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Figure 2.12: Configuration of air and water in pore space. The contact angle ✓
measured through the water is acute, so that water is the wetting phase. �ws, �as and
�aw are the surface energies of the three interfaces.

interface is curved, and in an equilibrium configuration the curvature of this interface
will be constant throughout the pore space. The value of the curvature depends on
the amount of liquid present. The less liquid there is (i. e., the smaller the value of
S), then the smaller the pores where the liquid is found, and thus the higher the
curvature. Associated with the curvature is a suction e↵ect due to surface tension
across the air/water interface. The upshot of all this is that the air and water pressures
are related by a capillary suction characteristic or capillary pressure function which
expresses the di↵erence between the pressures as a function of mean curvature, and
hence, directly, S. Elementary geometry in a cylindrical pore of diameter dp implies

pa � p =
2� cos ✓

dp
, (2.121)

where ✓ is the contact angle. More generally, we can take

pa � p = f(S). (2.122)

The suction characteristic f(S) is equal to 2�, where  is the mean interfacial
curvature: � is the surface tension. For air and water in soil, f is positive as water is
the wetting phase, that is, the contact angle at the contact line between air, water and
soil grain is acute, measured through the water (see figure 2.12). The resulting form
of f(S) displays hysteresis as indicated in figure 2.13, with di↵erent curves depending
on whether drying or wetting is taking place.

2.3.1 The Richards equation

To model the flow, we have the conservation of mass equation in the form

@(�S)

@t
+r.u = 0, (2.123)
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Figure 2.13: Capillary suction characteristic (A.K.A. capillary pressure). It displays
hysteresis in wetting and drying.

where we take � as constant. Darcy’s law for an unsaturated flow has the form

u = �
k(S)

µ
[rp+ ⇢gk̂], (2.124)

where the permeability k depends on S. If k(1) = k0 (the saturated permeability),
then one commonly writes k = k0kr(S), where kr is the relative permeability. The
most obvious assumption would be kr = S, but this is rarely appropriate, and a better
representation is a convex function, such as kr = S3. An even better representation

is a function such as kr =

✓
S � S0

1� S0

◆3

+

, where S0 is known as the residual saturation.

It represents the fact that in fine-grained soils, there is usually some minimal water
fraction which cannot be removed. It is naturally associated with a capillary suction
characteristic function pa � p = f(S) which tends to infinity as S ! S0+, also
appropriate for fine-grained soils.

In one dimension, and if we take the vertical coordinate (upwards) to be z, we
obtain the Richards equation

�
@S

@t
�
@V (S)

@z
=

@

@z


D(S)

@S

@z

�
, (2.125)

where

V (S) = K0kr(S), D(S) = �
K0

⇢g
kr(S)f

0(S), K0 =
k0⇢g

µ
; (2.126)

K0 is the saturated hydraulic conductivity. We are assuming pa = constant (and also
that the soil matrix is incompressible).
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2.3.2 Non-dimensionalisation

We choose scales for the variables as follows:

f = pe , z ⇠ l, t ⇠
�l

K0
, (2.127)

where we have defined the capillary pressure scale to be

pe =
�

dp
; (2.128)

here dp is the (mean) pore diameter and � is the surface tension, assumed constant.
The quantity pe is often referred to as the pore entry pressure, and we will discuss
this in more detail later.

The Richards equation then becomes, in dimensionless variables,

St � k0
r
(S)Sz = " [D⇤(S)Sz]z , (2.129)

where
D⇤(S) = �kr(S) 

0(S). (2.130)

Note that  is a decreasing function, so that the di↵usion coe�cient D⇤ > 0, as is
indeed necessary. The single dimensionless parameter is

" =
pe
⇢gl

, (2.131)

and is small for coarse soils, and O(1) for fine-grained soils. As a specific example,
we take l = 1 m, so that ⇢gl ⇠ 104 Pa. If we take � = 70 mN m�1 fpr water/air, and
dp ⇠ 0.1 mm, then pe ⇠ 700 Pa, and " ⇠ 0.07; this may be appropriate for sandy
soils. For silty soils, we might have dp ⇠ 10 µm, and then " ⇠ 0.7.

As a specific example, we consider the case of soil wetting due to surface infiltra-
tion: of rainfall, for example. Suppose that there is a constant downwards flux of
(dimensional) rainfall q at the surface. It is convenient to define the depth ⇣ = �z,
and take the vadose zone to be in 0 < ⇣ < 1. The Richards equation is then

St + k0
r
(S)S⇣ = " [D⇤(S)S⇣ ]⇣ , (2.132)

and suitable boundary conditions for the saturation are

kr(S)� "D⇤(S)S⇣ = q⇤ at ⇣ = 0, q⇤ =
q

K0
,

S = 1 at ⇣ = 1. (2.133)

In the steady state, the first condition in (2.133) applies everywhere, and the
solution is a quadrature, Z 1

S

"D⇤(S) dS

kr(S)� q⇤
= 1� ⇣. (2.134)
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Obviously S must be an increasing function of ⇣, and this requires q⇤ < kr(1) = 1, in
other words q < K0: the supplied rainfall must be less than the saturated hydraulic
conductivity.

What if it is not? It is easy to see from the solution (2.134) that as q⇤ ! 1�, the
saturation approaches one. If q > K0, the supplied flux at the surface is greater than
the soil’s maximum drainage capacity (which is the saturated hydraulic conductivity).
So in this case, water must pond at the surface, and the boundary condition is replaced
by S = 1 at ⇣ = 0; clearly in this case, the soil is waterlogged and the water table
is pushed up to the soil surface. Such ponding is commonly observed during periods
of heavy rainfall. For silt with k0 = 10�14 m2, the hydraulic conductivity K0 ⇠ 10�7

m s�1 or 3 m y�1, while average rainfall in England, for example, is  1 m y�1.
Thus on average q⇤  1 for such soils, but during storms we can expect q⇤ � 1.
When ponding does occur, the pond depth is determined by the balance between
precipitation, infiltration, and surface run-o↵.

2.3.3 Snow melting

An application of the unsaturated flow model occurs in the study of melting snow.
In particular, it is found that pollutants which may be uniformly distributed in snow
(e. g. sulphate SO2�

4 from sulphur emissions via acid rain) can be concentrated in melt
water run-o↵, with a consequent enhanced detrimental e↵ect on stream pollution.
The question then arises, why this should be so? We shall find that uniform surface
melting of a dry snowpack can lead to a meltwater spike at depth.

Suppose we have a snow pack of depth l. Snow is a porous aggregate of ice
crystals, and meltwater formed at the surface can percolate through the snow pack to
the base, where run-o↵ occurs. (We ignore e↵ects of re-freezing of meltwater.) The
model (2.132) is appropriate, and to be specific, we will also take

kr = S3,  (S) =
1

S
� S, (2.135)

based on typical experimental results.
Suitable boundary conditions in a melting event might be to prescribe the melt

flux q0 at the surface, thus

kr

✓
"
@ 

@⇣
+ 1

◆
= q⇤ =

q0
K 0

at ⇣ = 0. (2.136)

If the base is impermeable, then

kr

✓
"
@ 

@⇣
+ 1

◆
= 0 at ⇣ = 1. (2.137)

This is certainly not realistic if S reaches 1 at the base, since then ponding must
occur and presumably melt drainage will occur via a sub-horizontal flow under the
snowpack, but we will examine the initial stages of the flow using (2.137) before that
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happens. Finally, we suppose S = 0 at t = 0. Again, this is not realistic in the model
(it implies infinite capillary suction) but it is a feasible approximation to make.

Simplification of this model now leads to the dimensionless Richards equation in
the form

@S

@t
+ 3S2@S

@⇣
= "

@

@⇣


S(1 + S2)

@S

@⇣

�
. (2.138)

If we choose � = 70 mN m�1, dp = 0.1 mm, ⇢ = 103 kg m�3, g = 10 m s�2, l = 1
m as before, then again " = 0.07. It follows that (2.138) has a propensity to form
shocks, these being di↵used by the term in " over a distance O(") (by analogy with
the shock structure for the Burgers equation).

We want to solve (2.138) with the initial condition

S = 0 at t = 0, (2.139)

and the boundary conditions

S3
� "S(1 + S2)

@S

@⇣
= q⇤ on ⇣ = 0, (2.140)

and

S3
� "S(1 + S2)

@S

@⇣
= 0 at ⇣ = 1. (2.141)

Roughly, for "⌧ 1, these are

S = S0 at ⇣ = 0,

S = 0 at ⇣ = 1, (2.142)

where S0 = q⇤1/3, which we initially take to be O(1) (and < 1, so that surface ponding
does not occur).

Neglecting ", the solution is the step function

S = S0, ⇣ < ⇣f ,

S = 0, ⇣ > ⇣f , (2.143)

and the shock front at ⇣f advances at a rate ⇣̇f given by the jump condition

⇣̇f =
[S3]+�
[S]+�

= S2
0 . (2.144)

In dimensional terms, the shock front moves at speed q0/�S0, which is in fact obvious
(given that it has constant S behind it).

The shock structure is similar to that of Burgers’ equation. We put

⇣ = ⇣f + "Z, (2.145)
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Figure 2.14: S(Z) given by (2.150); the shock front terminates at the origin.

and S rapidly approaches the quasi-steady solution S(Z) of

�cS 0 + 3S2S 0 = [S(1 + S2)S 0]0, (2.146)

where c = ⇣̇f ; hence
S(1 + S2)S 0 = �S(S2

0 � S2), (2.147)

in order that S ! S0 as Z ! �1, and where we have chosen

c = S2
0 , (2.148)

(as S+ = 0), thus reproducing (2.144). The solution is a quadrature,

Z
S (1 + S2) dS

(S2
0 � S2)

= �Z, (2.149)

with an arbitrary added constant (amounting to an origin shift for Z). Hence

S �
(1 + S2

0)

2S0
ln


S0 + S

S0 � S

�
= Z. (2.150)

The shock structure is shown in figure 2.14; the profile terminates where S = 0
at Z = 0. In fact, (2.147) implies that S = 0 or (2.150) applies. Thus when S given
by (2.150) reaches zero, the solution switches to S = 0. The fact that @S/@Z is
discontinuous is not a problem because the di↵usivity S(1 + S2) goes to zero when
S = 0. This degeneracy of the equation is a signpost for fronts with discontinuous
derivatives: essentially, the profile can maintain discontinuous gradients at S = 0
because the di↵usivity is zero there, and there is no mechanism to smooth the jump
away.

Suppose now that k0 = 10�10 m2 and µ/⇢ = 10�6 m2 s�1; then the saturated
hydraulic conductivity K0 = k0⇢g/µ = 10�3 m s�1. On the other hand, if a metre
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thick snow pack melts in ten days, this implies q0 ⇠ 10�6 m s�1. Thus S3
0 = q0/K0 ⇠

10�3, and the approximation S ⇡ S0 looks less realistic. With

S3
� "S(1 + S2)

@S

@⇣
= S3

0 , (2.151)

and S0 ⇠ 10�1 and " ⇠ 10�1, it seems that one should assume S ⌧ 1. We define

S =

✓
S3
0

"

◆1/2

s; (2.152)

(2.151) becomes

�s3 � s


1 +

S3
0

"
s2
�
@s

@⇣
= 1 on ⇣ = 0, (2.153)

and we have S3
0/" ⇠ 10�2, � = (S0/")3/2 ⇠ 1.

We neglect the term in S3
0/", so that

�s3 � s
@s

@⇣
⇡ 1 on ⇣ = 0, (2.154)

and substituting (2.152) into (2.138) leads to

@s

@⌧
+ 3�s2

@s

@⇣
⇡

@

@⇣


s
@s

@⇣

�
, (2.155)

if we define t = ⌧/ ("S3
0)

1/2. A simple analytic solution is no longer possible, but
the development of the solution will be similar. The flux condition (2.154) at ⇣ = 0
allows the surface saturation to build up gradually, and a shock will only form if
� � 1 (when the preceding solution becomes valid).

2.3.4 Similarity solutions

If, on the other hand, � ⌧ 1, then the saturation profile approximately satisfies

@s

@⌧
=

@

@⇣


s
@s

@⇣

�
,

�s
@s

@⇣
=

⇢
1 on ⇣ = 0,
0 on ⇣ = 1.

(2.156)

At least for small times, the model admits a similarity solution of the form

s = ⌧↵f(⌘), ⌘ = ⇣/⌧�, (2.157)

where satisfaction of the equations and boundary conditions requires 2↵ = � and
2� = 1 = ↵, whence ↵ = 1

3 , � = 2
3 , and f satisfies

(ff 0)0 � 1
3(f � 2⌘f 0) = 0, (2.158)
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with the condition at ⇣ = 0 becoming

�ff 0 = 1 at ⌘ = 0. (2.159)

The condition at ⇣ = 1 can be satisfied for small enough ⌧ , as we shall see, because
the equation (2.158) is degenerate, and f reaches zero in a finite distance, ⌘0, say, and
f = 0 for ⌘ > ⌘0. As ⌘ = 1/⌧ 2/3 at ⇣ = 1, then this solution will satisfy the no flux

condition at ⇣ = 1 as long as ⌧ < ⌘�3/2
0 , when the advancing front will reach ⇣ = 1.

To see why f behaves in this way, integrate once to find

f(f 0 + 2
3⌘) = �1 +

Z
⌘

0

f d⌘. (2.160)

For small ⌘, the right hand side is negative, and f is positive (to make physical sense),
so f decreases (and in fact f 0 < �

2
3⌘). For su�ciently small f(0) = f0, f will reach

zero at a finite distance ⌘ = ⌘0, and the solution must terminate. On the other hand,

for su�ciently large f0,

Z
⌘

0

f d⌘ reaches 1 at ⌘ = ⌘1 while f is still positive (and

f 0 = �
2
3⌘1 there). For ⌘ > ⌘1, then f remains positive and f 0 > �

2
3⌘ (f cannot reach

zero for ⌘ > ⌘1 since

Z
⌘

0

f d⌘ > 1 for ⌘ > ⌘1). Eventually f must have a minimum

and thereafter increase with ⌘. This is also unphysical, so we require f to reach zero
at ⌘ = ⌘0. This will occur for a range of f0, and we have to select f0 in order that

Z
⌘0

0

f d⌘ = 1, (2.161)

which in fact represents global conservation of mass. Figure 2.15 shows the schematic
form of solution both for � � 1 and � ⌧ 1. Evidently the solution for � ⇠ 1 will
have a profile with a travelling front between these two end cases.

2.4 Immiscible two-phase flows

In some circumstances, the flow of more than one phase in a porous medium is
important. For example, the flow of CO2 in water (carbon sequestration), or the
flow of oil and gas, or oil and water (or all three!) in a sedimentary basin, such
as that beneath the North Sea. Suppose there are two phases; denote the phases
by subscripts w and n, being the wetting and non-wetting fluids, and Sw, Sn are the
saturations. It is assumed that together these two phases occupy all the pore space,
such that Sn + Sw = 1. Note that the definition of which fluid is wetting and which
is non-wetting relates to the size of the contact angle between the phases (i.e. if the
angle is less than ⇡/2, the fluid is known as wetting).

For each phase, there is an associated relative permeability function, which we
denote krn(Sn) and krw(Sn). We write these in terms of the non-wetting saturation
without loss of generality (since Sw = 1�Sn). As discussed before, krn is a monotone
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Figure 2.15: Schematic representation of the evolution of s in (2.155) for both large
and small �.

increasing function of Sn, and for the same reasons krw is a decreasing function of
Sn. They do not necessarily have a similar functional form. Furthermore, they
typically display hysteresis phenomena. For example, it is easier (i.e. larger relative
permeability) for CO2 to invade a region of pore space than it is for it to withdraw
from an existing area. This is the chief mechanism for capillary trapping during
carbon sequestration.

The capillary (or suction) pressure pc = pn � pw is given by

pc(Sn) = pe (Sn), (2.162)

where pe is the pore entry pressure, and  is a positive, monotonically increasing
function of saturation Sn. The pore entry pressure is the minimum pressure required
to fill the largest pore spaces of the rock with non-wetting phase. As the di↵erence
in pressure pn � pw increases, smaller and smaller pore spaces can be occupied with
non-wetting phase.

Mass conservation takes the form

�
@Sn

@t
+r.un = 0,

�
@Sw

@t
+r.uw = 0, (2.163)

where � is (constant) porosity, and Darcy’s law for each phase is

un = �
k0
µn

krn(Sn)
h
rpn + ⇢ngk̂

i
,

uw = �
k0
µw

krw(Sn)
h
rpw + ⇢wgk̂

i
. (2.164)
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2.4.1 Buckley-Leverett Flow

A canonical case of two-phase flow in porous media is the study of immiscible displace-
ment in a long-thin aquifer, also known as Buckley-Leverett flow. To model this, we
make the assumption that the flow is approximately one-dimensional, and the e↵ects
of gravity can be ignored. Such flows are relevant to geothermal energy production
and carbon sequestration, but the problem formulation was originally employed to
model hydrocarbon extraction in geological reservoirs.

We consider a constant injection of wetting and non-wetting phases at the aquifer
inlet x = 0, and model the spatial and temporal development of the saturations Sn,
Sw, downstream towards the aquifer outlet at x = L (see figure 2.16). By conservation
of mass (2.163) we have

un + uw = U, (2.165)

for some constant inlet velocity U . By inserting (2.164) (in one dimension) into
(2.165) and substituting pw = pn � pc, we get

�
k0
µw


Mkrn

@pn
@x

+ krw

✓
@pn
@x

�
@pc
@x

◆�
= U, (2.166)

where M = µw/µn is the viscosity ratio. Hence, we can re-arrange to get the non-
wetting pressure gradient,

@pn
@x

=
�µwU/k0

Mkrn + krw
+

krw
Mkrn + krw

@pc
@x

. (2.167)

By inserting this into (2.163) we get the governing equation for the saturation

�
@Sn

@t
+ V (Sn)

@Sn

@x
=

@

@x


D(Sn)

@Sn

@x

�
, (2.168)

where the functions V , D are defined as

V (Sn) = U
@

@Sn


Mkrn

Mkrn + krw

�
,

D(Sn) =
k0pe
µw

Mkrnkrw
Mkrn + krw

@ 

@Sn

. (2.169)

The second term in (2.168) can therefore be interpreted as advection at speed V =
UJ 0(Sn), where J = Mkrn/(Mkrn + krw) is the flow rate fraction. The third term is
di↵usive, indicating that the role of the capillary pressure is to smooth out gradients
in the saturation Sn. It should be noted that a similar formulation can be achieved
in terms of Sw, but here we stick with an Sn formulation without loss of generality.

It is interesting to measure the relative importance between each of these advective
and di↵usive e↵ects. For this, we define a dimensionless Peclet number,

Pe =
UµwL

k0pe
. (2.170)
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Figure 2.16: Schematic diagram and plots of the dimensionless flow rate fraction J(S)
and advection speed V (S) as a function of non-wetting fluid saturation Sn (for the
Buckley-Leverett problem). The viscosity ratio M is taken to be 30.

In many environmental scenarios, the above parameters lead to a large Peclet number
Pe � 1, such that the e↵ects of di↵usion (and hence the third term in (2.168)) can
be ignored to good approximation. This approximation breaks down, however, when
there are sharp gradients of Sn, such as near a shock. In such scenarios where there are
shocks, one can introduce a boundary layer near the shock front to address di↵usive
e↵ects.

By non-dimensionalising the model according to

x ⇠ L, t ⇠ �L/U, V ⇠ U, (2.171)

and by dropping the subscript S = Sn, we get the simple advection equation

St + V (S)Sx = 0. (2.172)

Such equations can be solved using the method of characteristics

dx

dt
= V (S), (2.173)

given suitable inlet and initial conditions at x = 0 and t = 0. As an example we
consider the initial/boundary conditions

S(0, t) = 1,

S(x, 0) = 0. (2.174)
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Figure 2.17: Illustration of a shock developing during Buckley-Leverett flow, as well
as the corresponding characteristics in the x� t plane. Blue curves indicate Sn > Ss

and red curves indicate Sn = 0.

This corresponds to an aquifer which is initially saturated with wetting phase, at
which point pure non-wetting phase is injected at the inlet (e.g. CO2 injected into a
brine-filled aquifer).

To address this case, we first need to define expressions for the relative perme-
ability functions in the advection term V (S). For this we use the so-called ‘Corey’
model,

krn = S↵, krw = (1� S)�, (2.175)

where ↵, � > 0 are some empirical constants. In this case, plots of the flow rate
fraction J and advection speed V are shown in figure 2.16 for illustration. In general,
J is a monotone increasing function between 0 and 1 (reminiscent of a CDF for
example), whereas V is a positive function with a unique maximum.

The non-monotone behaviour of V in conjunction with (2.173)-(2.174) indicate
that a shock will develop to maintain a saturation S that is not multi-valued. To
determine the saturation value at the shock, we employ the Rankine-Hugoniot jump
condition, which takes the form

dx

dt
=

[Q]+�
[P ]+�

, (2.176)

for a PDE of the form Pt +Qx = 0. Hence, we have the shock condition

V (Ss)Ss = J(Ss), (2.177)

which must be solved to find Ss.
A typical shock solution is displayed in figure 2.17 together with characteristics in

the x� t plane. Clearly the shock at S = Ss causes the characteristics from t = 0 to
collide with the dividing characteristic X(t) = V (Ss)t. As described earlier, di↵usive
e↵ects due to the capillary pressure act to smooth out this shock front. This occurs
over a boundary layer of width � / (t/Pe)1/2, located near the shock front X(t).
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2.4.2 Two-phase flow in heterogeneous media

Earlier we described how heterogeneities can a↵ect the flow of a single phase within
a porous medium. Here, we extend this analysis to account for multiphase e↵ects
between immiscible flows. In our earlier analysis, we discussed how heterogeneities
are often characterised by variations in the pore size within a rock, manifesting in
non-uniform porosity and permeability �, k. However, variations in the pore size
are also associated with di↵erent pore entry pressures pe and therefore non-uniform
capillary pressure pc. In this section we describe how such variations modify the flow
and distribution of the phase saturations Sn, Sw.

As before, it is useful to consider the most simple type of heterogeneity to gain a
general understanding of the typical behaviour. To do so, we consider flow parallel to
a system of two layers of equal thickness with permeability, porosity and pore entry
pressure values ki, �i, pei , for i = 1, 2. The length and thickness of the medium is
given by L, H, and the flow is predominantly horizontal, driven by an overarching
pressure gradient �p/L (e.g. in the non-wetting phase).

It is useful to characterise the relative importance of viscous and capillary e↵ects
by the ratio

@pn/@x

@pc/@z
⇡
�p/L

�pe/H
, (2.178)

where �pe = pe1 � pe2 . The above expression is the ratio between horizontal viscous
pressure gradients and vertical gradients in the capillary pressure. We see this is
analogous to the capillary number described earlier (remember Ca ⇠ µU/�). Hence,
we write

Ca = 1/� =

����
�pH

�peL

���� , (2.179)

where a modulus sign is included to make sure the quantity is always positive, and
� is introduced as a more intuitive alternative to the capillary number (since large �
corresponds with large capillary e↵ects).

The limit of large � is known as the “capillary limit”. In this case the saturation
of phases is dominated by capillary forces. Essentially, surface tension drives non-
wetting phase into regions of larger pore space and away from smaller pore space (i.e.
minimising surface energy). Comparatively the horizontal, viscous flow of phases is
of lesser importance than the lateral rearrangement due to capillary e↵ects.

By contrast, the limit of small � is known as the “viscous limit”. In this case,
the e↵ect of capillary forces is negligible, and instead the flow is dominated by the
flow-driving horizontal pressure gradients associated with viscous resistance. There
is little saturation rearrangement due to surface tension, so the lateral saturation
distribution remains close to the inlet conditions.

In general to account for the flow in such scenarios, we would have to solve the
governing equations (2.163)-(2.164) for fixed � and suitable boundary conditions.
However, in the limit of small and large �, we can make some simplifying assumptions
to derive analytical solutions which give insight into the problem.
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To start with we consider the case of steady flow in the viscous limit (�⌧ 1). In
this case, it can be shown (via asymptotic analysis) that the saturation is spatially
uniform, e.g. Sn = S̄n = Sn(x = 0). In other words, the saturation of phases remains
the same as imposed at the inlet x = 0. Hence, the flow of non-wetting phase (for
example) is

un = �
k(z)

µn

krn(Sn)
@pn
@x

= �
k(z)

µn

krn(S̄n)
�p

L
. (2.180)

Hence, we can derive an e↵ective property for the relative permeabilities in the viscous
limit

kV

rn
(S̄n) =

µnūnL

��pk̄
= krn(S̄n),

kV

rw
(S̄n) =

µwūwL

��pk̄
= krw(S̄n), (2.181)

where bars indicate vertical averaging (e.g. k̄ = (k1+k2)/2 for even thickness layers).
These e↵ective properties tell us how the mean flow ūn, ūw depends on the mean sat-
uration, permeability, and viscous pressure gradient. Hence, if we know information
about the heterogeneity, we can immediately describe the flow in the viscous limit
without doing any intensive computations.

Similarly, in the capillary limit (� � 1) we can derive analogous e↵ective prop-
erties. In this case, the flow is associated with very weak driving pressure gradients
�p/L. Hence, pn and pw are expected to be approximately constant. This leads to a
capillary pressure

pc = pn � pw ⇡ �, (2.182)

for some constant �. The capillary pressure is related to the saturation according to
(2.162), given some model for pc. For this, we employ the commonly used Brooks-
Corey model, which is

pc(Sn) = pe(z)(1� Sn)
�1/�, (2.183)

where � represents the pore size distribution (large/small values of � correspond with
a large/small distribution of pore sizes). Inverting this function we get

Sn(z) = 1�

✓
pe(z)

�

◆�

. (2.184)

This can be re-written in terms of the average (i.e. removing �) as

Sn(z) = 1�
pe(z)�

p�
e

(1� S̄n). (2.185)

Hence, we can insert this into the Darcy equations and take the average, giving

ūn = �
1

µn

k(z)krn(Sn(z))
�p

L
. (2.186)
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Figure 2.18: E↵ective relative permeabilities in the viscous and capillary limits in the
case of flow parallel to a layered heterogeneous porous medium.

This (and a similar expression for the wetting phase) can be rearranged to derive
expressions for e↵ective relative permeabilities in the capillary limit, which are

kC

rn
(S̄n) =

µnūnL

��pk̄
=

kkrn
k̄

,

kC

rw
(S̄n) =

µwūwL

��pk̄
=

kkrw
k̄

. (2.187)

Hence, we now have su�cient information to describe the bulk flow through a hetero-
geneous aquifer in the limit of small and large � without having do to any intensive
computations. These two cases are the two end members (extreme scenarios) and
therefore provide upper and lower bounds for the general case of � = O(1).

Due to the form of (2.184), capillary forces act to push non-wetting phase into
regions of smaller pe, which corresponds with larger pore space and larger values of
k,�. Hence, non-wetting phase is preferentially rearranged into less resistive channels
of flow, enhancing ūn and reducing ūw. In this way, the e↵ective relative permeabilities
usually satisfy

kC

rn
> kV

rn
, kC

rw
< kV

rw
. (2.188)

In other words, heterogeneities act to enhance the flow of non-wetting phase and
decrease the flow of wetting phase, which is in very good agreement with observations.
An example of these e↵ective properties is illustrated in figure 2.18. We will explore
an example of such flows in Problem Sheet 3.
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2.4.3 Heterogeneous Buckley-Leverett flows

The Buckley-Leverett flow studied earlier can be easily extended to account for het-
erogeneous systems. Whilst the flow formulation is in one-dimension, we can account
for a vertical heterogeneity (i.e. sedimentary layers in two or three dimensions) by us-
ing e↵ective properties for the relative permeabilities, either in the viscous or capillary
limits. Hence, this models the vertical rearrangement of saturation due to capillary
forces in a very long-thin aquifer in which the flow is predominantly one-dimensional.

As such, we can write down a dimensionless advection equation for the saturation
of non-wetting phase

St + V (S)Sx = 0, (2.189)

where the advection speed is given by either the capillary or viscous limits

V =

(
V V (S), using kV

rn
, kV

rw
: �� 1,

V C(S), using kC

rn
, kC

rw
: �⌧ 1.

(2.190)

It should be noted that both the capillary and viscous limits have di↵erent shock
saturation values Ss and consequently di↵erent advection speeds. Typically, since the
flow of non-wetting phase is enhanced by heterogeneities, the capillary limit speed is
usually faster than the viscous limit speed, such that V C(Ss) > V V (Ss).

This class of approaches is sometimes referred to as ‘upscaling’, since the e↵ects
of the small-scale heterogeneities are incorporated into a model which describes the
large-scale flow. Upscaling is useful in many environmental applications since it is
much more computationally e�cient than direct simulation, and also allows for en-
semble predictions or best/worst case scenario estimates. Time-dependent simulation
of a three-dimensional reservoir incorporating heterogeneities from the mm scale up
to the km scale is not tractable. This is not only a result of computational limitations,
but also due to a lack of existing heterogeneity data. For example, seismic surveys
usually have a resolution of around ⇠1 m.

2.4.4 Incorporating gravity

Let’s consider the two-phase analogy of a gravity current spreading beneath an im-
permeable cap rock. For example, in the context of carbon sequestration, CO2 is the
non-wetting phase and salty brine is the wetting phase. As before, we assume that
the flow has a long-thin aspect ratio. As a result, both the non-wetting and wetting
phases satisfy a hydrostatic balance at leading order, such that

@pn
@z

= ⇢ng,

@pw
@z

= ⇢wg. (2.191)

This indicates that the capillary pressure satisfies

@pc
@z

= ��⇢g. (2.192)
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Hence, in the absence of heterogeneity we have

pc = pe ��⇢g(z � h), (2.193)

where z = h(x, t) is the gravity current thickness (measured downwards from the cap
rock at z = 0). Hence, the capillary pressure can be inverted for the saturation of
non-wetting phase,

Sn = 1� (1 + Bo(h/L� z/L))�� , (2.194)

where Bo = �⇢gL/pe is the Bond number. The above expression is known as the
‘gravity-capillary’ balance. Hence, given a thickness h and Bond number, we can
now calculate the vertical saturation distribution. In particular, Sn increases verti-
cally, indicating that the non-wetting phase (which is assumed to be lighter than the
wetting phase) preferentially rises towards the cap rock. The larger the e↵ects of
surface tension (i.e. small Bo) the more the capillary pressure acts to spread out the
distribution of non-wetting phase.

2.5 Consolidation

Consolidation refers to the ability of a granular porous medium such as a soil to
compact under its own weight, or by the imposition of an overburden pressure. The
grains of the medium rearrange themselves under the pressure, thus reducing the
porosity and in the process pore fluid is expelled. Since the porosity is no longer
constant, we have to postulate a relation between the porosity � and the pore pressure
p. In practice, it is found that soils, when compressed, obey a (non-reversible) relation
between � and the e↵ective pressure

pe↵ = P � p, (2.195)

where P is the overburden pressure.
The concept of e↵ective pressure, or more generally e↵ective stress, is an extremely

important one. The idea is that the total imposed pressure (e. g., the overburden
pressure due to the weight of the rock or soil) is borne by both the pore fluid and the
porous medium. The pore fluid is typically at a lower pressure than the overburden,
and the extra stress (the e↵ective stress) is that which is applied through grain to
grain contacts. Thus the e↵ective pressure is that which is transmitted through the
porous medium, and it is in consequence of this that the medium responds to the
e↵ective stress; in particular, the characteristic relation between � and pe↵ represents
the nonlinear pseudo-elastic e↵ect of compression.

The dependence of the e↵ective pressure on porosity is non-trivial and involves
hysteresis, as indicated in figure 2.19. Specifically, a soil follows the normal consol-

idation line providing consolidation is occurring, i.e ṗe↵ > 0. However, if at some
point the e↵ective pressure is reduced, only a partial recovery of � takes place. When
pe↵ is increased again, � more or less retraces its (overconsolidated) path to the nor-
mal consolidation line, and then resumes its normal consolidation path. Here we will
ignore e↵ects of hysteresis, as in (3.147).
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When modelling groundwater flow in a consolidating medium, we must take ac-
count also of deformation of the medium itself. In turn, this requires prescription of
a constitutive rheology for the deformable matrix. This is often a complex matter,
but luckily in one dimension, the issue does not arise, and a one-dimensional model
is often what is of practical interest. We take z to point vertically upwards, and let
v and w be the linear (or phase-averaged) velocities of liquid and solid, respectively.
Then �v and (1 � �)w are the respective fluxes, and conservation of mass of each
phase requires

@�

@t
+
@(�v)

@z
= 0,

�
@�

@t
+

@

@z
{(1� �)w} = 0; (2.196)

Darcy’s law is then

�(v � w) = �
k

µ


@p

@z
+ ⇢lg

�
, (2.197)

while the overburden pressure satisfies

@P

@z
= �[⇢s(1� �) + ⇢l�]g, P = P0 on z = h; (2.198)

here z = h represents the ground surface and P0 is the applied load. The e↵ective
pressure is just �pe↵ = P � p.

Note that by adding the two mass conservation equations and integrating, we have

�v + (1� �)w = q(t), (2.199)

φ
1 − φ

   consolidation
      line

normal

e
 p

10
log

↵

Figure 2.19: Form of the relationship between porosity and e↵ective pressure. A
hysteretic decompression-reconsolidation loop is indicated. In soil mechanics this
relationship is often written in terms of the void ratio e = �/(1� �), and specifically
e = e0 � Cc log10 pe↵ , where Cc is the compression index.
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which can be determined from the boundary conditions. In particular, if we assume
an impermeable basement where v = w = 0, then q = 0 and

w = �
�v

1� �
, �(v � w) = �w. (2.200)

We use the definition of the e↵ective pressure in (2.195), together with (2.198)
and (2.199), to derive the equation

@�

@t
= �

@

@z


k

µ
(1� �)

⇢
@pe↵
@z

+�⇢(1� �)g

��
, (2.201)

where �⇢ = ⇢s � ⇢l, and since pe↵(�) is a monotonically decreasing function, this
brings us back to the Richards equation (2.125). Specifically, we can write (2.201) in
the form

�t + Vz = [D�z]z , (2.202)

where

V (�) =
k(�)�⇢g

µ
(1� �)2, D = �

k(�)

µ
(1� �)p0e↵(�), (2.203)

and this can be compared to (2.125).
A commonly used expression in soil mechanics for the relationship between e↵ec-

tive pressure and porosity is a logarithmic dependence of the void ratio �/(1� �) on
pe↵ , as mentioned in figure 2.19. The normal consolidation line for a soil is that part
of the yield surface on which the shear stress vanishes, and we may take

�

1� �
= e0 � C

c
log10

✓
pe↵
p0e↵

◆
; (2.204)

the quantity Cc is called the compression index. Note that this prescription will not
be valid at small e↵ective pressure, since as pe↵ ! 0, the porosity will tend to its
value at loose packing, which we denote as �0. This gives pe↵ as a monotonically
decreasing function of � for 0 < � < 1, and in particular,

p0e↵(�) = �
0.43 pe↵

Cc(1� �)2
, (2.205)

where 0.43 ⇡ ln 10. In this case,

D =
0.43 k(�)pe↵
µCc(1� �)

. (2.206)

The di↵usion coe�cient D is sometimes written as cv, and is known as the coe�cient

of consolidation. If we use values µ = 10�3 Pa s, pe↵ = 104 Pa, k = 10�14 m2 (for silt),
Cc = 0.1 and � = 0.4, then D ⇠ 10�6 m2 s�1. Of course this value depends strongly

on the permeability, or equivalently the hydraulic conductivity K =
k⇢g

µ
. For the silt

permeability, K ⇠ 3 m y�1, whereas actual soils (with organic matter, worm burrows,
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etc.), typically have hydraulic conductivities ⇠ 1 m d�1, which is about a hundred
times larger, and would give a corresponding di↵usion coe�cient of D ⇠ 10�4 m2 s�1.

We suppose these equations apply in a vertical column 0 < z < h, for which
suitable boundary conditions are (with an impermeable basement and no surface
load)

v = w = 0 at z = 0,

� = �0, ḣ = w at z = h, (2.207)

and with an initial condition for �. Note that by comparing (2.196)1 and (2.202), and
using (2.200),

w = �
(V �D�z)

1� �
. (2.208)

Therefore the boundary conditions in (2.207) collapse to

V �D�z = 0 at z = 0,

� = �0, ḣ = �
(V �D�z)

1� �
at z = h. (2.209)

In the steady state, it follows that V �D�z = 0, and thus

Z
�0

�

D(�) d�

V (�)
= h� z. (2.210)

If Cc is small (and typical values are in the range Cc  0.1) then � varies little, and
we can suppose V and D are approximately constant. In this case, the consolidation
equation takes the simpler form

�t = D�zz, (2.211)

together with (2.209), and the steady solution (2.210) is just

� = �0 �
V

D
(h0 � z). (2.212)

We now consider settlement of the ground after imposition of a surface load pres-
sure �P . We suppose the final steady state has depth h1, so that the final steady
solution (with D and V being constant) is

�⇤ = �1 �
V

D
(h1 � z), (2.213)

and �1 = �(p1e↵), where p1e↵ is the applied surface e↵ective pressure. With no initial
surface load, p1e↵ = �P , the prescribed surface load, and so (for small changes in �)

�1 ⇡ �0 � |�0(0)|�P. (2.214)
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We perturb the system by writing

� = �⇤(z) + �, h = h1 + ⌘, (2.215)

and then linearising the equation and boundary conditions. This leads to

�t = D�zz,

�z = 0 on z = 0,

V

D
⌘ + � = 0, ⌘t =

D�z

1� �1
on z = h1. (2.216)

Eliminating ⌘ from the surface boundary condition gives

�t +
V �z

1� �1
= 0 on z = h1. (2.217)

Subtracting the initial condition from the final condition, we find

� = �0 � �1 �
V

D
(h0 � h1), ⌘ = h0 � h1 at t = 0. (2.218)

At this point we realise that the initial depth h is unconstrained. It is in fact
determined by the volume of solids in the domain (which, unlike the volume of water
which is squeezed out the top, is conserved). Thus we require

Z
h1+⌘

0

[1� (�⇤ + �)] dz =

Z
h1

0

(1� �⇤) dz, (2.219)

and linearising this leads to the normalising condition

Z
h1

0

� dz = (1� �1)⌘. (2.220)

This is consistent with (2.216) (as it must be), and it provides the necessary relation
between h0 and h1, which is, using (2.214),

h0 � h1

h1
=

|�0(0)|�P

1� �1 +
V h1

D

, (2.221)

and this is the (relative) settlement due to a given load.
The other quantity of interest is the settlement time. The normal mode solutions

of (2.216) are
� = e�Ds

2
t cos sz, (2.222)

where

tan = �


Pe
,  = sh1, P e =

h1V

D(1� �1)
; (2.223)
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here Pe is a suitable Péclet number for the flow, and s is the wavenumber (normally
one uses k, but that is already taken for the permeability). It is graphically straight-
forward to see that there is an infinite number of values of 1,2, . . . (positive, without
loss of generality) satisfying (2.223), with (n �

1
2)⇡ < n < n⇡. The settlement or

consolidation time scale tc is essentially determined by 1, and is thus

tc ⇠
h2
1

D21
, (2.224)

where 1 lies between 1
2⇡ and ⇡. It depends primarily on the permeability k. If we

use (2.206), and take k ⇠ 10�14 m2 (silt), Cc = 0.1, � = 0.3, µ = 10�3 Pa s, P0 = 105

Pa (a small house), then D ⇠ 0.6 ⇥ 10�5 m2 s�1. Similarly, with �⇢ = 2 ⇥ 103 kg
m�3, we find V ⇠ 10�7 m s�1, and so, if we take h1 = 10 m, the Péclet number is
Pe ⇠ 0.23; not extremely small, but small enough to use the approximation of small
Pe in (2.223). When Pe is small,  ⇡

1
2⇡, and so 14.82

tc ⇠
4h2

1
⇡2D

, (2.225)

which gives tc ⇠ 3 months.

Exercises

2.1 Show that for a porous medium idealised as a cubical network of tubes, the
permeability is given (approximately) by k = d2

p
�2/72⇡, where dp is the grain

size. How is the result modified if the pore space is taken to consist of pla-
nar sheets between identical cubical blocks? (The volume flux per unit width
between two parallel plates a distance h apart is �h3p0/12µ, where p0 is the
pressure gradient.)

2.2 Groundwater flows between an impermeable basement at z = hb(x, y, t) and
a phreatic surface at z = zp(x, y, t). Write down the equations governing the
flow, and by using the Dupuit approximation, show that the saturated depth h
satisfies

�ht =
k⇢g

µ
r.[hrzp],

where r = (@/@x, @/@y). Deduce that a suitable time scale for flows in an
aquifer of typical depth h0 and extent l is tgw = �µl2/k⇢gh0.

I live a kilometer from the river, on top of a layer of sediments 100 m thick
(below which is impermeable basement). What sort of sediments would those
need to be if the river responds to rainfall at my house within a day; within a
year?

2.3 A two-dimensional earth dam with vertical sides at x = 0 and x = l has a
reservoir on one side (x < 0) where the water depth is h0, and horizontal dry
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land on the other side, in x > l. The dam is underlain by an impermeable
basement at z = 0.

Write down the equations describing the saturated groundwater flow, and show
that they can be written in the dimensionless form

u = �px, "2w = �(pz + 1),

pzz + "2pxx = 0,

and define the parameter ". Write down suitable boundary conditions on the
impermeable basement, and on the phreatic surface z = h(x, t).

Assuming "⌧ 1, derive the Dupuit-Forchheimer approximation for h,

ht = (hhx)x in 0 < x < 1.

Show that a suitable boundary condition for h at x = 0 (the dam end) is

h = 1 at x = 0.

Now define the quantity

U =

Z
h

0

p dz,

and show that the horizontal flux

q =

Z
h

0

u dz = �
@U

@x
.

Hence show that the conditions of hydrostatic pressure at x = 0 and constant
(atmospheric) pressure at x = 1 (the seepage face) imply that

Z 1

0

q dx = 1
2 .

Deduce that, if the Dupuit approximation for the flux is valid all the way to
the toe of the dam at x = 1, then h = 0 at x = 1, and show that in the steady
state, the (dimensional) discharge at the seepage face is

qD =
k⇢gh2

0

2µl
.

Supposing the above description of the solution away from the toe to be valid,
show that a possible boundary layer structure near x = 1 can be described by
writing

x = 1� "2X, h = "H, z = "Z, p = "P,

and write down the resulting leading order boundary value problem for P .
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2.4 I get my water supply from a well in my garden. The well is of depth h0 (relative
to the height of the water table a large distance away) and radius r0. Show that
the Dupuit approximation for the water table height h is

�
@h

@t
=

k⇢g

µ

1

r

@

@r

✓
rh
@h

@r

◆
.

If my well is supplied from a reservoir at r = l, where h = h0, and I withdraw
a constant water flux q0, find a steady solution for h, and deduce that my well
will run dry if

q0 >
⇡k⇢gh2

0

µ ln[l/r0]
.

Use plausible values to estimate the maximum yield (gallons per day) I can use
if my well is drilled through sand, silt or clay, respectively.

2.5 A volume V of e✏uent is released into the ground at a point (r = 0) at time t.
Use the Dupuit approximation to motivate the model

�
@h

@t
=

k⇢g

µ

1

r

@

@r

✓
rh
@h

@r

◆
,

h = h0 at t = 0, r > 0,
Z 1

0

r(h� h0)dr = V/2⇡, t > 0,

where h0 is the initial height of the water table above an impermeable basement.
Find suitable similarity solutions in the two cases (i) h0 = 0 (ii) h0 > 0, h�h0 ⌧

h0, and comment on the di↵erences you find.

2.6 Rain falls steadily at a rate q (volume per unit area per unit time) on a soil of
saturated hydraulic conductivity K0 (= k0⇢wg/µ, where k0 is the saturated per-
meability). By plotting the relative permeability kr and suction characteristic
� /d as functions of S (assuming a residual liquid saturation S0), show that a
reasonable form to choose for kr( ) is kr = e�c . If the water table is at depth
h, show that, in a steady state,  is given as a function of the dimensionless
depth z⇤ = z/zc, where zc = �/⇢wgd (� is the surface tension, d the grain size)
by

h⇤
� z⇤ = 1

2 �
1

c
ln

"
sinh{1

2(ln
1
q⇤ � c )}

sinh{1
2 ln

1
q⇤}

#
,

where h⇤ = h/zc, providing q⇤ = q/K0 < 1. Deduce that if h � zc, then
 ⇡

1
c
ln 1

q⇤ near the surface. What happens if q > K0?

2.7 Derive the Richards equation

�
@S

@t
= �

@

@z


k0
µ
kr(S)

⇢
@pc
@z

+ ⇢wg

��
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for one-dimensional infiltration of water into a dry soil, explaining the meaning
of the terms, and giving suitable boundary conditions when the surface flux q
is prescribed. Show that if the surface flux is large compared with k0⇢wg/µ,
where k0 is the saturated permeability, then the Richards equation can be ap-
proximated, in suitable non-dimensional form, by a nonlinear di↵usion equation
of the form

@S

@t
=

@

@z


D
@S

@z

�
.

Show that, if D = Sm, a similarity solution exists in the form

S = t↵F (⌘), ⌘ = z/t�,

where ↵ =
1

m+ 2
, � =

m+ 1

m+ 2
, and F satisfies

(FmF 0)0 = ↵F � �⌘F 0, FmF 0 = �1 at ⌘ = 0, F ! 0 as ⌘ ! 1.

Deduce that

FmF 0 = �(↵ + �)

Z
⌘0

⌘

Fd⌘ � �⌘F,

where ⌘0 (which may be 1) is where F first reaches zero. Deduce that F 0 < 0,
and hence that ⌘0 must be finite, and is determined by

Z
⌘0

0

F d⌘ =
1

↵ + �
.

What happens for t > F (0)�1/↵?

2.8 Write down the equations describing one-dimensional consolidation of wet sedi-
ments in terms of the variables �, v, w, p, pe↵ , these being the porosity, solid and
liquid (linear) velocities, and the pore and e↵ective pressures. Neglect the e↵ect
of gravity.

Saturated sediments of depth h lie on a rigid but permeable (to water) basement,
through which a water flux W is removed. Show that

w =
k

µ

@p

@z
�W,

and deduce that � satisfies the equation

@�

@t
=

@

@z


(1� �)

⇢
k

µ

@p

@z
�W

��
.

If the sediments are overlain by water, so that p = constant (take p = 0) at
z = h, and if � = �0 + p/K, where the compressibility K is large (so � ⇡ �0),
show that a suitable reduction of the model is

@p

@t
�W

@p

@z
= c

@2p

@z2
,
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where c = K(1� �0)k/µ, and p = 0 on z = h, pz = µW/k. Non-dimensionalise
the model using the length scale h, time scale h2/c, and pressure scale µWh/k.
Hence describe the solution if the parameter " = µWh/k is small, and find the
rate of surface subsidence. What has this to do with Venice?

2.9 Write down a model for vertical flow of two immiscible fluids in a porous
medium. Deduce that the saturation S of the wetting phase satisfies the equa-
tion

�
@S

@t
+

@

@z


Me↵

⇢
q

Mnw

+ g�⇢

��
= �

@

@z


Me↵

@pc
@z

�
,

where z is a coordinate pointing downwards,

pc = pnw � pw, �⇢ = ⇢w � ⇢nw, M�1
e↵ = (M�1

w
+M�1

nw
),

q is the total downward flux, and the su�xes w and nw refer to the wetting and
non-wetting fluid respectively. Define the phase mobilities Mi. Give a criterion
on the capillary suction pc which allows the Buckley-Leverett approximation to
be made, and show that for q = 0 and µw � µnw, waves typically propagate
downwards and form shocks. What happens if q 6= 0? Is the Buckley-Leverett
approximation realistic — e.g. for air and water in soil? (Assume pc ⇠ 2�/rp,
where � = 70 mN m�1, and rp is the pore radius: for clay, silt and sand, take
rp = 1 µ, 10 µ, 100 µ, respectively.)

2.10 A model for snow melt run-o↵ is given by the following equations:
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.

Explain the meaning of the terms in these equations, and describe the assump-
tions of the model.

The intrinsic permeability k0 is given by

k0 = 0.077 d2 exp[�7.8 ⇢s/⇢l],

where ⇢s and ⇢l are snow and water densities, and d is grain size. Take d = 1
mm, ⇢s = 300 kg m�3, ⇢l = 103 kg m�3, p0 = 1 kPa, � = 0.4, µ = 1.8 ⇥ 10�3

Pa s, g = 10 m s�2, and derive a non-dimensional model for melting of a one
metre thick snow pack at a rate (i.e. u at the top surface z = 0) of 10�6 m s�1.
Determine whether capillary e↵ects are small; describe the nature of the model
equation, and find an approximate solution for the melting of an initially dry
snowpack. What is the (meltwater flux) run-o↵ curve?
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2.11 Consider the following model, which represents the release of a unit quantity of
groundwater at t = 0 in an aquifer �1 < x < 1, when the Dupuit approxi-
mation is used:

ht = (hhx)x,

h = 0 at t = 0, x 6= 0,
Z 1

�1
h dx = 1

(i. e., h = �(x) at t = 0). Show that a similarity solution to this problem exists
in the form

h = t�1/3g(⇠), ⇠ = x/t1/3,

and find the equation and boundary conditions satisfied by g. Show that the
water body spreads at a finite rate, and calculate what this is.

Formulate the equivalent problem in three dimensions, and write down the
equation satisfied by the similarity form of the solution, assuming cylindrical
symmetry. Does this solution have the same properties as the one-dimensional
solution?
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Chapter 3

Convection

Convection is the fluid motion induced by buoyancy; buoyancy is the property of a
fluid whereby its density depends on external properties. The most common form of
convection is thermal convection, which occurs due to the dependence of density on
temperature: warm fluid is light, and therefore rises. Everyday examples of this are
the circulation induced by a convector heater, or the motion which can be seen in a
saucepan of oil when it is heated. (In the latter case, one can see convection rolls in
the fluid, regular but time-dependent.) Another common form of convection is com-

positional convection, which is induced by density changes dependent on composition.
An example of this occurs during the formation of sea ice in the polar regions. As
salty sea water freezes, it rejects the salt (the ice is almost pure water substance),
and the resulting salty water is denser than the sea water from which it forms, and
thus induces a convective motion below the ice. Below, we discuss three geophysical
examples from convection, but convection is everywhere: it drives the oceanic circula-
tion, it drives the atmospheric circulation, it causes thunderstorms, it occurs in glass
manufacture, in a settling pint of Guinness, in back boilers, in solar panels. And, it
has formed the thematic core of the subject of geophysical fluid dynamics for almost
a century.

3.1 Mantle convection

Most people have heard of continental drift, the process whereby the Earth’s conti-
nents drift apart relative to each other. The Atlantic Ocean is widening at the rate of
several centimetres a year, the crashing of India into Asia over the last 50 My (fifty
million years) has caused the continuing uplift of the Himalayas, Scotland used to
be joined to Newfoundland. The continents ride, like rafts of debris, on the tectonic
plates of the Earth, which separate at mid-ocean ridges and converge at subduction
zones. The theory of plate tectonics, which originated with the work of Wegener and
Holmes in the early part of the twentieth century, and which was finally accepted by
geophysicists in the ‘plate tectonics revolution’ of the 1960’s, describes the surface
of the Earth as being split up into some thirteen major tectonic plates: see figure

84



Figure 3.1: The tectonic plates of the Earth.

3.1. These plates move relative to each other across the surface, and this motion
is the surface manifestation of a convective motion in the Earth’s mantle, which is
the part of the Earth from the surface to a depth of about 3,000 kilometres, and
which consists of an assemblage of polycrystalline silicate rocks. Upwelling occurs at
mid-ocean ridges, for example the mid-Atlantic ridge which passes through Iceland,
and the East Pacific Rise o↵ the coast of South America, which passes through the
Galapagos Islands. The plates sink into the mantle at subduction zones, which ad-
join continental boundaries, and which are associated with the presence of oceanic
trenches.

The plates are so called because they are conceived of as moving quasi-rigidly.
They are in fact the cold upper thermal boundary layers of the convective motion, in-

Figure 3.2: A cartoon of mantle convection. We see plumes, mid-ocean ridges, sub-
ducting slabs.
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dicated schematically in figure 3.2, and are plate-like because the strong temperature
dependence of mantle viscosity renders these relatively cold rocks extremely viscous.
One may wonder how the mantle moves at all, consisting as it does of mostly solid
polycrystalline rocks. In fact, solids will deform just as fluids do when subjected to
stress. The deformation is enabled by the migration of dislocations within the crys-
talline lattice of the solid grains of the rock. The e↵ective viscosity of the Earth’s
mantle is a whopping 1021 Pa s; this is about eight orders of magnituse greater than
the viscosity of ice, and twenty-four orders greater than the viscosity of water.

The reason that the mantle convects is that the Earth is cooling. The primordial
heat of formation has gradually been lost over the Earth’s history, but the central
core of the planet is still very hot; some six thousand degrees Celsius at the centre of
the Earth. This heat from the core is instrumental in heating the mantle from below,
and driving the convective flow. Radioactive heating also contributes to an extent
which is not certain, but which is thought to be significant.

3.2 The Earth’s core

Part of the heat which drives mantle convection is derived from cooling the Earth’s
core. The core is the part of the Earth which lies between its centre and the mantle.
Like the mantle, it is also some three thousand kilometres deep, and consists of a
molten outer core of iron, alloyed with some lighter element, usually thought to be
sulphur or oxygen, in a concentration of some 10%. The inner core is solid (pure)
iron, of radius 1,000 km. It is generally thought that the core was initially molten
throughout, and that the inner core has gradually solidified from the outer core over
the course of geological time. It is the consequent release of latent heat which, at
least partly, powers mantle convection.

One may wonder how the outer core can be liquid, and the inner core solid, if the
inner core is hotter (as it must be). The reason for this is that the solidification tem-
perature (actually the liquidus temperature, see below) depends on pressure, through
the Clapeyron e↵ect. This is the e↵ect whereby a pressure cooker works: the boiling
temperature increases with pressure, and similarly, the solidification temperature of
the outer core iron alloy increases with pressure, and thus also depth. Thus, the inner
core can be below the solidification temperature because of the greater pressure there.

The convection in the outer core is partly due to the dependence of density on tem-
perature, but the primary dependence is, as often the case when composition varies,
due to the dependence of density on the concentration of sulphur (or oxygen). In order
to understand how the solidification of the inner core leads to convection, we need to
understand the general thermodynamic way in which melting and solidification occur
in multi-component materials. This is illustrated in figure 3.3, which indicates how
the solidification temperatures vary with composition in a two-component melt. At a
given temperature, there are two curves which describe the concentrations of the solid
and liquid, when these are in thermodynamic equilibrium with each other. These two
curves are called the solidus and liquidus, respectively. Often there are two sets of
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Figure 3.3: Typical phase diagram for a two-component alloy with a eutectic point.
When the liquid reaches the liquidus (L), the resulting solid has the concentration of
the solidus (S). When the liquid reaches the eutectic point, two solids, iron-rich and
sulphur-rich respectively, will be formed.

solidus and liquidus curves, and they meet at a point called the eutectic point. The
way in which a liquid alloy solidifies is then indicated by the red line in figure 3.3. In
the outer core, the composition is relatively constant, but the temperature decreases
(relative to the liquidus) from the core-mantle boundary (CMB) to the inner core
boundary (ICB), where solidification occurs. (The phase diagram is indicated as if
at constant pressure; in reality, the curves will also vary with pressure.)

At this temperature, the solid which crystallises has the solidus concentration,
which is richer in iron than the liquid, and so as the temperature cools during freezing,
the liquid concentration of sulphur or oxygen increases because of its rejection at the
freezing interface. It is this source of buoyancy which provides the driving force for
compositional convection.

Actually, it is typically the case that when alloys solidify, they do not form a solid
with a clear interface. Rather, such a situation is typically morphologically unstable,
and a dendritic mush consisting of a solid–liquid mixture is formed, as shown in figure
3.4. The convection caused by the release of light fluid now occurs throughout the
mush, and leads to the formation of narrow ‘chimneys’, from which plumes emerge.

In the Earth’s core, it is this convection which forms the magnetic field. Convec-
tion in an electrically conducting fluid causes a magnetic field to grow, providing the
magnetic di↵usivity is su�ciently small, through the action of the Lorentz force. The
study of such instabilities is a central part of the subject of magnetohydrodynamics.
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Figure 3.4: A dendritic mush in the solidification of ammonium chloride in the lab-
oratory. Convection occurs within the mush, leading to the formation of ‘chimneys’
which act as sources of plumes in the residual melt. Photo courtesy of Grae Worster.

3.3 Magma chambers

Our final example of convection arises in the formation and cooling of magma cham-
bers. When mantle rock upwells, either at mid-ocean ridges, or in isolated thermal
plumes such as that below Hawaii, the slight excess temperature causes the rock to
partially melt. It is thought that the melt fraction can then ascend through the
residual porous matrix, forming rivulets and channels which allow the escape of the
magma through the lithosphere to the crust.1 As the magma ascends into the crust,
it can typically encounter unconformities, where the rock types alter, and where the
density may be less than that of the magma. In that case, the magma will stop rising,
but will spread laterally, simultaneously uplifting the overlying strata. Thus forms
the laccolith, a magmatic intrusion, and over the course of time such intrusions, or
magma chambers, will solidify, forming huge cauldrons of rock which may later be
exposed at the Earth’s surface.

Convection undoubtedly occurs in such chambers, which may be tens of kilome-
tres in extent. The hot magma is continuously chilled at the roof and sides of the
chamber, and this leads to convective currents continually draining towards the floor
of the chamber. There they will accumulate, leading to a cold, crystal-rich layer ly-

1The lithosphere is the cold surface boundary layer of the convecting mantle, of depth some 100
km in the oceanic mantle, somewhat greater beneath continents; the crust is a relatively thin layer
of rocks near the surface, formed through partial melting of the mantle and the resulting volcanism.

88



Figure 3.5: Graded layering in the Skaergaard intrusion. Photograph courtesy of
Kurt Hollocher.

ing stagnant below the convecting upper portion. This is essentially the filling box
mechanism which is discussed further below.

Magmas are multi-component alloys, and their convective solidification can lead to
various exotic phenomena. The phase diagram of the type in figure 3.3 causes chemical
di↵erentiation on the large scale (in metal alloy castings this is called macrosegrega-
tion). For example, in an olivine–plagioclase magma, the heavy olivine will crystallise
out first, and the crystals may settle to the base of the chamber. The residual liquid
is then plagioclase-rich and lighter. So the end result would be a chamber having two
distinct layers. Successive injections of magma may then lead to a sequence of such
layers, as is seen in the Scottish island of Rum, and this has been suggested as an
explanation for these particular layers.

Other magma chambers show layering at a much finer scale, and the origin of these
layers is a mystery. An example is shown in figure 3.5. The layers are reminiscent
of double-di↵usive layering, which we discuss in section 3.6.2, but e↵orts to build a
theory round this idea, or indeed any other, have so far not met with success.

3.4 Rayleigh–Bénard convection

The simplest model of convection is the classical Rayleigh-Bénard model in which
a layer of fluid is heated from below, by application of a prescribed temperature

89



u  = 0z

T  = 0x

w  = 0x

u = 0

T  = 0x

w  = 0x

u = 0

u  = 0z

w = 0

w = 0∆T = T  +   T

T = T
0

0

Figure 3.6: Geometry of a convection cell.

di↵erence across the layer. Depending on the nature of the boundaries, one may have
a no slip condition or a no shear stress condition applied at the bounding surfaces.
For the case of mantle convection, one conceives of both the oceans (or atmosphere)
and the underlying fluid outer core as exerting no stress on the extremely viscous
mantle, so that no stress conditions are appropriate, and in fact it turns out that this
is the simplest case to consider. The geometry of the flow we consider is shown in
figure 3.6. It is convenient to assume lateral boundaries, although in a wide layer,
these simply represent the convection cell walls, and can be an arbitrary distance
apart.

The equations describing the flow are the Navier-Stokes equations, allied with the
energy equation and an equation of state, and can be written in the form

⇢t +r. (⇢u) = 0,

⇢[ut + (u .r)u] = �rp� ⇢gk+ µr2
u,

⇢cp[Tt + u .rT ] = kr2T,

⇢ = ⇢0[1� ↵(T � T0)]; (3.1)

in these equations, ⇢ is the density, u is the velocity, p is the pressure, g is the acceler-
ation due to gravity, k is the unit upwards vector, µ is viscosity, cp is the specific heat,
T is temperature, k is thermal conductivity, ⇢0 is the density at the reference temper-
ature T0 at the surface of the fluid layer, and ↵ is the thermal expansion coe�cient.
The boundary conditions for the flow are indicated in figure 3.6, and correspond to
prescribed temperature at top and bottom, no flow through the boundaries, and no
shear stress at the boundaries. The lateral boundaries represent stress free ‘walls’,
but as mentioned above, these simply indicate the boundaries of the convection cells
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(across which there is no heat transport, hence the no flux condition for temperature).
To proceed, we non-dimensionalise the variables as follows. We use the convective

time scale, and a thermally related velocity scale, and use the depth of the box d as
the length scale:

u ⇠


d
,  =

k

⇢0cp
, t ⇠

d2


, x ⇠ d,

p� [p0 + ⇢0g(d� z)] ⇠
µ

d2
, T � T0 ⇠ �T. (3.2)

Here p0 is the (prescribed) pressure at the surface, which we take as constant. We
would also scale ⇢ ⇠ ⇢0, but in the scaled equations below, the density has been
algebraically eliminated. The scaled equations take the form

�BTt +r. [(1� BT )u] = 0,

1

Pr
[1� BT ][ut + (u .r)u] = �rp+RaTk+r

2
u,

(1� BT )(Tt + u .rT ) = r
2T, (3.3)

and the dimensionless parameters are defined as

B = ↵�T, Pr =
µ

⇢0
, Ra =

↵⇢0�Tgd3

µ
; (3.4)

the parameters Ra and Pr are known as the Rayleigh and Prandtl numbers, respec-
tively. The Prandtl number is a property of the fluid; for air it is 0.7, and for water
it is 7. The Rayleigh number is a measure of the strength of the heating. As we
shall see, convective motion occurs if the Rayleigh number is large enough, and it
becomes vigorous if the Rayleigh number is large. The parameter B might be termed
a Boussinesq number, although this is not common usage.

Suppose we think of values typical for a layer of water in a saucepan. We take
d = 0.1 m, µ = 2 ⇥ 10�3 Pa s, �T = 100 K, ↵ = 3 ⇥ 10�5 K�1, ⇢0 = 103 kg m�3,
 = 0.3 ⇥ 10�6 m2 s�1, g = 9.8 m s�2. Then we have Pr ⇡ 7, B ⇡ 3 ⇥ 10�3, and
Ra ⇡ 5⇥107. In this case, we have that B ⌧ 1 and Ra � 1. This is typically the case.
We now make the Boussinesq approximation, which says that B ⌧ 1, and we ignore
the terms in B in (3.3). In words, we assume that the density is constant, except
in the buoyancy term. The mathematical reason for this exception is that, although
Ra / B (and so Ra ! 0 as B ! 0), the actual numerical sizes of the two parameters
are typically very di↵erent. The adoption of the Boussinesq approximation leads to
what are called the Boussinesq equations of thermal convection:

r.u = 0,
1

Pr
[ut + (u .r)u] = �rp+r

2
u+RaT k̂,

Tt + u.rT = r
2T, (3.5)
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with associated boundary conditions for free slip:

T = 1, u.n = ⌧nt = 0 on z = 0,

T = 0, u.n = ⌧nt = 0 on z = 1, (3.6)

where ⌧nt represents the shear stress.

3.4.1 Linear stability

It is convenient to study the problem of the onset of convection in two dimensions
(x, z). In this case we can define a stream function  which satisfies

u = � z, w =  x. (3.7)

(The sign is opposite to the usual convention; for  > 0 this describes a clockwise
circulation.) We eliminate the pressure by taking the curl of the momentum equation
(3.5)2, which leads, after some algebra (see also question 3.2), to the pair of equations
for  and T :

1

Pr

⇥
r

2 t +  xr
2 z �  zr

2 x

⇤
= RaTx +r

4 ,

Tt +  xTz �  zTx = r
2T, (3.8)

with the associated boundary conditions

 = r
2 = 0 at z = 0, 1,

T = 0 at z = 1,

T = 1 at z = 0. (3.9)

In the absence of motion, u = 0, the steady state temperature profile is linear,

T = 1� z, (3.10)

and the lithostatic pressure is modified by the addition of

p = �
Ra

2
(1� z)2. (3.11)

(Even if Ra is large, this represents a small correction to the lithostatic pressure, of
relative size O(B).) The stream function is just

 = 0. (3.12)

We define the temperature perturbation ✓ by

T = 1� z + ✓. (3.13)
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This yields

1

Pr

⇥
r

2 t +  xr
2 z �  zr

2 x

⇤
= r

4 +Ra ✓x,

✓t �  x +  x✓z �  z✓x = r
2✓, (3.14)

and the boundary conditions are

 zz =  = ✓ = 0 on z = 0, 1. (3.15)

In the Earth’s mantle, the Prandtl number is large, and we will now simplify the
algebra by putting Pr = 1. This assumption does not in fact a↵ect the result which
is obtained for the critical Rayleigh number at the onset of convection. The linear
stability of the basic state is determined by neglecting the nonlinear advective terms
in the heat equation. We then seek normal modes of wave number k in the form

 = f(z)e�t+ikx,

✓ = g(z)e�t+ikx, (3.16)

whence f and g satisfy (putting Pr = 1)

(D2
� k2)2f + ikRa g = 0,

�g � ikf = (D2
� k2)g, (3.17)

where D = d/dz, and
f = f 00 = g = 0 on z = 0, 1. (3.18)

By inspection, solutions are

f = sinm⇡z, g = b sinm⇡z, (3.19)

(n = 1, 2, ...) providing

� =
k2Ra

(m2⇡2 + k2)2
� (m2⇡2 + k2), (3.20)

which determines the growth rate for the m-th mode of wave number k.
Since � is real, instability is characterised by a positive value of �. We can see

that � decreases as m increases; therefore the value m = 1 gives the most unstable
value of �. Also, � is negative for k ! 0 or k ! 1, and has a single maximum. Since
� increases with Ra, we see that � > 0 (for m = 1) if Ra > Rack, where

Rack =
(⇡2 + k2)3

k2
. (3.21)

In turn, this value of the Rayleigh number depends on the selected wave number
k. Since an arbitrary disturbance will excite all wave numbers, it is the minimum
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value of Rack which determines the absolute threshold for stability. The minimum is
obtained when

k =
⇡
p
2
, (3.22)

and the resulting critical value of the Rayleigh number is

Rac =
27⇡4

4
⇡ 657.5; (3.23)

That is, the steady state is linearly unstable if Ra > Rac.
For other boundary conditions, the solutions are still exponentials, but the coef-

ficients, and hence also the growth rate, must be found numerically. The resultant
critical value of the Rayleigh number is higher for no slip boundary conditions, for
example, (it is about 1707), and in general, thermal convection is initiated at values
of Ra >

⇠
O(103).

3.5 High Rayleigh number convection

We have seen that convection occurs if the Rayleigh number is larger than O(103) in
general, depending on the precise boundary conditions which apply. In the Earth’s
mantle, suitable values of the constituent parameters are ↵ = 3 ⇥ 10�5 K�1, �T =
3000 K, ⇢0 = 3⇥ 103 kg m�3, g = 10 m s�2, d = 3000 km, ⌘0 = 1021 Pa s, 0 = 10�6

m2 s�1, and for these values, the Rayleigh number is slightly less than 108. Thus the
Rayleigh number is much larger than the critical value, and as a consequence we can
expect the convection to be vigorous (if velocities of centimetres per year can be said
to be vigorous).

There are various intuitive ways in which we can get a sense of the likely behaviour
of the convective solutions of the Boussinesq equations when Ra � 1. Since Ra mul-
tiplies the buoyancy term, any O(1) lateral temperature gradient will cause enormous
velocities. One might thus expect the flow to organise itself so that either horizontal
temperature gradients are small, or they are confined to thin regions, or both. Since
O(1) temperature variations are enforced by the boundary conditions, the latter is
more plausible, and thus we have the idea of the thermal plume, a localised upwelling
of hot fluid which will be instantly familiar to glider pilots and seabirds.

A mathematically intuitive way of inferring the same behaviour follows from the
expectation that increasing Ra drives increasing velocities; then large Ra should
imply large velocity, and the conduction term in the heat equation u.rT = r

2T is
correspondingly small. Since the conduction term represents the highest derivative
in the equation, its neglect would imply a reduction of order, and correspondingly we
would expect thermal boundary layers to exist at the boundaries of the convecting
cell. This is in fact what we will find: a hot thermal boundary layer adjoins the lower
boundary, and a cold one adjoins the upper boundary, and a rapid circulation in the
interior of the cell detaches these as upwelling and downwelling plumes. The general
structure of the resulting flow is shown in figure 3.7. We analyse this structure in the
following sections.
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Figure 3.7: Schematic representation of boundary layer convection

3.5.1 Boundary layer theory

We now consider a convecton cell in a finite box, as shown in figure 3.7, with (di-
mensionless) top and bottom boundaries at z = 0, 1, and side walls at x = 0, a.
The Boussinesq equations describing thermal convection are written in the following
dimensionless form:

r.u = 0,

1

Pr

du

dt
= �rp+r

2
u+RaTk,

dT

dt
= r

2T, (3.24)

where u is velocity, p is pressure, T is temperature, and the Rayleigh and Prandtl
numbers are defined in (3.4).

By considering only two-dimensional motion in the (x, z) plane, we define the
stream function  by

u = � z, w =  x; (3.25)

the vorticity is then (0,!, 0), where ! = �r
2 . Taking the curl of the momentum

equation, we derive the set
! = �r

2 ,

dT

dt
= Tt +  xTz �  zTx = r

2T,

1

Pr

d!

dt
= �RaTx +r

2!, (3.26)
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which are supplemented by the boundary conditions

 ,! = 0 on x = 0, a, z = 0, 1,

T = 1
2 on z = 0,

T = �
1
2 on z = 1,

Tx = 0 on x = 0, a; (3.27)

here a is the aspect ratio, and we have chosen free slip (no stress) conditions at
the cell boundaries. Note that we have chosen that we have changed the reference
temperature for the scaled temperature from T0 to T0 �

1
2�T ; this is purely a matter

of convenience, as the resultant symmetry of the thermal boundary conditions is more
natural.

Rescaling

The idea is that when Ra � 1, thermal boundary layers of thickness � ⌧ 1 will form
at the edges of the flow, and both  and ! will be � 1 in the flow. To scale the
equations properly, we rescale the variables as

 , ! ⇠
1

�2
, (3.28)

and define
� = Ra�1/3. (3.29)

Rescaled, the equations are thus, in the steady state,

! = �r
2 ,

 xTz �  zTx = �2r2T,

r
2! =

1

�
Tx +

1

Pr �2
d!

dt
. (3.30)

In order that the inertia terms be unimportant, we require Pr �2 � 1, i. e., Pr �

Ra2/3. This assumption is easily satisfied in the Earth’s mantle, but is di�cult to
achieve in the laboratory. Nevertheless, we assume this henceforth.

As in any singular perturbation procedure, we now examine the flow region by
region, introducing special rescalings in regions where boundary conditions cannot be
satisfied. Before doing so, note that the statement of the flow problem is symmetric,
and we will therefore take the solution to be symmetric also.

Core flow

The temperature equation is linear in T , and implies T = T0( ) + O(�2). For a flow
with closed streamlines, the Prandtl-Batchelor theorem then implies T0 = constant
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(this follows from the exact integral

I

C

@T

@n
ds = 0, where the integral is around a

streamline, whence T 0
0( )

I

C

@ 

@n
ds = 0); it then follows that T is constant to all

(algebraic) orders of �, and is in fact zero by the symmetry of the flow. Thus

T = 0,

r
4 = 0, (3.31)

and clearly the core flow cannot have  = ! = 0 at the boundaries, for non-zero  .
In fact, ! jumps at the side-walls where the plume buoyancy generates a non-zero
vorticity. We examine the plumes next.

Plumes

Near x = 0, for example, we rescale the variables as

x = �X,  = � , (3.32)

so that to leading order, we have

 XX ⇡ 0, (3.33)

whence  ⇡ wp(z)X, and to match to the core flow, we define wp =  x |x=0 as the
core velocity at x = 0. Also

 XTz � zTX ⇡ TXX ,

!XX ⇡ TX , (3.34)

the latter of which integrates to give

! =

Z
X

0

T dX, !p =

Z 1

0

T dX, (3.35)

where matching requires !p to be the core vorticity at x = 0. Integration of (3.34)1
gives Z 1

0

T d = C, (3.36)

where C is constant, and it follows that the core flow must satisfy the boundary
condition ! x = C on x = 0 (and therefore, by symmetry, �C at x = a). In
summary, the e↵ective boundary conditions for the core flow are

 = 0 on x = 0, a, z = 0, 1,

 zz = 0 on z = 0, 1,

 x xx = �C on x = 0,  x xx = C on x = a, (3.37)
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and the solution can be found as the canonical solution

 = C1/2 ̂(x, z), (3.38)

where  ̂ must be determined numerically. It thus remains to determine C. This
requires consideration of the thermal boundary layers. Thermal boundary layers are
necessary at the top and bottom because the core temperature (T = 0) does not
satisfy the boundary conditions there.

Thermal boundary layers

Near the top surface, for example, we rescale the variables by writing

z = 1� �Z,  = � , ! = �⌦, (3.39)

to find the leading order rescaled equation for  to be simply

 ZZ ⇡ 0, (3.40)

whence  ⇠ us(x)Z, and us is the core value of the surface velocity �  z|z=1. Then
⌦ZZ ⇡ Tx determines ⌦ (with ⌦ = 0 on Z = 0, and ⌦ ⇠ !s(x)Z as Z ! 1, where
!s is the core value of the surface vorticity), and T satisfies

 ZTx � xTZ ⇡ TZZ . (3.41)

In Von Mises coordinates x, , the equation is

Tx ⇠
@

@ 


 Z

@T

@ 

�
, (3.42)

and putting ⇠ =

Z
x

0

us(x) dx, this is just the di↵usion equation

T⇠ = T  , (3.43)

with
T = �

1
2 on  = 0, T ! 0 as  ! 1. (3.44)

Note that the same Von Mises transformation (but from (z,X) to (z, )) can be used
in the plume equation (3.34)1, which can thus also be written in the di↵usion equation

form (3.43), where ⇠ is extended as

Z
z

wp(z) dz.

A quantity of interest is the Nusselt number, defined as

Nu = �

Z 1

0

@T

@z
(x, 1) dx, (3.45)

and from the above, this can be written as

Nu ⇡

Z 1

0

�T d 

�x=a

x=0

Ra1/3. (3.46)
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Figure 3.8: Boundary conditions for the thermal boundary layer solution of (3.49).

Corner flow

The core flow has a singularity in each corner, where (if r is distance from the corner),
then  ⇠ r3/2, ! ⇠ r�1/2, and (for the corner at x = 0, z = 0, for example) x, z ⇠ r.
There must be a region where this singularity is alleviated by the incorporation of the
buoyancy term. This requires !/r2 ⇠ 1/�r, whence r ⇠ �2/3. Rescaling the variables
as indicated (x, z ⇠ �2/3,  ⇠ �, ! ⇠ ��1/3) then gives the temperature equation as

 XTZ � ZTX ⇠ �r2T, (3.47)

which shows that (since the  scale, �, is the same as that of the boundary layers
adjoining the corner) the boundary layer temperature field is carried through the
corner region without change (to leading order). The corner flow thus has T ⇡ T ( ),
so that

r
4 + T 0( ) X = 0, (3.48)

with appropriate matching conditions. The main point of this is to show that in
solving the thermal boundary layer equations round the perimeter of the box, the
transverse profile (in  ) can be taken to be continuous when the boundary conditions
change at the corners.

Solution strategy

The Von Mises transformation shows that the temperature in the thermal boundary
layers and the thermal plumes satisfies the di↵usion equation

T⇠ = T  , (3.49)

where we define

⇠ =

Z
s

0

U(s) ds, (3.50)

and we define s to be arc length around the perimeter of the box (starting for example
at the point A in figure 3.7, and U(s) is the (core-determined) tangential velocity
on the perimeter. The temperature equation must be solved in the four regions
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corresponding to the boundary layer at z = 1, plume at x = a, boundary layer at
z = 0, and plume at x = 0, representing the four edges AB, BC, CD, DA indicated
in figure 3.7, with T being continuous at each junction point (corner), and

T ! 0 as  ! 1,

T = �
1
2 on  = 0 [z = 1, top AB],

T = 0 on  = 0 [x = a, right BC],

T = 1
2 on  = 0 [z = 0, bottom CD],

T = 0 on  = 0 [x = 0, left DA], (3.51)

as indicated in figure 3.8.
What of the initial condition? The novelty here is that prescription of an initial

condition is supplanted by the necessary requirement that the solution be periodic in
⇠. Beginning from x = 0, z = 1, we may denote the values of ⇠ at the corners as ⇠A
(x = 0, z = 1), ⇠B (x = a, z = 1), ⇠C (x = a, z = 0), ⇠D (x = 0, z = 0). Now from
the definition of ⇠, we have ⇠k = C1/2⇠̂k, where the values of ⇠̂k are independent of C
(because they are determined by the canonical solution in (3.38)). Putting

⇠ = C1/2⇠̂,  = C1/4 ̂, T (⇠, ) = T̂ (⇠̂,  ̂), (3.52)

we see that the problem for T̂ (⇠̂,  ̂) is independent of C.
Just as for the flow in the core, this problem must be solved numerically for

T̂ (⇠̂,  ̂). Assuming this is done, then

Z 1

0

T (⇠, ) d = C1/4

Z 1

0

T̂ (⇠̂,  ̂) d ̂. (3.53)

If, for example, we evaluate both quantities at ⇠ = 0 (i. e., the point A), then it follows
from (3.36) that

C =

Z 1

0

T (0, ) d = C1/4

Z 1

0

T̂ (0,  ̂) d ̂, (3.54)

and this determines C as

C =

Z 1

0

T̂ (0,  ̂) d ̂

�4/3
. (3.55)

Given this, the Nusselt number is then given from (3.46) as

Nu ⇡ C1/4


�

Z 1

0

T̂ d ̂

�⇠̂A

0

Ra1/3. (3.56)
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No-slip boundary conditions

For no slip boundary conditions, the necessary preliminary rescaling is  ⇠ 1/�3,
! ⇠ 1/�3, where � = Ra�1/5. Thus the Nusselt number Nu ⇠ Ra1/5. There is no
longer parity between the thermal boundary layers and plumes, as the former are
slowed down by the no slip conditions. The rescaled equations are

! = �r
2 ,

 xTz �  zTx = �3r2T,

r
2! =

1

�2
Tx. (3.57)

The core flow is as before; the thermal boundary layers have  ⇠ �2, ! ⇠ 1, z ⇠ �,
so that vorticity balances buoyancy), and all three equations are necessary to solve
for T ; it is still the case that

R
T d is conserved at corners, but now in the plume,

x ⇠ �3/2,  ⇠ �3/2, and T ⇠ �1/2. The initial plume profile is e↵ectively a delta
function, and the plume temperature is just the resultant similarity solution. The
remainder of the structure must be computed numerically.

3.6 Double-di↵usive convection

Double-di↵usive convection refers to the motion which is generated by buoyancy, when
the density depends on two di↵usible substances or quantities. The simplest examples
occur when salt solutions are heated; then the two di↵using quantities are heat and
salt. Double-di↵usive processes occur in sea water and in lakes, for example. Other
simple examples occur in multi-component fluids containing more than one dissolved
species; convection in magma chambers is one such.

The guiding principle behind double-di↵usive convection is still that light fluid
rises, and convection occurs in the normal way (the direct mode) when the steady state
is statically unstable (i. e., when the density increases with height), but confounding
factors arise when, as normally the case, the two substances di↵use at di↵erent rates.
Particularly when we are concerned with temperature and salt, the ratio of thermal
to solutal di↵usivity is large, and in this case di↵erent modes of convection occur
near the statically neutral buoyancy state: the cells can take the form of long thin
‘fingers’, or the onset of convection can be oscillatory. In practice, fingers are seen,
but oscillations are not.

A further variant on Rayleigh-Bénard convection arises in the form of convec-
tive layering. This is a long-lived transient form of convection, in which separately
convecting layers form, and is associated partly with the high di↵usivity ratio, and
partly with the usual occurrence of no flux boundary conditions for di↵using chemical
species.

We pose a model for double-di↵usive convection based on a density which is related
linearly to temperature T and salt composition c in the form

⇢ = ⇢0[1� ↵(T � T0) + �(c� c0)], (3.58)
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where we take ↵ and � to be positive constants; thus the presence of salt makes the
fluid heavier. The equation that then needs to be added to (3.1) is that for convective
di↵usion of salt:

ct + u .rc = Dr
2c, (3.59)

where D is the solutal di↵usion coe�cient, assuming a dilute solution. We adopt the
same scaling of the variables as before, with the extra choice

c� c0 ⇠ �c, (3.60)

where �c is a relevant salinity scale (in our stability analysis, it will be the prescribed
salinity di↵erence between the lower and upper surfaces of the fluid layer). The
Boussinesq form of the scaled equations, based on the assumptions that ↵�T ⌧ 1
and ��c ⌧ 1, are then

r.u = 0,
1

Pr
[ut + (u .r)u] = �rp+r

2
u+RaT k̂�Rs ck̂,

Tt + u.rT = r
2T,

ct + u .rc =
1

Le
r

2c. (3.61)

The Rayleigh number Ra and the Prandtl number Pr are defined as before, and the
solutal Rayleigh number Rs and the Lewis number Le are defined by

Rs =
�⇢0�cgd3

µ
, Le =



D
. (3.62)

Note that in the absence of temperature gradients, the quantity �RsLe would be
the e↵ective Rayleigh number determining convection.

3.6.1 Linear stability

Now we study the linear stability of a steady state maintained by prescribed temper-
ature and salinity di↵erences �T and �c across a stress-free fluid layer. In dimen-
sionless terms, we pose the boundary conditions

 = r
2 = 0 at z = 0, 1,

T = c = 0 at z = 1,

T = c = 1 at z = 0, (3.63)

where as before, we restrict attention to two dimensions, and adopt a stream function
 . The steady state is

c = 1� z, T = 1� z,  = 0, (3.64)
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and we perturb it by writing

c = 1� z + C, T = 1� z + ✓, (3.65)

and then linearising the equations on the basis that C, ✓, ⌧ 1. This leads to

1

Pr
r

2 t ⇡ Ra ✓x �RsCx +r
4 ,

✓t �  x ⇡ r
2✓,

Ct �  x ⇡
1

Le
r

2C, (3.66)

with
C =  =  zz = ✓ = 0 on z = 0, 1. (3.67)

By inspection, solutions satisfying the temperature and salinity equations are

 = exp(ikx+ �t) sinm⇡z,

✓ =
ik

� +K2
exp(ikx+ �t) sinm⇡z,

C =
ik

� +
K2

Le

exp(ikx+ �t) sinm⇡z, (3.68)

where we have written
K2 = k2 +m2⇡2. (3.69)

Substituting these into the momentum equation leads to the dispersion relation de-
termining � in terms of k:

(� +K2Pr)(� +K2)

✓
� +

K2

Le

◆
+ k2Pr


(Rs�Ra)�

K2
+Rs�

Ra

Le

�
= 0. (3.70)

This is a cubic in �, which can be written in the form

�3 + a�2 + b� + c = 0, (3.71)

where

a = K2

✓
Pr + 1 +

1

Le

◆
,

b = K4

✓
Pr +

1

Le
+

Pr

Le

◆
+

k2

K2
Pr(Rs�Ra),

c =
K6

Le
Pr + k2Pr

✓
Rs�

Ra

Le

◆
. (3.72)

Instability occurs if any one of the three roots of (3.71) has positive real part.
Since Le and Pr are properties of the fluid, we take them as fixed, and study the
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e↵ect of varying Ra and Rs on the stability boundaries where Re � = 0. Firstly, if
Ra < 0 and Rs > 0, then a, b and c are all positive. We can then show (see question
3.3) that Re� < 0 for all three roots providing ab > c, and this is certainly the case if
Le > 1, which is always true for heat and salt di↵usion. Thus when both temperature
and salinity fields are stabilising, the state of no motion is linearly stable.

To find regions of instability in the (Rs,Ra) plane, it thus su�ces to locate the
curves where Re� = 0. There are two possibilities. The first is referred to as exchange
of stability, or the direct mode, and occurs when � = 0. From (3.71), this is when

c = 0, or Rs =
Ra

Le
�

K6

k2Le
. This is a single curve (for each k), and since we know that

Re� < 0 in Ra < 0 and Rs > 0, this immediately tells us that a direct instability
occurs if

Ra� LeRs > Rc = min
k

K6

k2
=

27⇡4

4
. (3.73)

This direct transition is the counterpart of the onset of Rayleigh-Bénard convection,
and shows that Ra� LeRs is the e↵ective Rayleigh number. This is consistent with
the remark just after (3.62).

The other possibility is that there is a Hopf bifurcation, i. e., a pair of complex
conjugate values of � cross the imaginary axis at ±i⌦, say. The condition for this
is ab = c, which is again a single curve, and one can show (see question 3.4) that
oscillatory instability occurs for

Ra >

✓
Pr +

1

Le

◆
Rs

1 + Pr
+

✓
1 +

1

Le

◆✓
Pr +

1

Le

◆

Pr
Rc. (3.74)

Direct instability occurs along the line XZ in figure 3.9, while oscillatory insta-
bility occurs at the line XW . Between XW and the continuation XU of XZ, there
are two roots with positive real part and one with negative real part. As Ra increases
above XW , it is possible that the two complex roots coalesce on the real axis, so that
the oscillatory instability is converted to a direct mode. One can show (see question
3.5) that the criterion for this is that b < 0 and

c = 1
9


ab+

(a2 � 6b)

3

�
�a+ (a2 � 3b)1/2

 �
. (3.75)

For large Rs, this becomes (for k2 =
⇡2

2
)

Ra ⇡ Rs+
3R1/3

c Rs2/3

22/3Pr1/3
, (3.76)

and is shown as the line XW in figure 3.9. Thus the onset of convection is oscillatory
only between the lines XW and XV , and beyond (above) XV it is direct. In practice,
oscillations are rarely seen.
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Figure 3.9: Stability diagram for double-di↵usive convection.

Fingers

If we return to the cubic in the form (3.70), and consider the behaviour of the roots
in the third quadrant as Ra,Rs ! �1, it is easy to see that one root is

� ⇡

K2


Ra

Le
�Rs

�

Rs�Ra
, (3.77)

while the other two are oscillatorily stable (see question 3.6). Thus this growth
rate is positive when LeRs < Ra < Rs and grows unboundedly with the wave
number k (since K2 = k2 + ⇡2 when m = 1). This is an indication of ill-posedness,
and in fact we anticipate that � will become negative at large k. To see when this
occurs, inspection of (3.70) shows that the neglected terms in the approximation
(3.77) become important when k ⇠ |Ra|1/4, where � is maximum (of O|Ra|1/2), and
then � ⇠ �O(k2) for larger k.2 Thus in the ‘finger’ régime sector indicated in figure
3.9, the most rapidly growing wavelengths are short, and the resulting waveforms are
tall and thin. This is what is seen in practice, and the narrow cells are known as
fingers. An example is shown in figure 3.10.

3.6.2 Layered convection

The linear stability analysis we have given above is only partially relevant to dou-
ble di↵usive convection. It is helpful in the understanding of the finger régime, but

2In the common case where Pr, Le > 1, one finds � ⇡ �
k2

Le
.
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Figure 3.10: Finger convection (Turner 1974).

the oscillatory mode of convection is not particularly relevant. The other principal
phenomenon which double di↵usive systems exhibit is that of layering. This is a
transient, but long-term, phenomenon associated often with the heating of a sta-
ble salinity gradient, and arises because in normal circumstances, more appropriate
boundary conditions for salt concentration are to suppose that there is no flux at the
bounding surfaces.

In pure thermal convection, the heating of an initially stably thermally stratified
fluid will lead to the formation of a layer of convecting fluid below the stable region.
This (single) convecting layer will grow in thickness until it fills the entire layer. This
is essentially the ‘filling box’. Suppose now we have a stable salinity gradient which
is heated from below. Again a convecting layer forms, which mixes the temperature
and concentration fields so that they are uniform within the layer. At the top of the
convecting layer, there will be a step down �T in temperature, and a step down �c
in salinity. It is found experimentally that ↵�T = ��c, that is, the boundary layer

3

is neutrally stable. However, the disparity in di↵usivities (typically Le � 1) means
that there is a thicker thermal conductive layer ahead of the interface. In e↵ect, the
stable salinity gradient above the convecting layer is heated by the layer itself, and a
second, and then a third, layer forms. In this way, the entire fluid depth can fill up
with a sequence of long-lived, separately convecting layers. The layers will eventually
merge and form a single convecting layer over a time scale controlled by the very slow
transport of salinity between the convecting layers. Such layers are very suggestive

3For discussion of boundary layers, see section 3.5.1.
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Figure 3.11: Layered convection (Turner 1974). A stable salt solution has been heated
from below.

of some of the fossilised layering seen in magma chambers, as for example in figure
3.5, but the association may be a dangerous one. An experimental realisation of this
form of layered convection is shown in figure 3.11.

A further example of some of the exotic behaviour which double di↵usion can lead
to is shown in figure 3.12, again taken from the review article by Turner (1974). In
this experiment, the two di↵using substances were sugar and salt, and the fluid was
initially set up with a top-heavy gradient of salt (which plays the rôle of temperature
here as its di↵usivity is larger) and a bottom-heavy gradient of sugar, such that the
overall density gradient was statically stable. This is the analogue of cold/fresh above
hot/salty, so in the ‘di↵usive’ régime of the first quadrant in figure 3.9. The rôle of
the Prandtl number is taken by the Schmidt number defined by

Sc =
⌫

Dl

, (3.78)

where Dl is the di↵usivity of salt and ⌫ is the kinematic viscosity. (The ‘Lewis’
number is the ratio Dl/Dg, where Dg is the di↵usivity of sugar. For salt and sugar,
Le ⇡ 3.4) Now the Schmidt number for salt is around 106, so the ‘Prandtl’ number is
large, and the static stability limit in the di↵usive régime is essentially the same as the

4Specifically, Dl ⇡ 1.5⇥ 10�9 m2 s�1 (Vitagliano and Lyons 1956) and Dg ⇡ 0.5⇥ 10�9 m2 s�1

(Ziegler et al. 1987).
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