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In the last lecture

@ Density results for Sobolev spaces.

@ Extension theorems for Sobolev functions.

e Trace (boundary value) of Sobolev functions.

@ Gagliardo-Nirenberg-Sobolev's inequality, 1 < p < n.
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This lecture

Morrey's inequality, n < p < co.

Friedrichs' inequality.

°
°
@ Rellich-Kondrachov's compactness theorem.
@ Poincaré’s inequality.

°

(Local behavior of Sobolev functions.)
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Holder and Lipschitz continuity

@ Let D be a subset of R".

e For a € (0, 1], we say that a function v : D — R is (uniformly)
a-Holder continuous in D if there exists C > 0 such that

lu(x) — u(y)| < C|x — y|* for all x,y € D.

The set of all a-Holder continuous functions in D is denoted as
CO’Q(D).

@ When a = 1, we use the term ‘Lipschitz continuity’ instead of
‘1-Holder continuity’.

Luc Nguyen (University of Oxford) C4.3 — Lectures 9-10 MT 2022 4/63



Holder and Lipschitz continuity

@ Note that, in our notation, when Q is a bounded domain,
Co¥(Q) = CO¥(Q).
In some text C%%(Q) is used to denote the set of continuous
functions in © which is a-Holder continuous on every compact
subsets of Q. In this course, we will use instead C2%(Q) to
denote this latter set, if such occasion arises.
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C%%(D) is a Banach space

e For u € C%(D), let
|u(x) — u(y)|

Ul co,o = sup — ) < OQ.
[ ] (D) x,ye€D x#y |X - y’a

and
HuHCO’a(D) = Slép |U‘ + [U]Co,a(D).

Proposition

Let D be a subset of R". Then (C%*(D), || - || co.a(p)) is a Banach
space.
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Holder and Lipschitz continuity

Sketch of proof
@ Piece 1: || - [[co.a(p) is @ norm.

* We will only give a proof for the statement that [']CO,&(D)

satisfies the triangle inequality (i.e. it is a semi-norm). The rest
is left as an exercise.

* Take u,v € CO¥(D). We want to show that
[u+ V]coa(py < a+ b where a = [u]coa(py and b = [v]coa(py.
* Indeed, for any x # y € D, we have |u(x) — u(y)| < a|x — y|*
and |v(x) — v(y)| < b|x — y|®. It follows that

[(u+v)(x) = (u+Vv)(y)l < (a+ b)[x —y|*

Divide both sides by |x — y|* and take supremum we get

[u+ v]coapy = sup Ju() = uy)l

< a+ b,
xAyeD  |x—y|®

as wanted.
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C%%(D) is a Banach space

Sketch of proof
@ Piece 2: C%%(D) is complete.
* Suppose that (uy) is Cauchy in C%*(D).
* As ||+ [[sup < [| - [[co.a(py, this implies that (up) is Cauchy in
C%(D) and hence converges uniformly to some u € C°(D).
x Claim: u € C%(D). Fix e > 0. For every x,y € D, we have

[um — ”j]CO»a(D)\X -yl
g|lx — y| for large m,j.

|(um = uj)(x) = (um = u)(¥)| <
<

Sending j — oo, we thus have
|(um — u)(x) = (um — u)(y)| < elx — y|* for large m.
Choose one such m we arrive at
u(x) = u()| < ([umlcon(oy + ) Ix = I
So u € C%¢(D).

Luc Nguyen (University of Oxford) C4.3 — Lectures 9-10 MT 2022 8/63



C%%(D) is a Banach space

Sketch of proof
@ Piece 2: C%%(D) is complete.

x Finally, we show that u,, — u in C%*(D). As u,, converges to
u uniformly, it remains to show that [u — u]coa(py — 0.

* Fix € > 0. Recall from the previous slide that, for x,y € D, we
have

l(um — u)(x) — (um — u)(y)| < e|x — y|® for large m.

Divide both sides by |x — y|* and take supremum, we have

[um — U] coa(py < € for large m.

* As ¢ is arbitrary, we conclude that [uy, — u]co.a(py — 0.
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Morrey's inequality

Theorem (Morrey's inequality)
Assume that n < p < co. Then every u € WP(R") has a

(1-— Iﬂ))-Hélder continuous representative. Furthermore there exists a
constant C, , such that

HUHCO’l‘%(Rn) < Gopllullwrrgn- *)

In particular, WHP(R") < C%'~5(R").
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An integral mean value inequality

Let Q be a domain in R" and suppose u € C*(S2). Then

1
/ lu(y) — u(x)|dy < —r"/ IVU—(yn)_|1 dy for all B,(x) C Q.
B, (x) n - JB.(x) ly — x|

Proof
o It suffices to consider the case x = 0. We write y = sf where
s€[0,r)and § € St € R".
@ By the fundamental theorem of calculus, we have

u(sf) — u(0) = /s %u(t@) dt= /s 0;0;u(t0) dt.

It follows that |u(s6) — u(0)| < / Vu(£)] dt.
0
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An integral mean value inequality

Proof
o |u(s6) — u(0)| g/o V()| dt.

@ Integrating over 6 and using Tonelli's theorem, we get

/351(0) lu(s8) — u(0)| do < /s /851 IV u(th)| d dt
/ /6&(0) Vuly t"( 1) dt

[ e
Bs(0) ly|
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An integral mean value inequality

Proof
o/ |u(59)—u(0)|d0§/ Vuly)l,
8B1(0) B.0) Y|

e Multiplying both sides by s”~! and integrating over s, we get

/ luly) — u(0)] dy = / / — u(0)] dos"ds
B/(0) 631(0)
</ [Vu( )| dy/ 1 g
B.(0) |}’| 0

1 \Y%
= _rn/ | un(_yl)| d
n B.(0) |yl

This gives the desired integral mean value inequality.
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A corollary of the integral mean value inequality

Corollary
Suppose u € C1(Q) N WYP(Q) for some p > n. Then

n(p—1)
/ |Mﬂ—uwﬂwﬁéﬁﬂwwmwﬂw—J+IMaﬂ&&)C
B (x)

where the constant C, , depends only on n and p.

Q,

Proof

@ As in the previous proof, we assume without loss of generality
that x = 0. We start with the integral mean value inequality:

rr [Vu(y)|
u —u(0)| d — d
/,(0)| (y) —u(0)]dy < /B

(0 1y["t
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A corollary of the integral mean value inequality

Proof
e By Holder's inequality this gives

|10 - o)l dy < 2w | o v
wy)—u y = — ULPB,O{ TY}
B,(0) n (5:(0) B,(0) |y|("~D)P

r / 1/p'
= C,,r”||Vu||Lp(B,(o)){/ s~(=1r'-1) ds} .
0

@ As p > n, we have that p' < s and so (n—1)(p' — 1) < 1.

Hence the integral in the curly braces converges to
C,,7,,r*(”*1)(P’*1)+1. After a simplification, this gives

L 180 = 5O dy = Copl Fuligoion®
B (0

which is the conclusion.

Luc Nguyen (University of Oxford) C4.3 — Lectures 9-10 MT 2022 15 /63



Morrey's inequality

Theorem (Morrey's inequality)

Assume that n < p < co. Then every u € WHP(R") has a

(1 — 2)-Holder continuous representative. Furthermore there exists a
constant C, , such that

Hu”co’l‘%(]{gn) < Gopllullwrrgen- *)

In particular, WHP(R") — C%~5(R").

Proof when p < oo. The case p = oo will be dealt with later.

@ Step 1: Reduction to the case u € C®(R") N WhP(R™).

* Suppose that (*) holds for functions in C°(R") N WLP(R™).
We show that this implies the theorem.
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Morrey's inequality

Proof when p < oco.

@ Step 1: Reduction to the case u € C*(R") N WLP(R™).
* Let u € WHP(R"). As p < oo, we can find
Um € C®°(R™) N WHP(R") such that uy, — uin WP,
* Applying (*) to um — uj we have

m,j—o00

0.

|um — UJH 0, 1_*(R") < Gopllum — UjHWI»P(R")
This means that (um) is Cauchy in C** (R”), and hence
converges in C%'~ » to some u, € C1 7% P (R™).

* On the other hand, as u,, — u in LP, a subsequence of it
converges a.e. in R” to u.

* It follows that u = u, a.e. in R”", i.e. u has a continuous
representative.
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Morrey's inequality

Proof when p < .
@ Step 1: Reduction to the case u € C*®(R") N WHP(R").

* We may thus assume henceforth that v is continuous, so that
um converges to u in both WP and o s,
* Now, applying (*) to un, we have

||Um||Co,1—g(Rn) < Cn,PH”mHleP(R")-
Sending m — oo, we hence have
||U||CO,1—£(RH) < C”,PHUHWLP(R")a

as wanted.
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Morrey's inequality

Proof when p < co.

@ Step 2: Proof of the C° bound in (*). We show that, for
u e C®(R") N WP(R"), it holds that

lu(x)| < Cllul|wrpny for all x € R". (**)

* By triangle inequality, we have

1Bu(x)|u(x)] s/

Bi(x

u(y) — u(x)| dy + / lu(y)|dy.

Bi(x)

* By Holder's inequality, the last integral is bounded by
CopllullLo(8,(x))-

* On the other hand, by the corollary to the integral mean value

inequality, the first integral on the right hand side is bounded by
CopllVullp(B,(x))- The inequality (**) follows.
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Morrey's inequality

Proof when p < oo.

e Step 3: Proof of the C®'™» semi-norm bound in (*). We show
that, for u € C>*(R") N W1P(R™), it holds that

x—y|'7F forall x,y € R™. (¥*¥)

|u(x) —u(y)l < Cllulwrr@n

* If x = y, there is nothing to show.
Suppose henceforth that r = |x — y| > 0
and let W = B,(x) N B,(y).

* Let a be the average of uin W, i.e.

i),
a=-— u(z)dz. Then
W ")

|u(x) = u(y)| < |u(x) — af + [u(y) — al.
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Morrey's inequality

Proof when p < oo.

@ Step 3: Proof of the C%*~» semi-norm bound in (*).
* We estimate |u(x) — al as follows:

u(x) | < / u(x) — u(2))dz
!W!
S |u(x) — u(z)|dz.
Br(x)
By the corollary to the mean value mequallty, the right hand
side is bounded by C,,,JHVuHLp(Br(X) . So

[u(x) — 3l < Copl| Vil Loy 77

* Similarly, |u(y) — a| < G pl|Vulliog, () r* °-
* Putting these together and recalllng that r = |x — y|, we arrive
at (¥¥*).
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Morrey's inequality on domain for n < p < 00

Theorem (Morrey's inequality)

Suppose that n < p < oo and 2 is a bounded Lipschitz domain.
Then every u € W'P(Q) has a (1 — 7)-Hélder continuous
representative and

lul I r(Q) < Gipallullwie)-

y

Indeed, let E : WP(Q) — WLP(IR") be an extension operator. Then
Eu has a continuous representative and

|Ell on-g, 0 < 1 Eull oy

P() = P (R")

S CnaPHEuHleP(]R") S C”,P,QHUHWLP(Q)-
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An improved integral mean value inequality

Lemma

Suppose u € C(Bg(0)) N W1P(Bg(0)) for some p > n. Then, for
every ball B.(x) C R", there holds

1[0 V)
/B,(X)'“(”‘”(X)'dyg / el

n - (x) |.y - X|n_1 .

Proof
@ Replacing p by any p € (n, p), we may assume that p is finite.
Then we can find u,, € C*(Bgr(0)) N W1P(Bg(0)) such that
Um — uin WP Furthermore, arguing as in Step 1 in the proof

of Morrey's inequality, we also have that u,, — u in
C*+(Br(0))-
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An improved integral mean value inequality

Proof
o Uy — uin WEP(Bg(0)) and in C®'7#(Bg(0)).
@ By the integral mean value inequality for C! functions, we have

1 |Vum(y)
ltm(y) — tm(3)]dy < ~r7 / Vim0l g,
/B,(x) n Jely —x|"t

@ The left hand side converges to / lu(y) — u(x)|dy since
Br(x)
Uy — u uniformly.

1 \Y% .
@ The right hand side converges to —r”/ \u—(yn)L dy since
n B (x) ’y - X|
Vu, — Vuin LP and since the function y — W belongs to

L”" (as noted in the proof of the corollary to the integral mean
value inequality). The conclusion follows.
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Morrey's inequality

Theorem (Morrey's inequality)

Assume that n < p < co. Then every u € WHP(R") has a
(1 — 2)-Holder continuous representative. Furthermore there exists a
constant C, , such that

Hu”co’l‘%(]{gn) < Gopllullwron.- *)

In particular, WHP(R") — C%'~5(R").

Note that when p = co we can no longer use the previous proof, as
C>=(R") N Wh>=(IR") is not dense in W1>°(R").
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Morrey's inequality

Proof when p = oo.

@ Suppose u € WL°(R"). Then u € W*(Bg) for all s < oo and
all ball Bg. By Morrey's inequality in the case of finite p, we
thus have that u has a continuous representative, which we will
assume to be v itself.

@ By the improved integral mean value inequality, we have

1 [Vu(y)l
u(y) — u(x dyg—r”/ ——="dy.
/Br(X)| ( ) ( )| n B:(x) |y_X|n71

@ Step 2 and Step 3 of the proof in the case p < oo can now be
repeated to get

lu(x)] < Cl|lul|wr.oo(rny for all x € R". (**)

and

u(x) = u(y)| < Clullwsgunlx — | for all x,y € R7. (¥+%)
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Morrey's inequality

Proof when p = .

o |t follows that

|ull cormm < Cllul[ oo (mn)

and we are done.
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Morrey's inequality on domains

We make a couple of remarks:

e If Q and p are such that there exists a bounded linear extension
operator £ : WHP(Q) — WP(R") (in particular Eu = u a.e. in
Q for all u € WP(Q)), then

WP(Q) — C®'75(Q).

@ The same proof on the whole space work on balls without
establishing the existence of an extension operator. (Check this!)

@ For general domains, one only has

WhP(Q) < Co P (Q).

loc

(Revisit the example of the disk in R? with a line segment
removed.)
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More on W1

We have the following important theorem for the space W>°(Q):

Suppose that 2 C R" is a bounded Lipschitz domain. Then

Wi=(Q) = CO(Q).
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Friedrichs’ inequality

Theorem (Friedrichs' inequality)

Assume that € is a bounded open set and 1 < p < oco. Then, there
exists Cp o such that

ullee) < CoallVul| (o) for all u e Wol’p(Q).

Note that

@ Only the derivatives of u appear on the right hand side.

@ The function u belongs to Wy (). The inequality is false for
ue WhHr(Q).

@ By Friedrichs’ inequality, when Q is bounded, if we define
[|ul|] = [Vullra), then ||| - ||| is a norm on W,P(Q) which is
equivalent to the norm || - || 1.r(q)-

@ In some text, Friedrichs' inequality is referred to as Poincaré’s
inequality.
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Friedrichs' inequality

Proof _ o
@ We may assume that €2 is contain in

. the slab S := {(x/, x,) : 0 < x, < L}.

I B e— @ As usual, using the density of C°(Q2)
is dense in W, P(Q), it suffices to
s prove

X lule@) < Coall Vel

for u € C°(Q).
e Take an arbitrary u € C2°(2) and extend u by zero outside of Q
so that u € C°(S).
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Friedrichs' inequality

Proof

@ Now, for every fixed x’, we have

)l < [ 1ot o e < { [

0
L 1/p p=t
< ' )P ,
_{/0 19u(X, t)] dt} X,

Xn

1/p /
19,u(X, t)|P dt} xL/P
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Friedrichs' inequality

Proof
p—1

L 1/p p=1
o |u(x,x,)| < {/0 |8,,u(x’,t)\”dt} " .

o |t follows that

L L
1
/ lu(x', x,)|P dx, < —L”/ |0,u(xX', t)|P dt.
0 P Jo

@ Integrating over x’ then gives

||u||’Zp / / lu(x', x,)|P dx, dx’

S— / / |Du(x', t)|P dt dx" = L”HVUH
Rn—1

p

We are done.
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Friedrichs' inequality

Theorem (Friedrichs' inequality)

Assume that € is a bounded open set and 1 < p < co. Then, there
exists C, o such that

IVl e(y for all u € WyP(Q).

ullr@) < Coa
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Friedrichs-type inequality

Theorem (Friedrichs-type inequality)

Assume that Q) is a bounded open set and 1 < p < co. Suppose that
1<qg<pifp<nl<g<ocoifp=nandl <qg<ooifp>n.
Then there exists C, 5 4.0 such that

ulla@) < Copa0

IV ul|oay for all u € WyP(Q).
Proof
e Extend u by zero to R”".

@ If p < n, we have by Gagliardo-Nirenberg-Sobolev's inequality,
that

HUHLP*(Q) = HUHLP*(R") < C||VU||LP(R") = C||VU||LP(Q)-

As 2 has finite measure, ||ul| o) < C|lul[s(q), and so we're
done in this case.
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Friedrichs-type inequality

Proof

@ Note that, as Q has finite measure, W1"(Q) — W1P(Q) for
any p < p. The case p = n thus follows from the previous case.

@ When p > n, we have by Morrey's inequality that

[ulli@) = Nlull i @ny < Cllullwre@ey = Cllullwe)-

By Friedrichs’ inequality, we have ||u|lwirq) < C||Vul|ir(q)-
Also, as Q has finite measure, ||u|o) < C|lul|L=(0)-
Putting these together we're also done in this case.
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Rellich-Kondrachov's theorem

Theorem (Rellich-Kondrachov's compactness theorem)

Let Q be a bounded Lipschitz domain and 1 < p < co. Suppose
1<g<p*whenp<n l1l1<g<oowhenp=n,andl <qg<oo
when p > n. Then the embedding WP(Q) — L9(Q) is compact, i.e.
every bounded sequence in WYP(Q) contains a subsequence which
converges in L9(2).
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Critical embedding is not compact

For 1 < p < n, the embedding W'P(Q2) < LP"(Q) is not compact.

Example by ‘concentration’

@ This example is by scaling. It is related to the argument in
Lecture 7 to inspect for which p and q the space W'P(R") is
embedded L9(R").

@ We may assume that the origin lies inside 2 and B, C 2. Take
an arbitrary non-zero function u € C°(R") with Supp(u) C B,,.
We define, for A > 0, ux(x) = u(Ax).

@ We knew that

”UAHLQ = Ain/qHUHLq and HVUAHLP = Alin/pHVU”Lp.
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Critical embedding is not compact

Example by ‘concentration’

@ Hence, if we let &y, = A\~"1+"/Py,, then

1axllee = A ulle,
x| o = llull i

IVax|[e = [[Vul e
In particular, as A\ — oo,

laxllwee < [lullwre and [[ax]| e+ = [[ul] - > 0.
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Critical embedding is not compact

Example by ‘concentration’

@ Now if the embedding W1P(Q2) — LP"(Q) was compact, then as
(Gy) is bounded in WP, we could select a sequence A\, — oo
such that (dy,) converges in LP"(Q) to some limit u, € LP (Q).

@ This would imply that
[ll e = Jim {[dx,[[ oo = [lufl o > O.
—00
@ On the other hand, Supp(iy) C By,/» and so iy — 0 a.e. in Q

as A — oo. This would give that u, = 0 a.e. which contradicts
the above.
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Critical embedding is not compact

For 1 < p < n, the embedding W1P(R") — LP"(R") is not compact.

Example by ‘translations’

o Take again an arbitrary non-zero function u € C°(R") and fix
some unit vector e. Let us(x) = u(x + se) = 7eou(x).

o Then |lusllwre = [[ullwre, [|usllie = [ull o Also
Supp(us) = {x — se : x € Supp(u)} and so us — 0 a.e. on R”
as s — 00,

@ By the same reasoning, there is no sequence s, — oo such that
u, is convergent in LP".
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Pre-compactness criterion in LP()

Let us now do some preparation for the proof of Rellich-Kondrachov's
theorem. Recall:

Theorem (Kolmogorov-Riesz-Fréchet's theorem)

Let 1 < p < oo and §2 be an open bounded subset of R". Suppose
that a sequence (f;) of LP(Q2) satisfies

@ (Boundedness) sup; ||fi| o) < o0,

@ ( Equi-continuity in LP ) For every € > 0, there exists § > 0 such
that |7, f; — fil|r() < € for all |y| < §, where f; is the extension
by zero of f; to all of R".

Then, there exists a subsequence (f;,) which converges in LP(2).

In the case we are considering, boundedness follows from the
embedding theorems. Let us now consider equi-continuity.
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Continuity of translation operators in W1?

Let 1 < p < co. Forevery v € WHP(R") and y € R”, it holds that

I7yv = v|e@ny < Y|V V| owry.

Proof
@ Using the density of C=(R") N WP(R") in W1P(R™) for
p < oo, it suffices to consider v € C®(R") N W1P(R").
@ By the mean value theorem and Holder's inequality, we have

1 d 1
Wy +x) = vl < [ vty +x)lde= [ nowly + 2l de
0 0

1 1/p
<if [ 1vvtey + 0 o)
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Continuity of translation operators in W1?

Proof
1
o |v(y +x)—v(x)|P < |y|”/ |Vv(ty + x)|P dt.
0

@ Integrating over x gives

Iryv = viite = [ [v(y +x) = v(x)]" dx
]Rn

1
<P [ [ 19uy + P deox
R” JO
1
_pr / Vv(ty +x)|P dx dt
0 R"
Y PITYEsg

So we have ||7,v — v||r < |y|||V V| o) as wanted.
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Continuity of translation operators in WP

We remarked in Lecture 3 that the map h — 7, is not a continuous
map from R" into Z(LP(R"), LP(R")).

The above lemma implies that h — 7, is a continuous map from R"
into Z(WHP(R"), LP(R™)).

Proof

o Let X = Z(WHP(R"), LP(R™)). The statement amounts to
7, — Id in X as y — 0. So we need to show that

0= lim |7, — Id||x = lim sup lTyu — ul|Le.
y—0 Y y—0 uer’p(Rn):Hunl,pgl y

@ By the lemma, we have |7 u — ul[r < |y|||Vullr < y|
whenever ||u||y1» < 1. So the point above is clear.
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Characterisation of WP using translation

operators

Assume that 1 < p < oo and v € LP(R"). Suppose that there exist
small r > 0 and large C such that

7y v — v|[omny < Cly| for all |y| < r.

Then

v e WP(R") and ||Vv|| e < C.

Sketch of proof
o Fix a direction ;. By hypothesis q; := }[r,v — v] is bounded in
LP for |t| < r. By the weak sequential compactness property in

LP, we have along a sequence t, — 0 that g, converges weakly
in LP to some w; € LP(R").
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Characterisation of WP using translation

operators

Sketch of proof
° qy, = ﬁ[ﬁkeiv —v] = w;in LP.

@ The key point is the following identity

/ [Ttkeiv - V]QO dx = _/ V[SO - T—tkeiQD] dx.
n Rn

@ Now divide both side by t, and sending kK — oo, we then get

/ w;p dx = —/ v dx for all p € CZ°(R").

This proves 0;v = w; € LP(R"). The conclusion follows.
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Rellich-Kondrachov's theorem

Theorem (Rellich-Kondrachov's compactness theorem)

Let € be a bounded Lipschitz domain and 1 < p < co. Suppose
1<g<p'whenp<nl<g<oowhenp=n, andl < q< o0
when p > n. Then the embedding WP(Q) — L9(Q) is compact, i.e.
every bounded sequence in WP(Q) contains a subsequence which
converges in L9(2).

We reiterate that, when p < n, the endpoint embedding
WhP(Q) < LP" () is not compact.

When p > n, we have W(Q) < C**75(Q), so the above is a
consequence of Ascoli-Arzela's theorem. (Check this!)
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Rellich-Kondrachov's theorem

Proof of the case g = p < n.

@ Suppose that (u,,) is bounded in W1P(Q). We need to
construct a subsequence (u,) which converges in LP().

@ As (uy) is bounded in LP(2), we would be done by
Kolmogorov-Riesz-Fréchet's theorem if (u,,) is equi-continuous
in LP sense.

@ To make use of the continuity property of translation operators
in WLP(R™), we let E : WHP(Q) — WP(R") be a bounded
linear extension operator. Then the family (Eu,,) is bounded in
LP(R™) and is equi-continuous in LP(R") sense. But as R" is
unbounded, we cannot apply Kolmogorov-Riesz-Fréchet's
theorem to this family.
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Rellich-Kondrachov's theorem

Proof of the case g = p < n.
@ We proceed as follows: Take a large ball Bg containing €2 and
select a cut-off function ¢ € C2°(Bg) such that ( =1 in €. Let

Vm = CEu,,.
Clearly v, = up a.e. in Q, Supp(v,) C Bg and (v,,) is bounded
in WLP(R").
@ We aim to apply Kolmogorov-Riesz-Fréchet's theorem to
(V| B)-

* It is clear that (vm|g,) is bounded in LP(Bg).
% Also, by the continuity of translation operators in WP, we have

7y vim = Vinlle@ny < YDVl toqrry < Y11 Vinllwrp(mny-

Therefore, for every € > 0, there exists § > 0 such that
[Ty Vin — Vmll1p(Bg) < € for all mand all |y| < §, i.e. (vim|gg) is
equi-continuous in LP sense. We're done.
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Rellich-Kondrachov's theorem

Proof of the general case for p < n.

@ Supposethat 1 < g< p*if p<n, 1< g< if p=n. Bythe
embedding theorems, we know that there exists § > g such that
WLP(Q) — LI(Q).

@ Suppose that (u,,) is bounded in W1P(Q). We need to
construct a subsequence (u,;) which converges in L9(2).

@ We knew from the previous case that there is a subsequence
(tm;) which converges in LP(2) to some u € LP(R2). Passing to
a subsequence if necessary, we may also assume that (upm,)
converges to u a.e. in €.

@ To conclude, we show that u € L9(Q2) and (u,) converges in
L9(Q) to wu.

e If g < p, the above follows from Holder's inequality. We assume
henceforth that g > p.
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Rellich-Kondrachov's theorem

Proof of the general case for p < n.

@ We now show that u € L9(Q). In fact, we show that u € L9(Q).
* By the embedding W1P(Q) < L3(Q), we have that up, is
bounded in L9(Q).
* By Fatou's lemma, we have

/]u]adxgliminf/|um.\€’dx<oo.
Q j=oe Jo o

Hence u € L9(Q).
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Rellich-Kondrachov's theorem

Proof of the general case for p < n.

e Finally, we show that vy, — v in L9().
o We observe that um, — u converges to 0 in LP(2) and is
bounded in L(Q) with p < g < g.
o Now we write, for § € (0,1) to be fixed

Jom, = e = [ Jm, = el b = [ Jum, = 1%, = 01700

and apply Holder's inequality with some pair of conjugate
exponents r and r’ to be fixed:

1/r , 1/r
L 9 L qor o q(1-0)r ]
|um; — ullq < {/Q]umj ul dx} {/Q|umJ ul dx}
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Rellich-Kondrachov's theorem

Proof of the general case for p < n.
o ...we are showing that u, — uin L9(Q).

o Um, —u—0in LP(Q) and upy; — u is bounded in L9(Q) with
p<qg<qg.

o [lum; — ullia < [[um; — ulfaorlltm; = ull} o),

o Now, if we can chose § € (0,1) and r > 1 such that gfr = p
and g(1 — 6)r' = §, then the first factor on the right hand side
goes to zero and the second factor remains bounded, and so
Um; — b in L9(Q) as wanted.

o To solve for # and r, we first eliminate r to obtain

1 1 P
l=—-+—-—=60-+(1-0
r+r’ q +( )

Q \Q>

As 2 g <1 < , we can certainly select 6 € (0, 1) satisfying the
above The exponent ris given by r = %. This concludes the
proof.
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Poincaré’s inequality

Theorem (Poincaré’s inequality)

Suppose that 1 < p < oo and 2 is a bounded Lipschitz domain.
There exists a constant C, , o > 0 such that

HU — UQ”Lp(Q) < Cn7p79 |VU”LP(Q) for all u € Wl’p(Q),

where iq Is the average of u in Q:

_ 1/
g = — u(x) dx.
2= o] Jo )

When p = oo, the theorem is a consequence of the fact that
W (Q) = C%(Q). (Check this!)
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Poincaré’s inequality

Proof for p < oo.

@ We argue by contradiction. Suppose the conclusion is not true.
Then there exists a sequence (u,,) C W1P(Q) such that

[t = Tl e > M|V tim]| 1o,

where i, is the average of up, in .

@ Replacing u,, by u,, — i,,, we may assume that u,, has zero
average, so that |[upl[re > m||Vup|| e

@ Replacing u,, by mum, we may assume that || up||» = 1.

@ The above implies that ||Vuy | < L and so (up,) is bounded in
WhP(Q).

@ By Rellich-Kondrachov's compactness theorem, we can find a
subsequence (u,,) which converges in LP(2), say to u.
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Poincaré’s inequality

Proof for p < oc.
@ By the strong convergence of u, to u, we have that

Julle = Tim fJum,[lee = 1,
j—oo

/udx: Iim/um.dx:O.
Q j=oo Jo

@ On the other hand, as ||[Vup| > < L, we have for every
p € C(Q) that

/ u@;g@ dx = I|m / umj&-go dx = — ||m /&-umj(p dx = 0.
Q J70 Jo j— Jq

Hence u is weakly differentiable and Vu = 0 in €. In Sheet 2,
we show that this implies u is constant.

@ As u has zero average, we must then have v = 0 in €, which
contradicts the assertion that ||ul|» = 1.

and
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Local differentiability of Sobolev functions

Suppose Q is a domain in R" and n < p < co. Assume that

ue WHP(Q) N C(Q). Then u is differentiable a.e. in Q and its
derivatives equal its weak derivatives a.e. in Q.

Proof

@ We will only consider the case p < co. The case p =00 is a
consequence.

@ By Lebesgue’s differentiation theorem, there is a set Z C 2 of
measure zero such that

1
lim — \Vu(y) — Vu(x)|Pdy =0 forall x e Q\ Z.

n
r—0 r Br(X)

We aim to show that v is differentiable at those x € Q\ Z.
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Local differentiability of Sobolev functions

Proof

e Fix some x € Q\ Z and consider the function

v(y) = u(y) — u(x) = Vu(x) - (y — x) for y € Q.
Then v € WHP(Q) N C(Q), v(x) =0 and
Vv(y) = Vu(y) — Vu(x).

@ By Morrey's inequality, we have for every ball B,(x) € Q and
y € 0B,(x) that

1—n
P

VD) = )~ V)] < [ o5 0 X~ ]
< Cri e ||Vv||Lp(B,(X))

n

1/
= Crl_P{ / |Vu(y) — Vu(x)|P dx} ’.
B/ (x)
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Local differentiability of Sobolev functions

Proof
@ So we have
* lim 1 |Vu(y) — Vu(x)|Pdy =0, and
)

r—0 r” B,(x

n 1
* |v(y)] < Cfl"{/ [Vu(y) — Vu(x)|P dy} P whenever
B:(x)
ly —x|=r.
Putting the two together, we see that
1 1

ylingW(y)—U(X)—VU(X)'()’—X)| = y"g}( H|V(Y)| =0.

This means that v is differentiable at x and its classical gradient
at x is the same at its weak gradient at x.
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LP differentiability of Sobolev functions

Suppose Q2 is a domain in R" and 1 < p < n. Assume that
u € WYP(Q). Then for almost all x € Q it holds that

li L
m

{/B,(x) lu(y) — u(x) — Vu(x) - (y —x)|? dy}l/p —0.

Discussion of proof

@ As in the case p > n, we start by picking a set Z C Q of
measure zero such that

Iimi \Vu(y) — Vu(x)|Pdy =0 forall x e Q\ Z.

n
r—0 r Br(X)
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LP differentiability of Sobolev functions

Discussion of proof

@ We consider again the function

v(y) = u(y) — u(x) — Vu(x) - (y — x) for y € Q,

so that v € WP(Q) and Vv(y) = Vu(y) — Vu(x). Note that
however the meaning of v(x) = 0 is rather obscure since v does
not have enough regularity.

@ If we have the Poincaré-type inequality

[VIle(B.(x)) < CrlIV V] Lo, (x)s (*)

then, by recalling that r_”||Vv||‘L’p(B,(X)) —0asr—0, wecan
obtain the conclusion as in the case p > n considered previously.

However, (*) is general not valid for arbitrary functions
v e Whe,

Luc Nguyen (University of Oxford) C4.3 — Lectures 9-10 MT 2022 62 /63



LP differentiability of Sobolev functions

Discussion of proof

@ The proof is actually much more involved and goes through
approximation of u by smooth functions.

@ It should be clear that the conclusion hold when u € C1(Q) as

u(y) — u(x) = Vu(x) - (y = x) = o]y — x|) as y — x.
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