. in Ω and its
derivatives equal its weak derivatives a.e. in Ω.

Proof

We will only consider the case p <∞. The case p =∞ is a
consequence.

By Lebesgue’s differentiation theorem, there is a set Z ⊂ Ω of
measure zero such that

lim
r→0

1

rn

∫
Br (x)

|∇u(y)−∇u(x)|p dy = 0 for all x ∈ Ω \ Z .

We aim to show that u is differentiable at those x ∈ Ω \ Z .
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Local differentiability of Sobolev functions

Proof

Fix some x ∈ Ω \ Z and consider the function

v(y) = u(y)− u(x)−∇u(x) · (y − x) for y ∈ Ω.

Then v ∈ W 1,p(Ω) ∩ C (Ω), v(x) = 0 and
∇v(y) = ∇u(y)−∇u(x).

By Morrey’s inequality, we have for every ball Br (x) ∈ Ω and
y ∈ ∂Br (x) that

|v(y)| = |v(y)− v(x)| ≤ [v ]
C

0,1− n
p (Br (x))

|x − y |1−
n
p

≤ Cr 1− n
p ‖∇v‖Lp(Br (x))

= Cr 1− n
p

{∫
Br (x)

|∇u(y)−∇u(x)|p dx
}1/p

.
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Local differentiability of Sobolev functions

Proof

So we have

? lim
r→0

1

rn

∫
Br (x)

|∇u(y)−∇u(x)|p dy = 0, and

? |v(y)| ≤ Cr1− n
p

{∫
Br (x)

|∇u(y)−∇u(x)|p dy
}1/p

whenever

|y − x | = r .

Putting the two together, we see that

lim
y→x

1

|y − x |
|u(y)−u(x)−∇u(x) · (y−x)| = lim

y→x

1

|y − x |
|v(y)| = 0.

This means that u is differentiable at x and its classical gradient
at x is the same at its weak gradient at x .
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Lp differentiability of Sobolev functions

Theorem
Suppose Ω is a domain in Rn and 1 ≤ p < n. Assume that
u ∈ W 1,p(Ω). Then for almost all x ∈ Ω it holds that

lim
r→0

1

r 1+ n
p

{∫
Br (x)

|u(y)− u(x)−∇u(x) · (y − x)|p dy
}1/p

= 0.

Discussion of proof

As in the case p > n, we start by picking a set Z ⊂ Ω of
measure zero such that

lim
r→0

1

rn

∫
Br (x)

|∇u(y)−∇u(x)|p dy = 0 for all x ∈ Ω \ Z .
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Lp differentiability of Sobolev functions

Discussion of proof

We consider again the function

v(y) = u(y)− u(x)−∇u(x) · (y − x) for y ∈ Ω,

so that v ∈ W 1,p(Ω) and ∇v(y) = ∇u(y)−∇u(x). Note that
however the meaning of v(x) = 0 is rather obscure since v does
not have enough regularity.

If we have the Poincaré-type inequality

‖v‖Lp(Br (x)) ≤ Cr‖∇v‖Lp(Br (x)), (*)

then, by recalling that r−n‖∇v‖pLp(Br (x)) → 0 as r → 0, we can
obtain the conclusion as in the case p > n considered previously.
However, (*) is general not valid for arbitrary functions
v ∈ W 1,p.

Luc Nguyen (University of Oxford) C4.3 – Lectures 9-10 MT 2022 62 / 63



Lp differentiability of Sobolev functions

Discussion of proof

The proof is actually much more involved and goes through
approximation of u by smooth functions.

It should be clear that the conclusion hold when u ∈ C 1(Ω) as

u(y)− u(x)−∇u(x) · (y − x) = o(|y − x |) as y → x .
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