C4.3 Functional Analytic Methods for PDEs Lectures 9-10

Luc Nguyen
luc.nguyen@maths

University of Oxford

MT 2022

In the last lecture

- Density results for Sobolev spaces.
- Extension theorems for Sobolev functions.
- Trace (boundary value) of Sobolev functions.
- Gagliardo-Nirenberg-Sobolev's inequality, $1 \leq p<n$.

This lecture

- Morrey's inequality, $n<p \leq \infty$.
- Friedrichs' inequality.
- Rellich-Kondrachov's compactness theorem.
- Poincaré's inequality.
- (Local behavior of Sobolev functions.)

Hölder and Lipschitz continuity

- Let D be a subset of \mathbb{R}^{n}.
- For $\alpha \in(0,1]$, we say that a function $u: D \rightarrow \mathbb{R}$ is (uniformly) α-Hölder continuous in D if there exists $C \geq 0$ such that

$$
|u(x)-u(y)| \leq C|x-y|^{\alpha} \text { for all } x, y \in D
$$

The set of all α-Hölder continuous functions in D is denoted as $C^{0, \alpha}(D)$.

- When $\alpha=1$, we use the term 'Lipschitz continuity' instead of '1-Hölder continuity'.

Hölder and Lipschitz continuity

- Note that, in our notation, when Ω is a bounded domain, $C^{0, \alpha}(\Omega)=C^{0, \alpha}(\bar{\Omega})$.
In some text $C^{0, \alpha}(\Omega)$ is used to denote the set of continuous functions in Ω which is α-Hölder continuous on every compact subsets of Ω. In this course, we will use instead $C_{\text {loc }}^{0, \alpha}(\Omega)$ to denote this latter set, if such occasion arises.

$C^{0, \alpha}(D)$ is a Banach space

- For $u \in C^{0, \alpha}(D)$, let

$$
[u]_{C^{0, \alpha}(D)}:=\sup _{x, y \in D, x \neq y} \frac{|u(x)-u(y)|}{|x-y|^{\alpha}}<\infty .
$$

and

$$
\|u\|_{C^{0, \alpha}(D)}:=\sup _{D}|u|+[u]_{C^{0, \alpha}(D)} .
$$

Proposition

Let D be a subset of \mathbb{R}^{n}. Then $\left(C^{0, \alpha}(D),\|\cdot\|_{C^{0, \alpha}(D)}\right)$ is a Banach space.

Hölder and Lipschitz continuity

Sketch of proof

- Piece 1: $\|\cdot\|_{C^{0, \alpha}(D)}$ is a norm.
* We will only give a proof for the statement that $[\cdot]_{C^{0, \alpha}}(D)$ satisfies the triangle inequality (i.e. it is a semi-norm). The rest is left as an exercise.
* Take $u, v \in C^{0, \alpha}(D)$. We want to show that $[u+v]_{C^{0, \alpha}(D)} \leq a+b$ where $a=[u]_{C^{0, \alpha}(D)}$ and $b=[v]_{C^{0, \alpha}(D)}$.
\star Indeed, for any $x \neq y \in D$, we have $|u(x)-u(y)| \leq a|x-y|^{\alpha}$ and $|v(x)-v(y)| \leq b|x-y|^{\alpha}$. It follows that

$$
|(u+v)(x)-(u+v)(y)| \leq(a+b)|x-y|^{\alpha} .
$$

Divide both sides by $|x-y|^{\alpha}$ and take supremum we get

$$
[u+v]_{C^{0, \alpha}(D)}=\sup _{x \neq y \in D} \frac{|u(x)-u(y)|}{|x-y|^{\alpha}} \leq a+b
$$

as wanted.

$C^{0, \alpha}(D)$ is a Banach space

Sketch of proof

- Piece 2: $C^{0, \alpha}(D)$ is complete.
\star Suppose that $\left(u_{m}\right)$ is Cauchy in $C^{0, \alpha}(D)$.
\star As $\|\cdot\|_{\text {sup }} \leq\|\cdot\|_{C^{0, \alpha}(D)}$, this implies that $\left(u_{m}\right)$ is Cauchy in $C^{0}(\bar{D})$ and hence converges uniformly to some $u \in C^{0}(\bar{D})$.
\star Claim: $u \in C^{0, \alpha}(D)$. Fix $\varepsilon>0$. For every $x, y \in D$, we have

$$
\begin{aligned}
\left|\left(u_{m}-u_{j}\right)(x)-\left(u_{m}-u_{j}\right)(y)\right| & \leq\left[u_{m}-u_{j}\right]_{C^{0, \alpha}(D)}|x-y|^{\alpha} \\
& \leq \varepsilon|x-y|^{\alpha} \text { for large } m, j .
\end{aligned}
$$

Sending $j \rightarrow \infty$, we thus have

$$
\left|\left(u_{m}-u\right)(x)-\left(u_{m}-u\right)(y)\right| \leq \varepsilon|x-y|^{\alpha} \text { for large } m
$$

Choose one such m we arrive at

$$
|u(x)-u(y)| \leq\left(\left[u_{m}\right]_{C^{0, \alpha}(D)}+\varepsilon\right)|x-y|^{\alpha} .
$$

So $u \in C^{0, \alpha}(D)$.

$C^{0, \alpha}(D)$ is a Banach space

Sketch of proof

- Piece 2: $C^{0, \alpha}(D)$ is complete.
\star Finally, we show that $u_{m} \rightarrow u$ in $C^{0, \alpha}(D)$. As u_{m} converges to u uniformly, it remains to show that $\left[u_{m}-u\right]_{C^{0, \alpha}(D)} \rightarrow 0$.
\star Fix $\varepsilon>0$. Recall from the previous slide that, for $x, y \in D$, we have

$$
\left|\left(u_{m}-u\right)(x)-\left(u_{m}-u\right)(y)\right| \leq \varepsilon|x-y|^{\alpha} \text { for large } m
$$

Divide both sides by $|x-y|^{\alpha}$ and take supremum, we have

$$
\left[u_{m}-u\right]_{C^{0, \alpha}(D)} \leq \varepsilon \text { for large } m .
$$

\star As ε is arbitrary, we conclude that $\left[u_{m}-u\right]_{C^{0, \alpha}(D)} \rightarrow 0$.

Morrey's inequality

Theorem (Morrey's inequality)

Assume that $n<p \leq \infty$. Then every $u \in W^{1, p}\left(\mathbb{R}^{n}\right)$ has a ($1-\frac{n}{p}$)-Hölder continuous representative. Furthermore there exists a constant $C_{n, p}$ such that

$$
\|u\|_{C^{0,1-\frac{n}{p}}\left(\mathbb{R}^{n}\right)} \leq C_{n, p}\|u\|_{W^{1, p}\left(\mathbb{R}^{n}\right)} .
$$

In particular, $W^{1, p}\left(\mathbb{R}^{n}\right) \hookrightarrow C^{0,1-\frac{n}{\rho}}\left(\mathbb{R}^{n}\right)$.

An integral mean value inequality

Lemma

Let Ω be a domain in \mathbb{R}^{n} and suppose $u \in C^{1}(\Omega)$. Then

$$
\int_{B_{r}(x)}|u(y)-u(x)| d y \leq \frac{1}{n} r^{n} \int_{B_{r}(x)} \frac{|\nabla u(y)|}{|y-x|^{n-1}} d y \text { for all } B_{r}(x) \subset \Omega .
$$

Proof

- It suffices to consider the case $x=0$. We write $y=s \theta$ where $s \in[0, r)$ and $\theta \in \mathbb{S}^{n-1} \in \mathbb{R}^{n}$.
- By the fundamental theorem of calculus, we have

$$
u(s \theta)-u(0)=\int_{0}^{s} \frac{d}{d t} u(t \theta) d t=\int_{0}^{s} \theta_{i} \partial_{i} u(t \theta) d t .
$$

It follows that $|u(s \theta)-u(0)| \leq \int_{0}^{s}|\nabla u(t \theta)| d t$.

An integral mean value inequality

Proof

- $|u(s \theta)-u(0)| \leq \int_{0}^{s}|\nabla u(t \theta)| d t$.
- Integrating over θ and using Tonelli's theorem, we get

$$
\begin{aligned}
\int_{\partial B_{1}(0)}|u(s \theta)-u(0)| d \theta & \leq \int_{0}^{s} \int_{\partial B_{1}(0)}|\nabla u(t \theta)| d \theta d t \\
& =\int_{0}^{s} \int_{\partial B_{t}(0)}|\nabla u(y)| \frac{d S(y)}{t^{n-1}} d t \\
& =\int_{B_{s}(0)} \frac{|\nabla u(y)|}{|y|^{n-1}} d y .
\end{aligned}
$$

An integral mean value inequality

Proof

$$
-\int_{\partial B_{1}(0)}|u(s \theta)-u(0)| d \theta \leq \int_{B_{s}(0)} \frac{|\nabla u(y)|}{|y|^{n-1}} d y .
$$

- Multiplying both sides by s^{n-1} and integrating over s, we get

$$
\begin{aligned}
\int_{B_{r}(0)}|u(y)-u(0)| d y & =\int_{0}^{r} \int_{\partial B_{1}(0)}|u(s \theta)-u(0)| d \theta s^{n-1} d s \\
& \leq \int_{B_{r}(0)} \frac{|\nabla u(y)|}{|y|^{n-1}} d y \int_{0}^{r} s^{n-1} d s \\
& =\frac{1}{n} r^{n} \int_{B_{r}(0)} \frac{|\nabla u(y)|}{|y|^{n-1}} d y .
\end{aligned}
$$

This gives the desired integral mean value inequality.

A corollary of the integral mean value inequality

Corollary

Suppose $u \in C^{1}(\Omega) \cap W^{1, p}(\Omega)$ for some $p>n$. Then
$\int_{B_{r}(x)}|u(y)-u(x)| d y \leq C_{n, p}\|\nabla u\|_{L^{\rho}\left(B_{r}(x)\right)} r^{\frac{n(p-1)}{\rho}+1}$ for all $B_{r}(x) \subset \Omega$,
where the constant $C_{n, p}$ depends only on n and p.

Proof

- As in the previous proof, we assume without loss of generality that $x=0$. We start with the integral mean value inequality:

$$
\int_{B_{r}(0)}|u(y)-u(0)| d y \leq \frac{r^{n}}{n} \int_{B_{r}(0)} \frac{|\nabla u(y)|}{|y|^{n-1}} d y .
$$

A corollary of the integral mean value inequality

Proof

- By Hölder's inequality this gives

$$
\begin{aligned}
\int_{B_{r}(0)}|u(y)-u(0)| d y & \leq \frac{r^{n}}{n}\|\nabla u\|_{L^{p}\left(B_{r}(0)\right)}\left\{\int_{B_{r}(0)} \frac{1}{|y|^{(n-1) p^{\prime}}} d y\right\}^{1 / p^{\prime}} \\
& =C_{n} r^{n}\|\nabla u\|_{L^{p}\left(B_{r}(0)\right)}\left\{\int_{0}^{r} s^{-(n-1)\left(p^{\prime}-1\right)} d s\right\}^{1 / p^{\prime}}
\end{aligned}
$$

- As $p>n$, we have that $p^{\prime}<\frac{n}{n-1}$ and so $(n-1)\left(p^{\prime}-1\right)<1$. Hence the integral in the curly braces converges to $C_{n, p} r^{-(n-1)\left(p^{\prime}-1\right)+1}$. After a simplification, this gives

$$
\int_{B_{r}(0)}|u(y)-u(0)| d y \leq C_{n, p}\|\nabla u\|_{L^{p}\left(B_{r}(0)\right)} r^{\frac{n}{p^{\prime}}+1}
$$

which is the conclusion.

Morrey's inequality

Theorem (Morrey's inequality)

Assume that $n<p \leq \infty$. Then every $u \in W^{1, p}\left(\mathbb{R}^{n}\right)$ has a $\left(1-\frac{n}{p}\right)$-Hölder continuous representative. Furthermore there exists a constant $C_{n, p}$ such that

$$
\|u\|_{C^{0,1-\frac{n}{p}}\left(\mathbb{R}^{n}\right)} \leq C_{n, p}\|u\|_{W^{1, p}\left(\mathbb{R}^{n}\right)} .
$$

In particular, $W^{1, p}\left(\mathbb{R}^{n}\right) \hookrightarrow C^{0,1-\frac{n}{p}}\left(\mathbb{R}^{n}\right)$.
Proof when $p<\infty$. The case $p=\infty$ will be dealt with later.

- Step 1: Reduction to the case $u \in C^{\infty}\left(\mathbb{R}^{n}\right) \cap W^{1, p}\left(\mathbb{R}^{n}\right)$.
\star Suppose that $\left({ }^{*}\right)$ holds for functions in $C^{\infty}\left(\mathbb{R}^{n}\right) \cap W^{1, p}\left(\mathbb{R}^{n}\right)$. We show that this implies the theorem.

Morrey's inequality

Proof when $p<\infty$.

- Step 1: Reduction to the case $u \in C^{\infty}\left(\mathbb{R}^{n}\right) \cap W^{1, p}\left(\mathbb{R}^{n}\right)$.
\star Let $u \in W^{1, p}\left(\mathbb{R}^{n}\right)$. As $p<\infty$, we can find $u_{m} \in C^{\infty}\left(\mathbb{R}^{n}\right) \cap W^{1, p}\left(\mathbb{R}^{n}\right)$ such that $u_{m} \rightarrow u$ in $W^{1, p}$.
\star Applying (*) to $u_{m}-u_{j}$ we have

$$
\left\|u_{m}-u_{j}\right\|_{C^{0,1-\frac{n}{p}}\left(\mathbb{R}^{n}\right)} \leq C_{n, p}\left\|u_{m}-u_{j}\right\|_{W^{1, p}\left(\mathbb{R}^{n}\right)} \xrightarrow{m, j \rightarrow \infty} 0 .
$$

This means that $\left(u_{m}\right)$ is Cauchy in $C^{0,1-\frac{n}{p}}\left(\mathbb{R}^{n}\right)$, and hence converges in $C^{0,1-\frac{n}{p}}$ to some $u_{*} \in C^{0,1-\frac{n}{p}}\left(\mathbb{R}^{n}\right)$.
\star On the other hand, as $u_{m} \rightarrow u$ in L^{p}, a subsequence of it converges a.e. in \mathbb{R}^{n} to u.

* It follows that $u=u_{*}$ a.e. in \mathbb{R}^{n}, i.e. u has a continuous representative.

Morrey's inequality

Proof when $p<\infty$.

- Step 1: Reduction to the case $u \in C^{\infty}\left(\mathbb{R}^{n}\right) \cap W^{1, p}\left(\mathbb{R}^{n}\right)$.
\star We may thus assume henceforth that u is continuous, so that u_{m} converges to u in both $W^{1, p}$ and $C^{0,1-\frac{n}{p}}$.
* Now, applying $\left({ }^{*}\right)$ to u_{m} we have

$$
\left\|u_{m}\right\|_{C^{0,1-\frac{n}{p}}\left(\mathbb{R}^{n}\right)} \leq C_{n, p}\left\|u_{m}\right\|_{W^{1, p}\left(\mathbb{R}^{n}\right)}
$$

Sending $m \rightarrow \infty$, we hence have

$$
\|u\|_{C^{0,1-\frac{n}{p}}\left(\mathbb{R}^{n}\right)} \leq C_{n, p}\|u\|_{W^{1, p}\left(\mathbb{R}^{n}\right)}
$$

as wanted.

Morrey's inequality

Proof when $p<\infty$.

- Step 2: Proof of the C^{0} bound in $\left(^{*}\right)$. We show that, for $u \in C^{\infty}\left(\mathbb{R}^{n}\right) \cap W^{1, p}\left(\mathbb{R}^{n}\right)$, it holds that

$$
|u(x)| \leq C\|u\|_{W^{1, p}\left(\mathbb{R}^{n}\right)} \text { for all } x \in \mathbb{R}^{n}
$$

* By triangle inequality, we have

$$
\left|B_{1}(x)\right||u(x)| \leq \int_{B_{1}(x)}|u(y)-u(x)| d y+\int_{B_{1}(x)}|u(y)| d y
$$

* By Hölder's inequality, the last integral is bounded by $C_{n, p}\|u\|_{L^{p}\left(B_{1}(x)\right)}$.
* On the other hand, by the corollary to the integral mean value inequality, the first integral on the right hand side is bounded by $C_{n, p}\|\nabla u\|_{L^{p}\left(B_{1}(x)\right)}$. The inequality $\left({ }^{* *}\right)$ follows.

Morrey's inequality

Proof when $p<\infty$.

- Step 3: Proof of the $C^{0,1-\frac{n}{p}}$ semi-norm bound in $\left(^{*}\right)$. We show that, for $u \in C^{\infty}\left(\mathbb{R}^{n}\right) \cap W^{1, p}\left(\mathbb{R}^{n}\right)$, it holds that

$$
|u(x)-u(y)| \leq C\|u\|_{W^{1, p}\left(\mathbb{R}^{n}\right)}|x-y|^{1-\frac{n}{p}} \text { for all } x, y \in \mathbb{R}^{n} .\left({ }^{* * *}\right)
$$

\star If $x=y$, there is nothing to show. Suppose henceforth that $r=|x-y|>0$ and let $W=B_{r}(x) \cap B_{r}(y)$.

* Let a be the average of u in W, i.e.

$$
\begin{aligned}
& a=\frac{1}{|W|} \int_{W} u(z) d z \text {. Then } \\
& |u(x)-u(y)| \leq|u(x)-a|+|u(y)-a|
\end{aligned}
$$

Morrey's inequality

Proof when $p<\infty$.

- Step 3: Proof of the $C^{0,1-\frac{n}{p}}$ semi-norm bound in $\left(^{*}\right)$.
\star We estimate $|u(x)-a|$ as follows:

$$
\begin{aligned}
|u(x)-a| & \leq \frac{1}{|W|} \int_{W}|u(x)-u(z)| d z \\
& \leq \frac{C_{n}}{r^{n}} \int_{B_{r}(x)}|u(x)-u(z)| d z
\end{aligned}
$$

By the corollary to the mean value inequality, the right hand side is bounded by $C_{n, p}\|\nabla u\|_{L^{p}\left(B_{r}(x)\right)} r^{1-\frac{n}{p}}$. So

$$
|u(x)-a| \leq C_{n, p}\|\nabla u\|_{L^{p}\left(B_{r}(x)\right)} r^{1-\frac{n}{p}}
$$

\star Similarly, $|u(y)-a| \leq C_{n, p}\|\nabla u\|_{L^{p}\left(B_{r}(y)\right)} r^{1-\frac{n}{p}}$.
\star Putting these together and recalling that $r=|x-y|$, we arrive at (***).

Morrey's inequality on domain for $n<p<\infty$

Theorem (Morrey's inequality)

Suppose that $n<p<\infty$ and Ω is a bounded Lipschitz domain. Then every $u \in W^{1, p}(\Omega)$ has a $\left(1-\frac{n}{p}\right)$-Hölder continuous representative and

$$
\|u\|_{C^{0,1-\frac{n}{p}}(\Omega)} \leq C_{n, p, \Omega}\|u\|_{W^{1, p}(\Omega)} .
$$

Indeed, let $E: W^{1, p}(\Omega) \rightarrow W^{1, p}\left(\mathbb{R}^{n}\right)$ be an extension operator. Then $E u$ has a continuous representative and

$$
\begin{aligned}
\|E u\|_{C^{0,1-\frac{n}{p}}(\Omega)} & \leq\|E u\|_{C^{0,1-\frac{n}{p}}\left(\mathbb{R}^{n}\right)} \\
& \leq C_{n, p}\|E u\|_{W^{1, p}\left(\mathbb{R}^{n}\right)} \leq C_{n, p, \Omega}\|u\|_{W^{1, p}(\Omega)}
\end{aligned}
$$

An improved integral mean value inequality

Lemma

Suppose $u \in C\left(\overline{B_{R}(0)}\right) \cap W^{1, p}\left(B_{R}(0)\right)$ for some $p>n$. Then, for every ball $B_{r}(x) \subset \mathbb{R}^{n}$, there holds

$$
\int_{B_{r}(x)}|u(y)-u(x)| d y \leq \frac{1}{n} r^{n} \int_{B_{r}(x)} \frac{|\nabla u(y)|}{|y-x|^{n-1}} d y .
$$

Proof

- Replacing p by any $\tilde{p} \in(n, p)$, we may assume that p is finite. Then we can find $u_{m} \in C^{\infty}\left(B_{R}(0)\right) \cap W^{1, p}\left(B_{R}(0)\right)$ such that $u_{m} \rightarrow u$ in $W^{1, p}$. Furthermore, arguing as in Step 1 in the proof of Morrey's inequality, we also have that $u_{m} \rightarrow u$ in $C^{0,1-\frac{n}{p}}\left(\overline{B_{R}(0)}\right)$.

An improved integral mean value inequality

Proof

- $u_{m} \rightarrow u$ in $W^{1, p}\left(B_{R}(0)\right)$ and in $C^{0,1-\frac{n}{\rho}}\left(\overline{B_{R}(0)}\right)$.
- By the integral mean value inequality for C^{1} functions, we have

$$
\int_{B_{r}(x)}\left|u_{m}(y)-u_{m}(x)\right| d y \leq \frac{1}{n} r^{n} \int_{B_{r}(x)} \frac{\left|\nabla u_{m}(y)\right|}{|y-x|^{n-1}} d y
$$

- The left hand side converges to $\int_{B_{r}(x)}|u(y)-u(x)| d y$ since $u_{m} \rightarrow u$ uniformly.
- The right hand side converges to $\frac{1}{n} r^{n} \int_{B_{r}(x)} \frac{|\nabla u(y)|}{|y-x|^{n-1}} d y$ since $\nabla u_{m} \rightarrow \nabla u$ in L^{p} and since the function $y \mapsto \frac{1}{|y-x|^{n-1}}$ belongs to $L^{p^{\prime}}$ (as noted in the proof of the corollary to the integral mean value inequality). The conclusion follows.

Morrey's inequality

Theorem (Morrey's inequality)

Assume that $n<p \leq \infty$. Then every $u \in W^{1, p}\left(\mathbb{R}^{n}\right)$ has a $\left(1-\frac{n}{p}\right)$-Hölder continuous representative. Furthermore there exists a constant $C_{n, p}$ such that

$$
\|u\|_{C^{0,1-\frac{n}{p}\left(\mathbb{R}^{n}\right)}} \leq C_{n, p}\|u\|_{W^{1, p}\left(\mathbb{R}^{n}\right)}
$$

In particular, $W^{1, p}\left(\mathbb{R}^{n}\right) \hookrightarrow C^{0,1-\frac{n}{p}}\left(\mathbb{R}^{n}\right)$.
Note that when $p=\infty$ we can no longer use the previous proof, as $C^{\infty}\left(\mathbb{R}^{n}\right) \cap W^{1, \infty}\left(\mathbb{R}^{n}\right)$ is not dense in $W^{1, \infty}\left(\mathbb{R}^{n}\right)$.

Morrey's inequality

Proof when $p=\infty$.

- Suppose $u \in W^{1, \infty}\left(\mathbb{R}^{n}\right)$. Then $u \in W^{1, s}\left(B_{R}\right)$ for all $s<\infty$ and all ball B_{R}. By Morrey's inequality in the case of finite p, we thus have that u has a continuous representative, which we will assume to be u itself.
- By the improved integral mean value inequality, we have

$$
\int_{B_{r}(x)}|u(y)-u(x)| d y \leq \frac{1}{n} r^{n} \int_{B_{r}(x)} \frac{|\nabla u(y)|}{|y-x|^{n-1}} d y .
$$

- Step 2 and Step 3 of the proof in the case $p<\infty$ can now be repeated to get

$$
|u(x)| \leq C\|u\|_{W^{1, \infty}\left(\mathbb{R}^{n}\right)} \text { for all } x \in \mathbb{R}^{n}
$$

and

$$
|u(x)-u(y)| \leq C\|u\|_{W^{1, \infty}\left(\mathbb{R}^{n}\right)}|x-y| \text { for all } x, y \in \mathbb{R}^{n} . \quad(* * *)
$$

Morrey's inequality

Proof when $p=\infty$.

- It follows that

$$
\|u\|_{C^{0,1}\left(\mathbb{R}^{n}\right)} \leq C\|u\|_{W^{1, \infty}\left(\mathbb{R}^{n}\right)}
$$

and we are done.

Morrey's inequality on domains

We make a couple of remarks:

- If Ω and p are such that there exists a bounded linear extension operator $E: W^{1, p}(\Omega) \rightarrow W^{1, p}\left(\mathbb{R}^{n}\right)$ (in particular $E u=u$ a.e. in Ω for all $\left.u \in W^{1, p}(\Omega)\right)$, then

$$
W^{1, p}(\Omega) \hookrightarrow C^{0,1-\frac{n}{p}}(\Omega) .
$$

- The same proof on the whole space work on balls without establishing the existence of an extension operator. (Check this!)
- For general domains, one only has

$$
W^{1, p}(\Omega) \hookrightarrow C_{\text {loc }}^{0,1-\frac{n}{p}}(\Omega) .
$$

(Revisit the example of the disk in \mathbb{R}^{2} with a line segment removed.)

More on $W^{1, \infty}$

We have the following important theorem for the space $W^{1, \infty}(\Omega)$:
Theorem
Suppose that $\Omega \subset \mathbb{R}^{n}$ is a bounded Lipschitz domain. Then

$$
W^{1, \infty}(\Omega)=C^{0,1}(\Omega) .
$$

Friedrichs' inequality

Theorem (Friedrichs' inequality)

Assume that Ω is a bounded open set and $1 \leq p<\infty$. Then, there exists $C_{p, \Omega}$ such that

$$
\|u\|_{L^{p}(\Omega)} \leq C_{p, \Omega}\|\nabla u\|_{L^{p}(\Omega)} \text { for all } u \in W_{0}^{1, p}(\Omega) .
$$

Note that

- Only the derivatives of u appear on the right hand side.
- The function u belongs to $W_{0}^{1, p}(\Omega)$. The inequality is false for $u \in W^{1, p}(\Omega)$.
- By Friedrichs' inequality, when Ω is bounded, if we define $\|\|u\|\|=\|\nabla u\|_{L^{p}(\Omega)}$, then $\left\|\|\cdot \mid\|\right.$ is a norm on $W_{0}^{1, p}(\Omega)$ which is equivalent to the norm $\|\cdot\|_{W^{1, p}(\Omega)}$.
- In some text, Friedrichs' inequality is referred to as Poincaré's inequality.

Friedrichs' inequality

Proof

- We may assume that Ω is contain in the slab $S:=\left\{\left(x^{\prime}, x_{n}\right): 0<x_{n}<L\right\}$.
- As usual, using the density of $C_{c}^{\infty}(\Omega)$ is dense in $W_{0}^{1, p}(\Omega)$, it suffices to prove

$$
\begin{aligned}
& \quad\|u\|_{L^{p}(\Omega)} \leq C_{p, \Omega}\|\nabla u\|_{L^{p}(\Omega)} \\
& \text { for } u \in C_{c}^{\infty}(\Omega) \text {. }
\end{aligned}
$$

- Take an arbitrary $u \in C_{c}^{\infty}(\Omega)$ and extend u by zero outside of Ω so that $u \in C_{c}^{\infty}(S)$.

Friedrichs' inequality

Proof

- Now, for every fixed x^{\prime}, we have

$$
\begin{aligned}
\left|u\left(x^{\prime}, x_{n}\right)\right| & \leq \int_{0}^{x_{n}}\left|\partial_{n} u\left(x^{\prime}, t\right)\right| d t \leq\left\{\int_{0}^{x_{n}}\left|\partial_{n} u\left(x^{\prime}, t\right)\right|^{p} d t\right\}^{1 / p} x_{n}^{1 / p^{\prime}} \\
& \leq\left\{\int_{0}^{L}\left|\partial_{n} u\left(x^{\prime}, t\right)\right|^{p} d t\right\}^{1 / p} x_{n}^{\frac{p-1}{p}}
\end{aligned}
$$

Friedrichs' inequality

Proof

- $\left|u\left(x^{\prime}, x_{n}\right)\right| \leq\left\{\int_{0}^{L}\left|\partial_{n} u\left(x^{\prime}, t\right)\right|^{p} d t\right\}^{1 / p} x_{n}^{\frac{p-1}{p}}$.
- It follows that

$$
\int_{0}^{L}\left|u\left(x^{\prime}, x_{n}\right)\right|^{p} d x_{n} \leq \frac{1}{p} L^{p} \int_{0}^{L}\left|\partial_{n} u\left(x^{\prime}, t\right)\right|^{p} d t
$$

- Integrating over x^{\prime} then gives

$$
\begin{aligned}
\|u\|_{L^{p}(\Omega)}^{p} & =\int_{\mathbb{R}^{n-1}} \int_{0}^{L}\left|u\left(x^{\prime}, x_{n}\right)\right|^{p} d x_{n} d x^{\prime} \\
& \leq \frac{1}{p} L^{p} \int_{\mathbb{R}^{n-1}} \int_{0}^{L}\left|D u\left(x^{\prime}, t\right)\right|^{p} d t d x^{\prime}=\frac{1}{p} L^{p}\|\nabla u\|_{L^{p}(\Omega)}^{p}
\end{aligned}
$$

We are done.

Friedrichs' inequality

Theorem (Friedrichs' inequality)

Assume that Ω is a bounded open set and $1 \leq p<\infty$. Then, there exists $C_{p, \Omega}$ such that

$$
\|u\|_{L^{p}(\Omega)} \leq C_{p, \Omega}\|\nabla u\|_{L^{p}(\Omega)} \text { for all } u \in W_{0}^{1, p}(\Omega) .
$$

Friedrichs-type inequality

Theorem (Friedrichs-type inequality)

Assume that Ω is a bounded open set and $1 \leq p<\infty$. Suppose that $1 \leq q \leq p^{*}$ if $p<n, 1 \leq q<\infty$ if $p=n$, and $1 \leq q \leq \infty$ if $p>n$. Then there exists $C_{n, p, q, \Omega}$ such that

$$
\|u\|_{L^{q}(\Omega)} \leq C_{n, p, q, \Omega}\|\nabla u\|_{L^{p}(\Omega)} \text { for all } u \in W_{0}^{1, p}(\Omega) .
$$

Proof

- Extend u by zero to \mathbb{R}^{n}.
- If $p<n$, we have by Gagliardo-Nirenberg-Sobolev's inequality, that

$$
\|u\|_{L^{p^{*}}(\Omega)}=\|u\|_{L^{p^{*}}\left(\mathbb{R}^{n}\right)} \leq C\|\nabla u\|_{L^{p}\left(\mathbb{R}^{n}\right)}=C\|\nabla u\|_{L^{p}(\Omega)} .
$$

As Ω has finite measure, $\|u\|_{L^{q}(\Omega)} \leq C\|u\|_{L^{p^{*}}(\Omega)}$, and so we're done in this case.

Friedrichs-type inequality

Proof

- Note that, as Ω has finite measure, $W^{1, n}(\Omega) \hookrightarrow W^{1, \hat{p}}(\Omega)$ for any $\hat{p}<p$. The case $p=n$ thus follows from the previous case.
- When $p>n$, we have by Morrey's inequality that

$$
\|u\|_{L^{\infty}(\Omega)}=\|u\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} \leq C\|u\|_{W^{1, p}\left(\mathbb{R}^{n}\right)}=C\|u\|_{W^{1, p}(\Omega)} .
$$

By Friedrichs' inequality, we have $\|u\|_{W^{1, p}(\Omega)} \leq C\|\nabla u\|_{L^{p}(\Omega)}$.
Also, as Ω has finite measure, $\|u\|_{L^{q}(\Omega)} \leq C\|u\|_{L^{\infty}(\Omega)}$.
Putting these together we're also done in this case.

Rellich-Kondrachov's theorem

Theorem (Rellich-Kondrachov's compactness theorem)

Let Ω be a bounded Lipschitz domain and $1 \leq p \leq \infty$. Suppose $1 \leq q<p^{*}$ when $p<n, 1 \leq q<\infty$ when $p=n$, and $1 \leq q \leq \infty$ when $p>n$. Then the embedding $W^{1, p}(\Omega) \hookrightarrow L^{q}(\Omega)$ is compact, i.e. every bounded sequence in $W^{1, p}(\Omega)$ contains a subsequence which converges in $L^{q}(\Omega)$.

Critical embedding is not compact

Remark

For $1 \leq p<n$, the embedding $W^{1, p}(\Omega) \hookrightarrow L^{p^{*}}(\Omega)$ is not compact.
Example by 'concentration'

- This example is by scaling. It is related to the argument in Lecture 7 to inspect for which p and q the space $W^{1, p}\left(\mathbb{R}^{n}\right)$ is embedded $L^{q}\left(\mathbb{R}^{n}\right)$.
- We may assume that the origin lies inside Ω and $B_{r_{0}} \subset \Omega$. Take an arbitrary non-zero function $u \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ with $\operatorname{Supp}(u) \subset B_{r_{0}}$. We define, for $\lambda>0, u_{\lambda}(x)=u(\lambda x)$.
- We knew that

$$
\left\|u_{\lambda}\right\|_{L^{q}}=\lambda^{-n / q}\|u\|_{L^{q}} \text { and }\left\|\nabla u_{\lambda}\right\|_{L^{p}}=\lambda^{1-n / p}\|\nabla u\|_{L^{p}} .
$$

Critical embedding is not compact

Example by 'concentration'

- Hence, if we let $\hat{u}_{\lambda}=\lambda^{-1+n / p} u_{\lambda}$, then

$$
\begin{aligned}
\left\|\hat{u}_{\lambda}\right\|_{L^{p}} & =\lambda^{-1}\|u\|_{L^{p}}, \\
\left\|\hat{u}_{\lambda}\right\|_{L^{p^{*}}} & =\|u\|_{L^{p^{*}}} \\
\left\|\nabla \hat{u}_{\lambda}\right\|_{L^{p}} & =\|\nabla u\|_{L^{p}} .
\end{aligned}
$$

In particular, as $\lambda \rightarrow \infty$,

$$
\left\|\hat{u}_{\lambda}\right\|_{W^{1, p}} \leq\|u\|_{W^{1, p}} \text { and }\left\|\hat{u}_{\lambda}\right\|_{L^{p^{*}}}=\|u\|_{L^{p^{*}}}>0
$$

Critical embedding is not compact

Example by 'concentration'

- Now if the embedding $W^{1, p}(\Omega) \hookrightarrow L^{p^{*}}(\Omega)$ was compact, then as (\hat{u}_{λ}) is bounded in $W^{1, p}$, we could select a sequence $\lambda_{k} \rightarrow \infty$ such that $\left(\hat{u}_{\lambda_{k}}\right)$ converges in $L^{p^{*}}(\Omega)$ to some limit $u_{*} \in L^{p^{*}}(\Omega)$.
- This would imply that

$$
\left\|u_{*}\right\|_{L^{p^{*}}}=\lim _{k \rightarrow \infty}\left\|\hat{u}_{\lambda_{k}}\right\|_{L^{p^{*}}}=\|u\|_{L^{p^{*}}}>0
$$

- On the other hand, $\operatorname{Supp}\left(\hat{u}_{\lambda}\right) \subset B_{r_{0} / \lambda}$ and so $\hat{u}_{\lambda} \rightarrow 0$ a.e. in Ω as $\lambda \rightarrow \infty$. This would give that $u_{*}=0$ a.e. which contradicts the above.

Critical embedding is not compact

Remark

For $1 \leq p<n$, the embedding $W^{1, p}\left(\mathbb{R}^{n}\right) \hookrightarrow L^{p^{*}}\left(\mathbb{R}^{n}\right)$ is not compact.
Example by 'translations'

- Take again an arbitrary non-zero function $u \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ and fix some unit vector e. Let $u_{s}(x)=u(x+s e)=\tau_{s e} u(x)$.
- Then $\left\|u_{s}\right\|_{W^{1, p}}=\|u\|_{W^{1, p},}\left\|u_{s}\right\|_{L^{p^{*}}}=\|u\|_{L^{p^{*}}}$. Also $\operatorname{Supp}\left(u_{s}\right)=\{x-$ se $: x \in \operatorname{Supp}(u)\}$ and so $u_{s} \rightarrow 0$ a.e. on \mathbb{R}^{n} as $s \rightarrow \infty$.
- By the same reasoning, there is no sequence $s_{k} \rightarrow \infty$ such that $u_{s_{k}}$ is convergent in $L^{p^{*}}$.

Pre-compactness criterion in $L^{p}(\Omega)$

Let us now do some preparation for the proof of Rellich-Kondrachov's theorem. Recall:

Theorem (Kolmogorov-Riesz-Fréchet's theorem)

Let $1 \leq p<\infty$ and Ω be an open bounded subset of \mathbb{R}^{n}. Suppose that a sequence $\left(f_{i}\right)$ of $L^{p}(\Omega)$ satisfies
(1) (Boundedness) sup $i\left\|f_{i}\right\|_{L^{p}(\Omega)}<\infty$,
(2) (Equi-continuity in L^{p}) For every $\varepsilon>0$, there exists $\delta>0$ such that $\left\|\tau_{y} \tilde{f}_{i}-\tilde{f}_{i}\right\|_{L^{p}(\Omega)}<\varepsilon$ for all $|y|<\delta$, where \tilde{f}_{i} is the extension by zero of f_{i} to all of \mathbb{R}^{n}.
Then, there exists a subsequence $\left(f_{i_{j}}\right)$ which converges in $L^{p}(\Omega)$.
In the case we are considering, boundedness follows from the embedding theorems. Let us now consider equi-continuity.

Continuity of translation operators in $W^{1, p}$

Lemma

Let $1 \leq p<\infty$. For every $v \in W^{1, p}\left(\mathbb{R}^{n}\right)$ and $y \in \mathbb{R}^{n}$, it holds that

$$
\left\|\tau_{y} v-v\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq|y|\|\nabla v\|_{L^{p}\left(\mathbb{R}^{n}\right)} .
$$

Proof

- Using the density of $C^{\infty}\left(\mathbb{R}^{n}\right) \cap W^{1, p}\left(\mathbb{R}^{n}\right)$ in $W^{1, p}\left(\mathbb{R}^{n}\right)$ for $p<\infty$, it suffices to consider $v \in C^{\infty}\left(\mathbb{R}^{n}\right) \cap W^{1, p}\left(\mathbb{R}^{n}\right)$.
- By the mean value theorem and Hölder's inequality, we have

$$
\begin{aligned}
|v(y+x)-v(x)| & \leq \int_{0}^{1}\left|\frac{d}{d t} v(t y+x)\right| d t=\int_{0}^{1}\left|y_{i} \partial_{i} v(t y+x)\right| d t \\
& \leq|y|\left\{\int_{0}^{1}|\nabla v(t y+x)|^{p} d t\right\}^{1 / p} .
\end{aligned}
$$

Continuity of translation operators in $W^{1, p}$

Proof

- $|v(y+x)-v(x)|^{p} \leq|y|^{p} \int_{0}^{1}|\nabla v(t y+x)|^{p} d t$.
- Integrating over x gives

$$
\begin{aligned}
\left\|\tau_{y} v-v\right\|_{L^{p}}^{p} & =\int_{\mathbb{R}^{n}}|v(y+x)-v(x)|^{p} d x \\
& \leq|y|^{p} \int_{\mathbb{R}^{n}} \int_{0}^{1}|\nabla v(t y+x)|^{p} d t d x \\
& =|y|^{p} \int_{0}^{1} \int_{\mathbb{R}^{n}}|\nabla v(t y+x)|^{p} d x d t \\
& =|y|^{p}\|\nabla v\|_{L^{p}\left(\mathbb{R}^{n}\right)}^{p}
\end{aligned}
$$

So we have $\left\|\tau_{y} v-v\right\|_{L^{p}} \leq|y|\|\nabla v\|_{L^{p}\left(\mathbb{R}^{n}\right)}$ as wanted.

Continuity of translation operators in $W^{1, p}$

Remark

We remarked in Lecture 3 that the map $h \mapsto \tau_{h}$ is not a continuous map from \mathbb{R}^{n} into $\mathscr{L}\left(L^{p}\left(\mathbb{R}^{n}\right), L^{p}\left(\mathbb{R}^{n}\right)\right)$.
The above lemma implies that $h \mapsto \tau_{h}$ is a continuous map from \mathbb{R}^{n} into $\mathscr{L}\left(W^{1, p}\left(\mathbb{R}^{n}\right), L^{p}\left(\mathbb{R}^{n}\right)\right)$.

Proof

- Let $X=\mathscr{L}\left(W^{1, p}\left(\mathbb{R}^{n}\right), L^{p}\left(\mathbb{R}^{n}\right)\right)$. The statement amounts to $\tau_{y} \rightarrow I d$ in X as $y \rightarrow 0$. So we need to show that

$$
0=\lim _{y \rightarrow 0}\left\|\tau_{y}-I d\right\|_{x}=\lim _{y \rightarrow 0} \sup _{u \in W^{1, p}\left(\mathbb{R}^{n}\right):\|u\|_{W^{1, p}} \leq 1}\left\|\tau_{y} u-u\right\|_{L^{p}}
$$

- By the lemma, we have $\left\|\tau_{y} u-u\right\|_{L^{p}} \leq|y|\|\nabla u\|_{L^{p}} \leq|y|$ whenever $\|u\|_{W^{1, p}} \leq 1$. So the point above is clear.

Characterisation of $W^{1, p}$ using translation operators

Theorem

Assume that $1<p<\infty$ and $v \in L^{p}\left(\mathbb{R}^{n}\right)$. Suppose that there exist small $r>0$ and large C such that

$$
\left\|\tau_{y} v-v\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq C|y| \text { for all }|y| \leq r
$$

Then

$$
v \in W^{1, p}\left(\mathbb{R}^{n}\right) \text { and }\|\nabla v\|_{L_{p}\left(\mathbb{R}^{n}\right)} \leq C .
$$

Sketch of proof

- Fix a direction e_{i}. By hypothesis $q_{t}:=\frac{1}{t}\left[\tau_{t_{i}} v-v\right]$ is bounded in L^{p} for $|t| \leq r$. By the weak sequential compactness property in L^{p}, we have along a sequence $t_{k} \rightarrow 0$ that $q_{t_{k}}$ converges weakly in L^{p} to some $w_{i} \in L^{p}\left(\mathbb{R}^{n}\right)$.

Characterisation of $W^{1, p}$ using translation operators

Sketch of proof

- $q_{t_{k}}=\frac{1}{\left|t_{k}\right|}\left[\tau_{t_{k} e_{i}} v-v\right] \rightharpoonup w_{i}$ in L^{p}.
- The key point is the following identity

$$
\int_{\mathbb{R}^{n}}\left[\tau_{t_{k} e_{i}} v-v\right] \varphi d x=-\int_{\mathbb{R}^{n}} v\left[\varphi-\tau_{-t_{k} e_{i}} \varphi\right] d x
$$

- Now divide both side by t_{k} and sending $k \rightarrow \infty$, we then get

$$
\int_{\mathbb{R}^{n}} w_{i} \varphi d x=-\int_{\mathbb{R}^{n}} v \partial_{i} \varphi d x \text { for all } \varphi \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)
$$

This proves $\partial_{i} v=w_{i} \in L^{p}\left(\mathbb{R}^{n}\right)$. The conclusion follows.

Rellich-Kondrachov's theorem

Theorem (Rellich-Kondrachov's compactness theorem)

Let Ω be a bounded Lipschitz domain and $1 \leq p \leq \infty$. Suppose $1 \leq q<p^{*}$ when $p<n, 1 \leq q<\infty$ when $p=n$, and $1 \leq q \leq \infty$ when $p>n$. Then the embedding $W^{1, p}(\Omega) \hookrightarrow L^{q}(\Omega)$ is compact, i.e. every bounded sequence in $W^{1, p}(\Omega)$ contains a subsequence which converges in $L^{q}(\Omega)$.

We reiterate that, when $p<n$, the endpoint embedding $W^{1, p}(\Omega) \hookrightarrow L^{p^{*}}(\Omega)$ is not compact.
When $p>n$, we have $W^{1, p}(\Omega) \hookrightarrow C^{0,1-\frac{n}{p}}(\Omega)$, so the above is a consequence of Ascoli-Arzelà's theorem. (Check this!)

Rellich-Kondrachov's theorem

Proof of the case $q=p \leq n$.

- Suppose that $\left(u_{m}\right)$ is bounded in $W^{1, p}(\Omega)$. We need to construct a subsequence $\left(u_{m_{j}}\right)$ which converges in $L^{p}(\Omega)$.
- As $\left(u_{m}\right)$ is bounded in $L^{p}(\Omega)$, we would be done by Kolmogorov-Riesz-Fréchet's theorem if $\left(u_{m}\right)$ is equi-continuous in L^{p} sense.
- To make use of the continuity property of translation operators in $W^{1, p}\left(\mathbb{R}^{n}\right)$, we let $E: W^{1, p}(\Omega) \rightarrow W^{1, p}\left(\mathbb{R}^{n}\right)$ be a bounded linear extension operator. Then the family $\left(E u_{m}\right)$ is bounded in $L^{p}\left(\mathbb{R}^{n}\right)$ and is equi-continuous in $L^{p}\left(\mathbb{R}^{n}\right)$ sense. But as \mathbb{R}^{n} is unbounded, we cannot apply Kolmogorov-Riesz-Fréchet's theorem to this family.

Rellich-Kondrachov's theorem

Proof of the case $q=p \leq n$.

- We proceed as follows: Take a large ball B_{R} containing $\bar{\Omega}$ and select a cut-off function $\zeta \in C_{c}^{\infty}\left(B_{R}\right)$ such that $\zeta \equiv 1$ in Ω. Let

$$
v_{m}=\zeta E u_{m}
$$

Clearly $v_{m}=u_{m}$ a.e. in $\Omega, \operatorname{Supp}\left(v_{m}\right) \subset B_{R}$ and $\left(v_{m}\right)$ is bounded in $W^{1, p}\left(\mathbb{R}^{n}\right)$.

- We aim to apply Kolmogorov-Riesz-Fréchet's theorem to $\left(\left.v_{m}\right|_{B_{R}}\right)$.
\star It is clear that $\left(v_{m} \mid B_{R}\right)$ is bounded in $L^{P}\left(B_{R}\right)$.
\star Also, by the continuity of translation operators in $W^{1, p}$, we have

$$
\left\|\tau_{y} v_{m}-v_{m}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq|y|\left\|D v_{m}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq|y|\left\|v_{m}\right\|_{W^{1, p}\left(\mathbb{R}^{n}\right)}
$$

Therefore, for every $\varepsilon>0$, there exists $\delta>0$ such that $\left\|\tau_{y} v_{m}-v_{m}\right\|_{L^{p}\left(B_{R}\right)} \leq \varepsilon$ for all m and all $|y|<\delta$, i.e. $\left(v_{m} \mid B_{B_{R}}\right)$ is equi-continuous in L^{p} sense. We're done.

Rellich-Kondrachov's theorem

Proof of the general case for $p \leq n$.

- Suppose that $1 \leq q<p^{*}$ if $p<n, 1 \leq q<\infty$ if $p=n$. By the embedding theorems, we know that there exists $\hat{q}>q$ such that $W^{1, p}(\Omega) \hookrightarrow L^{\hat{q}}(\Omega)$.
- Suppose that $\left(u_{m}\right)$ is bounded in $W^{1, p}(\Omega)$. We need to construct a subsequence ($u_{m_{j}}$) which converges in $L^{q}(\Omega)$.
- We knew from the previous case that there is a subsequence $\left(u_{m_{j}}\right)$ which converges in $L^{p}(\Omega)$ to some $u \in L^{p}(\Omega)$. Passing to a subsequence if necessary, we may also assume that ($u_{m_{j}}$) converges to u a.e. in Ω.
- To conclude, we show that $u \in L^{q}(\Omega)$ and $\left(u_{m_{j}}\right)$ converges in $L^{q}(\Omega)$ to u.
- If $q \leq p$, the above follows from Hölder's inequality. We assume henceforth that $q>p$.

Rellich-Kondrachov's theorem

Proof of the general case for $p \leq n$.

- We now show that $u \in L^{q}(\Omega)$. In fact, we show that $u \in L^{\hat{q}}(\Omega)$.
\star By the embedding $W^{1, p}(\Omega) \hookrightarrow L^{\hat{q}}(\Omega)$, we have that u_{m} is bounded in $L^{\hat{q}}(\Omega)$.
* By Fatou's lemma, we have

$$
\int_{\Omega}|u|^{\hat{q}} d x \leq \liminf _{j \rightarrow \infty} \int_{\Omega}\left|u_{m_{j}}\right|^{\hat{q}} d x<\infty .
$$

Hence $u \in L^{\hat{q}}(\Omega)$.

Rellich-Kondrachov's theorem

Proof of the general case for $p \leq n$.

- Finally, we show that $u_{m_{j}} \rightarrow u$ in $L^{q}(\Omega)$.
- We observe that $u_{m_{j}}-u$ converges to 0 in $L^{p}(\Omega)$ and is bounded in $L^{\hat{q}}(\Omega)$ with $p<q<\hat{q}$.
- Now we write, for $\theta \in(0,1)$ to be fixed

$$
\left\|u_{m_{j}}-u\right\|_{L q}^{q}=\int_{\Omega}\left|u_{m_{j}}-u\right|^{q} d x=\int_{\Omega}\left|u_{m_{j}}-u\right|^{q \theta}\left|u_{m_{j}}-u\right|^{q(1-\theta)} d x
$$

and apply Hölder's inequality with some pair of conjugate exponents r and r^{\prime} to be fixed:

$$
\left\|u_{m_{j}}-u\right\|_{L q}^{q} \leq\left\{\int_{\Omega}\left|u_{m_{j}}-u\right|^{q \theta r} d x\right\}^{1 / r}\left\{\int_{\Omega}\left|u_{m_{j}}-u\right|^{q(1-\theta) r^{\prime}} d x\right\}^{1 / r^{\prime}}
$$

Rellich-Kondrachov's theorem

Proof of the general case for $p \leq n$.

- ...we are showing that $u_{m_{j}} \rightarrow u$ in $L^{q}(\Omega)$.
- $u_{m_{j}}-u \rightarrow 0$ in $L^{p}(\Omega)$ and $u_{m_{j}}-u$ is bounded in $L^{\hat{q}}(\Omega)$ with $p<q<\hat{q}$.
- $\left\|u_{m_{j}}-u\right\|_{L^{q}} \leq\left\|u_{m_{j}}-u\right\|_{L^{q \theta r}}^{\theta}\left\|u_{m_{j}}-u\right\|_{L^{q(1-\theta) r^{\prime}}}^{1-\theta}$.
- Now, if we can chose $\theta \in(0,1)$ and $r>1$ such that $q \theta r=p$ and $q(1-\theta) r^{\prime}=\hat{q}$, then the first factor on the right hand side goes to zero and the second factor remains bounded, and so $u_{m_{j}} \rightarrow u$ in $L^{q}(\Omega)$ as wanted.
- To solve for θ and r, we first eliminate r to obtain

$$
1=\frac{1}{r}+\frac{1}{r^{\prime}}=\theta \frac{p}{q}+(1-\theta) \frac{\hat{q}}{q}
$$

As $\frac{p}{q}<1<\frac{\hat{q}}{q}$, we can certainly select $\theta \in(0,1)$ satisfying the above. The exponent r is given by $r=\frac{q}{p \theta}$. This concludes the proof.

Poincaré's inequality

Theorem (Poincaré's inequality)

Suppose that $1 \leq p \leq \infty$ and Ω is a bounded Lipschitz domain. There exists a constant $C_{n, p, \Omega}>0$ such that

$$
\left\|u-\bar{u}_{\Omega}\right\|_{L^{p}(\Omega)} \leq C_{n, p, \Omega}\|\nabla u\|_{L^{p}(\Omega)} \text { for all } u \in W^{1, p}(\Omega)
$$

where \bar{u}_{Ω} is the average of u in Ω :

$$
\bar{u}_{\Omega}:=\frac{1}{|\Omega|} \int_{\Omega} u(x) d x
$$

When $p=\infty$, the theorem is a consequence of the fact that $W^{1, \infty}(\Omega)=C^{0,1}(\Omega)$. (Check this!)

Poincaré's inequality

Proof for $p<\infty$.

- We argue by contradiction. Suppose the conclusion is not true. Then there exists a sequence $\left(u_{m}\right) \subset W^{1, p}(\Omega)$ such that

$$
\left\|u_{m}-\bar{u}_{m}\right\|_{L^{p}}>m\left\|\nabla u_{m}\right\|_{L^{p}}
$$

where \bar{u}_{m} is the average of u_{m} in Ω.

- Replacing u_{m} by $u_{m}-\bar{u}_{m}$, we may assume that u_{m} has zero average, so that $\left\|u_{m}\right\|_{L^{p}}>m\left\|\nabla u_{m}\right\|_{L^{p}}$.
- Replacing u_{m} by $\frac{1}{\left\|u_{m}\right\|_{L^{p}}} u_{m}$, we may assume that $\left\|u_{m}\right\|_{L^{p}}=1$.
- The above implies that $\left\|\nabla u_{m}\right\|_{L^{p}} \leq \frac{1}{m}$ and so $\left(u_{m}\right)$ is bounded in $W^{1, p}(\Omega)$.
- By Rellich-Kondrachov's compactness theorem, we can find a subsequence $\left(u_{m_{j}}\right)$ which converges in $L^{p}(\Omega)$, say to u.

Poincaré's inequality

Proof for $p<\infty$.

- By the strong convergence of $u_{m_{j}}$ to u, we have that

$$
\|u\|_{L^{p}}=\lim _{j \rightarrow \infty}\left\|u_{m_{j}}\right\|_{L^{p}}=1
$$

and

$$
\int_{\Omega} u d x=\lim _{j \rightarrow \infty} \int_{\Omega} u_{m_{j}} d x=0
$$

- On the other hand, as $\left\|\nabla u_{m}\right\|_{L^{p}}<\frac{1}{m}$, we have for every $\varphi \in C_{c}^{\infty}(\Omega)$ that

$$
\int_{\Omega} u \partial_{i} \varphi d x=\lim _{j \rightarrow \infty} \int_{\Omega} u_{m_{j}} \partial_{i} \varphi d x=-\lim _{j \rightarrow \infty} \int_{\Omega} \partial_{i} u_{m_{j}} \varphi d x=0
$$

Hence u is weakly differentiable and $\nabla u=0$ in Ω. In Sheet 2, we show that this implies u is constant.

- As u has zero average, we must then have $u=0$ in Ω, which contradicts the assertion that $\|u\|_{L^{p}}=1$.

Local differentiability of Sobolev functions

Theorem

Suppose Ω is a domain in \mathbb{R}^{n} and $n<p \leq \infty$. Assume that $u \in W^{1, p}(\Omega) \cap C(\Omega)$. Then u is differentiable a.e. in Ω and its derivatives equal its weak derivatives a.e. in Ω.

Proof

- We will only consider the case $p<\infty$. The case $p=\infty$ is a consequence.
- By Lebesgue's differentiation theorem, there is a set $Z \subset \Omega$ of measure zero such that

$$
\lim _{r \rightarrow 0} \frac{1}{r^{n}} \int_{B_{r}(x)}|\nabla u(y)-\nabla u(x)|^{p} d y=0 \text { for all } x \in \Omega \backslash Z
$$

We aim to show that u is differentiable at those $x \in \Omega \backslash Z$.

Local differentiability of Sobolev functions

Proof

- Fix some $x \in \Omega \backslash Z$ and consider the function

$$
v(y)=u(y)-u(x)-\nabla u(x) \cdot(y-x) \text { for } y \in \Omega .
$$

Then $v \in W^{1, p}(\Omega) \cap C(\Omega), v(x)=0$ and
$\nabla v(y)=\nabla u(y)-\nabla u(x)$.

- By Morrey's inequality, we have for every ball $B_{r}(x) \in \Omega$ and $y \in \partial B_{r}(x)$ that

$$
\begin{aligned}
|v(y)| & =|v(y)-v(x)| \leq[v]_{C^{0,1-\frac{n}{p}}\left(B_{r}(x)\right)}|x-y|^{1-\frac{n}{p}} \\
& \leq C r^{1-\frac{n}{p}}\|\nabla v\|_{L^{p}\left(B_{r}(x)\right)} \\
& =C r^{1-\frac{n}{p}}\left\{\int_{B_{r}(x)}|\nabla u(y)-\nabla u(x)|^{p} d x\right\}^{1 / p} .
\end{aligned}
$$

Local differentiability of Sobolev functions

Proof

- So we have

$$
\begin{aligned}
& \star \lim _{r \rightarrow 0} \frac{1}{r^{n}} \int_{B_{r}(x)}|\nabla u(y)-\nabla u(x)|^{p} d y=0, \text { and } \\
& \star \\
& \star|v(y)| \leq C r^{1-\frac{n}{p}}\left\{\int_{B_{r}(x)}|\nabla u(y)-\nabla u(x)|^{p} d y\right\}^{1 / p} \text { whenever } \\
& \quad|y-x|=r .
\end{aligned}
$$

Putting the two together, we see that

$$
\lim _{y \rightarrow x} \frac{1}{|y-x|}|u(y)-u(x)-\nabla u(x) \cdot(y-x)|=\lim _{y \rightarrow x} \frac{1}{|y-x|}|v(y)|=0
$$

This means that u is differentiable at x and its classical gradient at x is the same at its weak gradient at x.

L^{p} differentiability of Sobolev functions

Theorem

Suppose Ω is a domain in \mathbb{R}^{n} and $1 \leq p<n$. Assume that $u \in W^{1, p}(\Omega)$. Then for almost all $x \in \Omega$ it holds that

$$
\lim _{r \rightarrow 0} \frac{1}{r^{1+\frac{\pi}{p}}}\left\{\int_{B_{r}(x)}|u(y)-u(x)-\nabla u(x) \cdot(y-x)|^{p} d y\right\}^{1 / p}=0 .
$$

Discussion of proof

- As in the case $p>n$, we start by picking a set $Z \subset \Omega$ of measure zero such that

$$
\lim _{r \rightarrow 0} \frac{1}{r^{n}} \int_{B_{r}(x)}|\nabla u(y)-\nabla u(x)|^{p} d y=0 \text { for all } x \in \Omega \backslash Z .
$$

L^{p} differentiability of Sobolev functions

Discussion of proof

- We consider again the function

$$
v(y)=u(y)-u(x)-\nabla u(x) \cdot(y-x) \text { for } y \in \Omega
$$

so that $v \in W^{1, p}(\Omega)$ and $\nabla v(y)=\nabla u(y)-\nabla u(x)$. Note that however the meaning of $v(x)=0$ is rather obscure since v does not have enough regularity.

- If we have the Poincaré-type inequality

$$
\begin{equation*}
\|v\|_{L^{p}\left(B_{r}(x)\right)} \leq C r\|\nabla v\|_{L^{p}\left(B_{r}(x)\right)} \tag{*}
\end{equation*}
$$

then, by recalling that $r^{-n}\|\nabla v\|_{L^{p}\left(B_{r}(x)\right)}^{p} \rightarrow 0$ as $r \rightarrow 0$, we can obtain the conclusion as in the case $p>n$ considered previously. However, $\left(^{*}\right)$ is general not valid for arbitrary functions
$v \in W^{1, p}$.

L^{p} differentiability of Sobolev functions

Discussion of proof

- The proof is actually much more involved and goes through approximation of u by smooth functions.
- It should be clear that the conclusion hold when $u \in C^{1}(\Omega)$ as

$$
u(y)-u(x)-\nabla u(x) \cdot(y-x)=o(|y-x|) \text { as } y \rightarrow x
$$

