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Applications of the Integral formula
We say that a function f: C — C is entire if it is complex
differentiable on the whole complex plane.

Theorem
(Liouville’s theorem) Let f: C — C be an entire function. If f is
bounded then it is constant.

Proof.

Suppose that |f(z)| < M for all z € C. Let yg(t) = Re®™". Then
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Thus as R — oo we get |f(w) — f(0)| = 0, so f is constant.
L]
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The Fundamental Theorem of Algebra

Theorem

Suppose that p(z) = > y_, axz* is a non-constant polynomial
where ax € C and a, # 0. Then there is a zy € C for which
p(2o) = 0.

Proof. By rescaling p we may assume that a, = 1.

If p(z) # 0 for all z € C it follows that f(z) = 1/p(z) is an entire
function.

We will show that f(z) is constant, hence p(z) is constant. By
Liouville’s theorem it suffices to show that f is bounded.

We note that f is bounded on any disc B(0, R), so it suffices to
show that |f(z)| — 0 as z — o, that is, to show that
p(z)] — o0 as z — oo.






Since |Z,m — 0 as |z| — oo for any m > 1 it follows that for
sufficiently large |z|, say |z| > R, we will have
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Since |Z,m — 0 as |z| — oo for any m > 1 it follows that for
sufficiently large |z|, say |z| > R, we will have

1—2‘2‘4_

Thus for |z| > R we have |p(z)| > 3|z|". Since |z|" — oo as
|z| — oo it follows |p(z)| — oo so f(z) is constant and hence
p(z) is constant. ]
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Theorem

(Morera’s theorem) Suppose that f: U — C is a continuous
function on a domain U C C. If for any closed path

v:[a,b] — U we have | f(z)dz = 0, then f is holomorphic.

Proof.
We have shown earlier that if | f(z)dz = O for every closed
path in U then f has a primitive F: U — C.

But then F is holomorphic on U and so infinitely differentiable
on U, thus f = F’ is also holomorphic. ]

Remark

It suffices to assume | f(z)dz = 0 for all triangles whose
interior lies in U rather than all closed paths.

To show f is holomorphic at a € U, it suffices to show that f is
holomorphic on a small open disk B(a,r) C U.

But this follows from our proof of Cauchy’s theorem for starlike
domains as B(a, r) is convex.
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Theorem

(Riemann’s removable singularity theorem): Suppose that U is
an open subsetof Cand zy € U. Iff: U\{zy} — C is
holomorphic and bounded near z,, then f extends to a
holomorphic function on all of U.

Proof. Define h(z) by
h(Z) _ { (Z — ZO)Zf(Z)a 74 7£ 20,

0, Z =2
h(z) is holomorphic on U\{zy}, since f is.
At z = z;:
h(z) — h(z)
— (z — zp)f
Ep—— (z—2z9)f(z) — O
as z — zg since f is bounded near zy by assumption.

If we chose r > 0 s.t. B(zy,r) C U, then h(z) is equal to its
Taylor series centred at zp, thus

hz) =" ax(z — )"
k=0
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Note that h(zy) = 0 by definition of h and we showed h'(z;) = 0
soay—=as =0.So

(zh(zz)o)2 = 2 Skeelz = 20
k=0

defines a holomorphic function in B(zy, r).

But this is equal to f(z) on B(zy, r)\{Zs}, so by redefining
f(zp) = a», we can extend f to a holomorphic function on all of
U. ]
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Uniform Convergence

Definition

Let U be an open subset of C. If (f,) is a sequence of functions
defined on U, we say f, — f uniformly on compacits if for every
compact subset K of U, the sequence (f, k) converges

uniformly to fik.
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Uniform Convergence

Definition

Let U be an open subset of C. If (f,) is a sequence of functions
defined on U, we say f, — f uniformly on compacits if for every
compact subset K of U, the sequence (f, k) converges
uniformly to fik.

Note that in this case f is continuous if the f, are: Let a € U.
Since U is open, B(a,r) C Uforsome r. K = B(a,r) is
compact and f, — f uniformly on K, so f is continuous on K,
hence it is continuous at a.
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Uniform Convergence

Definition

Let U be an open subset of C. If (f,) is a sequence of functions
defined on U, we say f, — f uniformly on compacts if for every
compact subset K of U, the sequence (f, k) converges
uniformly to fik.

Note that in this case f is continuous if the f, are: Let a € U.
Since U is open, B(a,r) C Uforsome r. K = B(a,r) is
compact and f, — f uniformly on K, so f is continuous on K,
hence it is continuous at a.

Example

Power series f(z) = > 2, anz".

If R is the radius of convergence of f(z) the partial sums s,(z)
of the power series converge uniformly on compacts in B(0, R)
as they converge uniformly on B(0, r) for r < R.
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Proposition

Suppose that U is a domain and the sequence of holomorphic
functions f,: U — C converges to f: U — C uniformly on
compacts in U. Then f is holomorphic.

Proof.

For any w € U we may find r > 0 such that B(w, r) C U. Then
for every closed path v: [a, b] — B(w, r) we have

J, fa(z)dz = O forall n € N.

But v* = ~(|a, b]) is a compact subset of U, hence f, — f
uniformly on ~*. It follows that

O:/fn(z)dZ%/f(z)dz,

So f has a primitive F on B(w, r). F is differentiable, hence
infinitely differentiable, so f is differentiable on B(w, r). U m




he Identity Theorem

Let f, g be two holomorphic functions defined on a domain U
andlet S={z e U: f(z) = g(z)} be the locus on which they
are equal. Then if S has a limit point in U we have actually

f(z) =9(z), Vz!
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Let f, g be two holomorphic functions defined on a domain U
andlet S={zec U: f(z) = g(z)} be the locus on which they
are equal. Then if S has a limit point in U we have actually
f(z) =9(z), vzI

Proposition

Let U be an open set and suppose thatg: U — C is
holomorphicon U. Let S ={z e U: g(z) =0}. Ifzy € S then
either zy is isolated in S (so that g is non-zero in some disk
about zy except at zy itself) or g = 0 on a neighbourhood of z,.
In the former case there is a unique integer k > 0 and
holomorphic function g4 such that g(z) = (z — zy)*g1(2) where

91(20) # 0.
*0
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g(Z) — Z CK(Z _ ZO)k7
k=0

forall z € B(zy,r) C U.
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Proof. Let z; € U with g(z9) = 0. Since U is open and g is
analytic at zp, there is an r > 0 such that

g(Z) — Z CK(Z _ ZO)k7
k=0

forall z € B(zy,r) C U.

If all ¢, = 0then g =0 in B(zy, r). Otherwise let

k=min{n e N:c, # 0}. Note g(zp) = ¢ =0, so kK > 0.

Then o 6&0,,')

9(2) = (2 — 20) Cken(z — 20)",
n=0

and the function
g +0

91(2) =  Ckyn(z — 20)"
n=0

is analytic with g1(2Zp) = ¢k # 0.
There is an ¢ > 0 such that g{(z) ## 0 for all z € B(zp, €). Since
9(2) = (z — 20)%g1(2), 2o is isolated.
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g>(zp) both nonzero.
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Remark
The integer k In the previous proposition is called the multiplicity
of the zero of g at z = zy (or sometimes the order of vanishing).

Theorem

(ldentity theorem): Let U be a domain and suppose that fi , fo
are holomorphic functions defined on U. Then if

S={zeU: fi(z) = f(z)} has a limit point in U, we must have
S=U,thatisfi(z) = f(z) forall z € U.
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Proof.

letg=1f —fh,s0S={z:9(z) =0}.

By the previous Proposition we see that if zy € S then either z
IS an isolated point of S or it lies in an open ball contained in S.

Denote by T the set of limit points of S in U. We note that since
g is continuous T C S. We will show that T is both closed and
open. Since it is non-empty and U is connected T = U, hence
S=U.

T is open: By the previous proposition if zy € S is not isolated
then thereisr > 0s.t. g(z) =0forall z € B(z,r),so T is
open.

T is closed in U:

If z, > ac Uwith z, € Ttheng(a) =0. Soac T, hence T is
closed. u



Remark

The requirement in the theorem that S have a limit point lying in
U is essential: For example take U = C\{0} and f; = sin(1/2)
and f> = 0.

Now the zeros of f; have a limit point at 0 ¢ U since
fi(1/(mn)) = 0 for all n € N, but certainly f; is not identically
zero on U!



Remark

The requirement in the theorem that S have a limit point lying in
U is essential: For example take U = C\{0} and f; = sin(1/2)
and f> = 0.

Now the zeros of f; have a limit point at 0 ¢ U since
fi(1/(mn)) = 0 for all n € N, but certainly f; is not identically
zero on U!

Also the connectedness of U is necessary: if U is a union of
two disjoint open discs Dy, D> we may define f = 0 on Dy and
f=1onD-. fis holomorphic on U but not equal to 0.
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Example

Show that there is no holomorphic function f: C\ {0} — C
such that f(x) = log x for all x € R,.

Proof. We note that the principal branch of logarithm satisfies
Logx = log x for all x € R.

So by the identity theorem if such an f exists then f(z) = Logz
forall z € C\ (—o0,0].

However then f(z) is not continuous on (—oo, O].



Isolated Singularities



Isolated Singularities

Definition

If f is a function that is holomorphic on B(zy, r)\{zo} for some
r > 0 but is not holomorphic at zy, then we say that z; is an
Isolated singularity of f. It is possible that f is not defined at z

or that it is defined but it is not holomorphic at z;.
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Isolated Singularities

Definition

If fis a function that is holomorphic on B(zy, r)\{z,} for some
r > 0 but is not holomorphic at zy, then we say that z; is an
Isolated singularity of f. It is possible that f is not defined at z
or that it is defined but it is not holomorphic at z;.

If it is possible to (re)define f(zp) so that f becomes
holomorphic at z; then we say that f has a removable
singularity at z,.

If fis not bounded near z, but the function 1/f(z) has a
removable singularity at zy, then we say that f has a pole at z,.

If f has an isolated singularity at z; which is not removable nor
a pole, we say that z; is an essential singularity.
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Remarks

We note that by Riemann’s removable singularity theorem if f is
bounded near zy then any singularity at z; is removable. For
the same reason if f is continuous at zy then the singularity is
removable.

Say zj is a pole. Then the extension of 1/f to zy; must vanish
there.

So (1/f)(z) = (z— z9)"g(z) where g(zy) # 0 and m € Z~y.
We say that m is the order of the pole of f at z;.

We have then f(z) = (z — z9) ™™ - (1/9) near zy3, where 1/g is
holomorphic near zy. If m =1 we say that f has a simple pole
at zp.
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Examples
Consider the functions:
sin Z 1+ cosz

(2) =222, glz) = —,

, h(z) =exp(1/2)

Clearly they all have an isolated singularity at 0. If we extend f
at 0 by f(0) = 1 we see that this singularity is removable since
sin Z

Z
which is clearly differentiable at O.

=1—22/31+ 2% /41 +

1T Zf
g(z) 1+4cosz

IS holomorphic at 0 so we have a pole-which is in fact of order
2.

h(z) is not bounded at 0 and (1/2) IS not continuous at 0, so

not holomorphic. For example note that h(1/n) — oo while
h(1/2xin) = exp(2win) = 1. SO we have an essential singularity.
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Lemma
Let f be a holomorphic function with a pole of order m at z;.
Then there is an r > 0 such that for all z € B(zy, r)\{zy} we

have
f(z) = Z cn(z — z5)"

n>—m

Proof.
We may write f(z) = (z — z9)~"h(z) where mis the order of the
pole of f at zy and h(z) is holomorphic and non-vanishing at zj.

Near zg, h(z) is equal to its Taylor series at zy, and multiplying
this by (z — zy)~™ gives a series of the required form for
f(z). []
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Laurent series

Definition

The series ), Cn(Z — 20)" is called the Laurent series for f
at z.

We will show later that if f has an isolated essential singularity it
still has a Laurent series expansion, but the series then involves
infinitely many positive and negative powers of (z — zy).

A function on an open set U which has only isolated
singularities all of which are poles is called a meromorphic
function on U.
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Lemma
Suppose that f has an isolated singularity at a point zy. Then z;
Is a pole if and only if |[f(z)| — co as z — Zzy.

Proof.

If zo is a pole of f then 1/f(2) = (z — z5)¥g(z) where g(z) # 0
and k > 0.

But then for z # zg we have f(2) = (z — z5)%(1/g(2)), and
since g(zp) # 0, 1/9(z) is bounded away from 0 near zy, while
(z — 29) %] = c0oas z — 2y, 80 |f(2)| = 0o as z — z as
required.

On the other hand, if |f(z)| — o0 as z — zy, then 1/f(z) — 0 as

Z — 7y, so that 1/f(z) has a removable singularity and f has a
pole at zj. ]



Remark

The previous Lemma can be rephrased to say that f has a pole
at zo precisely when f extends to a continuous function

f: U— Cy with f(zg) = oo.



Essential singularities.

Theorem

(Casorati-Weierstrass): Let U be an open subset of C and let

a e U. Suppose that f: U\{a} — C is a holomorphic function
with an isolated essential singularity at a. Then for all p > 0

with B(a, p) C U, the set f(B(a, p)\{a}) is dense in C, that is,
the closure of f(B(a, p)\{a}) is all of C.
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Essential singularities.

Theorem
(Casorati-Weierstrass): Let U be an open subset of C and let

a e U. Suppose that f: U\{a} — C is a holomorphic function
with an isolated essential singularity at a. Then for all p > 0
with B(a, p) C U, the set f(B(a, p)\{a}) is dense in C, that is,
the closure of f(B(a, p)\{a}) is all of C.

Proof.
Suppose, that there is some p > 0 such that zy € C is not a limit

point of f(B(a, p)\{a}).
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Essential singularities.

Theorem

(Casorati-Weierstrass): Let U be an open subset of C and let
a e U. Suppose that f: U\{a} — C is a holomorphic function
with an isolated essential singularity at a. Then for all p > 0
with B(a, p) C U, the set f(B(a, p)\{a}) is dense in C, that is,
the closure of f(B(a, p)\{a}) is all of C.

Proof.

Suppose, that there is some p > 0 such that zy € C is not a limit
point of f(B(a, p)\{a}).

Then the function g(z) = 1/(f(z) — zp) is bounded on

B(a, p)\{a}.

Hence it extends to a holomorphic function on all of B(a, p).
Since f(z) = zg +1/9(z) if g(a) # 0 then f(z) has a removable
singularity at a.

If g(a) =0, |1/9(2)| > ccas z— a, so |f(z)| > o0 as z — a,
and f has a pole at a, a contradiction. ]



Remark
In fact Picard showed that if f has an isolated essential

singularity at zo then in any open disk about zy the function f
takes every complex value infinitely often with at most one
exception.



Remark

In fact Picard showed that if f has an isolated essential
singularity at zo then in any open disk about zy the function f
takes every complex value infinitely often with at most one
exception.

f(z) = exp(1/z), has an essential singularity at z = 0 and
f(z) # 0 for all z # 0 so this result is best possible.
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Principal Parts
Definition
Recall that if a function f has a pole of order k at z; then near
Zy We may write

()= 3" calz— 2)"

n>—k

The function 1

Z Cn(Z — Zo)n

n=—k

Is called the principal part of f at zy, and we will denote it by
P, (f).

It is a rational function which is holomorphic on C\{z,}. Note
that f — P,,(f) is holomorphic at zy (and also holomorphic
wherever f is).

The residue of f at zy is defined to be the coefficient c_4 and
denoted Res(f).
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It turns out that the residue is ‘all that counts’ when we
calculate integrals along closed paths.

Say f: U — C4 is a meromorphic function with poles at a finite
set S C U.

Then for each zy € S we have the principal part P, (f) of f at
Zq, a rational function which is holomorphic everywhere on

C\{z0}-
The difference

9(z) = f(2) = ) _ Pz(f),

Is holomorphic on all of U.



Thus if U is starlike and ~: [0, 1] — U is any closed path in U
with ~* N S = (), we have

/f(z dz—/g 2)dz + Z/on(f)dz— Z/PZO(f)dz.
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with ~* N S = (), we have
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Note that if n £ —1, (z — zy)" has a primitive (z — z)"*"/n + 1
on C\{zy}. It follows that
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where /(v, zy) denotes the winding number of v about the pole
20.



Thus if U is starlike and ~: [0, 1] — U is any closed path in U
with ~* N S = (), we have

/f(z dz—/g 2)dz + Z/on(f)dz— Z/PZO(f)dz.

Z0€S z0€SY 7

Note that if n £ —1, (z — zy)" has a primitive (z — z)"*"/n + 1
on C\{zy}. It follows that

/ f(2)dz = 3 Resy,(1) / S =2ni’ Y Res(1)- (7. ).

Zp€S Zp€S

where /(v, zy) denotes the winding number of v about the pole
20.

This is the residue theorem for meromorphic functions on a
starlike domain.
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In order to state the general form of Cauchy’s theorem we will
need some notions from Topology.

Informally: Two paths with the same endpoints in a region U
are homotopic if we can continuously deform one to the other
keeping the endpoints fixed throughout.

For example consider the unit circle in C and take as arcs the
two semicircles with end-points —1, 1.

It is clear that we can continuously deform one to the other
keeping 1, —1 fixed throughout.
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Homotopies and simply connected domains

In order to state the general form of Cauchy’s theorem we will
need some notions from Topology.

Informally: Two paths with the same endpoints in a region U
are homotopic if we can continuously deform one to the other
keeping the endpoints fixed throughout.

For example consider the unit circle in C and take as arcs the
two semicircles with end-points —1, 1.

It is clear that we can continuously deform one to the other
keeping 1, —1 fixed throughout.

On the other hand if we take the same arcs in C \ {0} then
there is no obvious way to deform one to the other keeping
1, —1 fixed, and it turns out that they are not homotopic
(although we will not prove this here).

What does it mean ‘continuously deform’? We will need a
function of to express this.



Definition

Suppose that U is an open set in C and a, b € U and that
n:[0,1] - Uand ~: [0,1] — U are paths in U such that

v(0) = n(0) = aand v(1) = n(1) = b. We say that v and n are
homotopic in U if there is a continuous function

h: [0,1] x [0,1] — U such that

h(0,s)=a, h(1,s)=0>b
h(tv O) :7(1.)7 h(t71) :U(t)-

, n
] >
e X
B,.




Definition

Suppose that U is an open set in C and a, b € U and that
n:[0,1] - Uand ~: [0,1] — U are paths in U such that

v(0) = n(0) = aand v(1) = n(1) = b. We say that v and n are
homotopic in U if there is a continuous function

h: [0,1] x [0,1] — U such that

h(0,s)=a, h(1,s)=0>b
h(tv O) :7(1.)7 h(t71) :ﬁ(t)-

One should think of h as a family of paths in U indexed by the

second variable s which continuously deform ~ into 7.
"

e
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A special case of the above definition is when a = b and v and
n are closed paths.
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which is simply given by c4(f) = afor all t € [0, 1].
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equivalence relation, so that any path v between aand b
belongs to a unique equivalence class, known as its homotopy
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A special case of the above definition is when a = b and v and
n are closed paths.

Consider the constant path c;: [0,1] — U going from ato b = a
which is simply given by c4(f) = afor all t € [0, 1].

We say a closed path starting and ending at a pointae U is
null homotopic if it is homotopic to the constant path c..

One can show that the relation “y is homotopic to n” is an
equivalence relation, so that any path v between aand b
belongs to a unique equivalence class, known as its homotopy
class.

Definition

Suppose that U is a domain in C. We say that U is simply
connected if for every a, b € U, any two paths from ato b are
homotopic in U.
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connected if and only if Us is.

Proof.

Suppose that ~v: [0,1] — U and n: [0,1] — U are paths starting
and ending at a and b respectively for some a, b € U. Then for
(s,t) € [0,1] x [0, 1] let
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Lemma

Let U be a convex open set in C. Then U is simply connected.
Moreover if Uy and U> are homeomorphic, then Uy is simply
connected if and only if Us is.

Proof.

Suppose that ~v: [0,1] — U and n: [0,1] — U are paths starting
and ending at a and b respectively for some a, b € U. Then for
(s,t) € [0,1] x [0, 1] let

h(t,s) = (1 — s)y(t) + sn(t)

Then his continuous and gives the required homotopy.

If f: Uy — Us> is @a homeomorphism then f and ~, n with
common endpoints in Us then F=1(v), f~1(n) are paths with
common endpoints in Uy. If his a homotopy between them in
U, then f o his a homotopy between ~, n. So if U; is simply
connected then U is too.
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(Non-examinable) One can show that any starlike domain D is
simply-connected. It turns out that it is enough to show that a
domain is simply-connected if all closed paths starting and
ending at a given point zo € D are null-homotopic.



Cauchy’s theorem-general forms

It turns out that one can substitute star-like by simply connected
in the statement of Cauchy’s theorem.

Remark

(Non-examinable) One can show that any starlike domain D is
simply-connected. It turns out that it is enough to show that a
domain is simply-connected if all closed paths starting and
ending at a given point zo € D are null-homotopic.

If D is star-like with respect to zo € D, then ifv: [0,1] - D is a
closed path with v(0) = ~(1) = Zzp, it follows

h(s,t) = zo + s(v(t) — zp) gives a homotopy between ~ and the
constant path cz, .
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Consider the domain

D,.={zecC:z=re" :n<r<1,0<0<2n(1-¢)},

where 0 < n,e < 1/10 say. We claim that it is simply connected.




Example
Consider the domain

D,.={zecC:z=re" :n<r<1,0<0<2n(1-¢)},
where 0 < 7n,e < 1/10 say. We claim that it is simply connected.

Indeed it is the image of the convex set (n,1) x (0,1 — €) under
the map (r,0) — re*™?. Since this map has a continuous
inverse, it is a homeomorphism so it follows D, . is
simply-connected.
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Example
Consider the domain

D,c={zeC:z=re" :n<r<1,0<6<2r(1—¢)},
where 0 < 7n,e < 1/10 say. We claim that it is simply connected.

Indeed it is the image of the convex set (n,1) x (0,1 — €) under
the map (r,0) — re*™?. Since this map has a continuous
inverse, it is a homeomorphism so it follows D, . is
simply-connected.

When n and e are small, the boundary of this set, oriented
anti-clockwise, is a version of what is called a key-hole contour.



Theorem
(Homotopy form of Cauchy’s Theorem)
Let U be a domain in C and a, b € U. Suppose that v and n are

paths from a to b which are homotopic in U andf: U — C is a
holomorphic function. Then

[ f(z)dz = [ f(z)dz.




Theorem

(Homotopy form of Cauchy’s Theorem)

Let U be a domain in C and a,b € U. Suppose that~ and n are
paths from a to b which are homotopic in U andf: U — C is a
holomorphic function. Then

/f(z)dz:/f(z)dz.

Remark

One significance of the homotopy form of Cauchy’s theorem is
that it applies to domains U even when there is no primitive for
f on U-while in the earlier version of this theorem our proof
proceeded by showing that f has a primitive in a star-like
domain.
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Suppose that U is a simply-connected domain, let a,b € U, and
letf: U— C be a holomorphic function on U. Then if v41,~o are
paths from a to b we have

f(z)dz:/ f(z)dz.

In particular, if v is a closed oriented curve we have

f7 f(z)dz = 0, and hence any holomorphic function on U has a
primitive.



Theorem

Suppose that U is a simply-connected domain, let a,b € U, and
letf: U— C be a holomorphic function on U. Then if v41,~o are
paths from a to b we have

f(z)dz:/ f(z)dz.

In particular, if v is a closed oriented curve we have

f7 f(z)dz = 0, and hence any holomorphic function on U has a
primitive.

Proof.

Since U is simply-connected, any two paths from from ato b
are homotopic, so we can apply the previous Theorem.
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Theorem

Suppose that U is a simply-connected domain, let a,b € U, and
letf: U— C be a holomorphic function on U. Then if v41,~o are
paths from a to b we have

f(z)dz:/ f(z)dz.

In particular, if v is a closed oriented curve we have
f7 f(z)dz = 0, and hence any holomorphic function on U has a
primitive.

Proof.
Since U is simply-connected, any two paths from from ato b
are homotopic, so we can apply the previous Theorem.

For the last part, in a simply-connected domain any closed path
v:[0,1] — U, with v(0) = ~(1) = a say, is homotopic to the
constant path cs(t) = a, and hence | f(z)dz = [, f(z)dz = 0.



Theorem

Suppose that U is a simply-connected domain, let a,b € U, and
letf: U— C be a holomorphic function on U. Then if v41,~o are
paths from a to b we have

f(z)dz:/ f(z)dz.

In particular, if v is a closed oriented curve we have
f7 f(z)dz = 0, and hence any holomorphic function on U has a
primitive.

Proof.
Since U is simply-connected, any two paths from from ato b
are homotopic, so we can apply the previous Theorem.

For the last part, in a simply-connected domain any closed path
v:[0,1] — U, with v(0) = ~(1) = a say, is homotopic to the
constant path cs(t) = a, and hence | f(z)dz = [, f(z)dz = 0.
The final assertion then follows as vanishing of all these
integrals implies that f has a primitive. ]
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If U C C\{0} is simply-connected, the previous theorem implies
that there is a holomorphic branch of [Log(z)] defined on all of
U.

Indeed 1/z is holomorphic so it has a primitive f in U.
d

2 oo f(2) = o=f(2) _ -f(2) —
dzze e f'(z)ze 0

so there is a constant C such that z = Ce’(?). By adding a
constant to f we may assume that C = 1, so z = /(2.



Example

If U C C\{0} is simply-connected, the previous theorem implies
that there is a holomorphic branch of [Log(z)] defined on all of
U.

Indeed 1/z is holomorphic so it has a primitive f in U.
d

2 oo f(2) = o=f(2) _ -f(2) —
dzze e f'(z)ze 0

so there is a constant C such that z = Ce’(?). By adding a
constant to f we may assume that C = 1, so z = /(2.

So by definition of the logarithm f is a holomorphic branch of
[Log(z)] in U.



Remark
In previous lectures we called a domain D in the complex plane

primitive if every holomorphic function f: D — C on it had a
primitive. Cauchy’s Theorem shows that any simply-connected
domain is primitive. In fact the converse is also true — any
primitive domain is necessarily simply-connected. Thus the
term “primitive domain” is in fact another name for a

simply-connected domain.
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Cauchy’s theorem-Homology form
(or winding numbers form)
Theorem

Letf: U — C be a holomorphic function and let ~: [0,1] — U
be a closed path whose inside lies entirely in U, that is
I(v,z) =0 forallz ¢ U. Then we have, for all z ¢ U\~*,

/ f(¢)d¢ = 0; ") ge = oni- 17, 2)1(2).
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Cauchy’s theorem-Homology form

(or winding numbers form)

Theorem

Letf: U — C be a holomorphic function and let ~: [0,1] — U
be a closed path whose inside lies entirely in U, that is

I(v,z) =0 forallz ¢ U. Then we have, for all z ¢ U\~*,

F(¢)

VC_Z

/ f(¢)d¢ = 0; d¢ = 2ri - I(v, 2)f(2).

Moreover, if U is simply-connected and ~: [a, b] — U is any
closed path, then I(~,z) = 0 for any z ¢ U, so the above
identities hold for all closed paths in such U.



Cauchy’s theorem-Homology form

(or winding numbers form)

Theorem

Letf: U — C be a holomorphic function and let ~: [0,1] — U
be a closed path whose inside lies entirely in U, that is

I(v,z) =0 forallz ¢ U. Then we have, for all z ¢ U\~*,

F(<)

VC_Z

/ f(¢)d¢ = 0; d¢ = 2ri - I(v, 2)f(2).

Moreover, if U is simply-connected and ~: [a, b] — U is any
closed path, then I(~,z) = 0 for any z ¢ U, so the above
identities hold for all closed paths in such U.

Remark

The “moreover” statement follows from the fact that a
simply-connected domain is primitive: if D is a domain and

w ¢ D, then the function 1/(z — w) is holomorphic on all of D,
and hence has a primitive on D. It follows I(~, w) = 0 for any
path ~ with ~* C D.



Remark. The homology version of Cauchy’s theorem has a
natural extension: instead of integrating over a single closed
path, one can integrate over formal sums of closed paths.

A cycle is a formal sum I = S°K . a;+; where ay, ..., ax € Z and
Y1, ...,7k are closed paths.

We define the integral of a function f along the cycle I to be

/ z)dz—Za,/f(z
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Remark. The homology version of Cauchy’s theorem has a
natural extension: instead of integrating over a single closed
path, one can integrate over formal sums of closed paths.

A cycle is a formal sum I = S°K . a;+; where ay, ..., ax € Z and
Y1, ...,7k are closed paths.

We define the integral of a function f along the cycle I to be

/ z)dz—Za,/f(z

Note that, this also gives a natural definition of the winding
number for such I':

I(T,z) =S5 ail(y;, 2). If we write T = ~3 U... U~ then
I(T', z) is defined for all z ¢ T*.
We define the inside of a cycle to be the set of z € C for which

I(T',z) # 0.



Theorem
(Cauchy’s Theorem, Homology version) Letf: U — C be a
holomorphic function and let I be a cycle whose inside lies

entirely in U, thatis I(T',z) = 0 for all z ¢ U. Then we have, for
all z € U\I'*,

_ 0 Q) - 5
/rf(C)dC_O, /FC_ZdC_Zm-I(F,z)f(z).



Note that if z is inside I = S_¥_. a;v; then it must be the case
that z is inside some ~;, but the converse is not necessarily the
case: it may be that z lies inside some of the ~; but does not lie

inside I.



Note that if z is inside I = S_¥_. a;v; then it must be the case
that z is inside some ~;, but the converse is not necessarily the
case: it may be that z lies inside some of the ~; but does not lie
iInside I'.

For example take I' to be the sum of two concentric circles with

opposite orientation. Then the center is not inside I'. In this
case the set of points ‘inside’ I' is the annulus between the two

circles.
0
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that z is inside some ~;, but the converse is not necessarily the
case: it may be that z lies inside some of the ~; but does not lie
iInside I'.

For example take I' to be the sum of two concentric circles with
opposite orientation. Then the center is not inside I'. In this
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Note that if z is inside I = S_¥_. a;v; then it must be the case
that z is inside some ~;, but the converse is not necessarily the
case: it may be that z lies inside some of the ~; but does not lie
iInside I'.

For example take I' to be the sum of two concentric circles with
opposite orientation. Then the center is not inside I'. In this
case the set of points ‘inside’ I' is the annulus between the two
circles.

More generally cycles appear naturally as follows.
Let D be a non-simply connected domain such that 9D is a
union of continuous simple closed curves 1, ...,v,. Then if ~4 is
the boundary of the unbounded component of C \ D and we
give 7o, ..., vp the same orientation as ~¢ then the inside of the
cycle

=y =7 — =

IS exactly the domain D. —



Laurent series

Definition
By a Laurent series (or Laurent expansion) around z; we mean
a series of the form

0. @)

f(z) = Z cn(z — 2p)"

N—=—oo

We say that this series converges absolutely (uniformly) on a
set A C C if the two series

(2) =) cn(z—2)". 17(2) =) calz—20)7",
n=0 n=1

converge absolutely (uniformly) on A. Then the sum of the
Laurent series is the function f(z) = f(z) + f~(2).



Definition
Let 0 < r < R be real numbers and let z; € C. An open
annulus is a set

A:A(f, F)’,Zo) — B(ZO,R)\B(Zo,r) = {Z cC:r< ‘Z—Zo‘ < R}

()



Definition
Let 0 < r < R be real numbers and let z; € C. An open
annulus is a set

A:A(f, FI’,Z(_)) — B(ZO,R)\B(Zo,r) = {Z cC:r< ‘Z—Zo‘ < R}

If we write (for s > 0) ~(z, s) for the closed path t — zg 4+ se®™'
then notice that the inside of the cycle

v Rz = 7(20, R) — (20, r) is precisely A, since for any s,
I(v(z0,8),2) is 1 precisely if z € B(Zy, s) and 0 otherwise.

(2, R)
(2

X(Zo, r)



Theorem

Suppose that0 < r < Rand A= A(r, R, zy) is an annulus

centred at zy. If f: U — C is holomorphic on an open set U
which contains A, then there exist c, € C such that

6. @)

f(z) = Z ch(z—2z9)", Vze A

N——oo

PN G



Theorem

Suppose that0 < r < Rand A= A(r, R, zy) is an annulus

centred at zy. If f: U — C is holomorphic on an open set U
which contains A, then there exist ¢, € C such that

o

f(z) = Z cn(z—2z9)", VzeA

N=—0o0

Moreover, the ¢, are unique and are given by the following
formulae:

Cn

o (2)
"ot ),z 2y

where s € [r, R] and for any s > 0 we set vs(t) = zy + se*™".



The proof is very similar to the proof of the Taylor series
expansion for holomorphic functions.



The proof is very similar to the proof of the Taylor series
expansion for holomorphic functions.

Before going through the proof | remind you some of the tools
we will use:



The proof is very similar to the proof of the Taylor series
expansion for holomorphic functions.

Before going through the proof | remind you some of the tools
we will use:

1. If f, — f uniformly on compact sets then [ f, — | f.



The proof is very similar to the proof of the Taylor series
expansion for holomorphic functions.

Before going through the proof | remind you some of the tools
we will use:

1. If f, — f uniformly on compact sets then [ f, — | f.
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sets of U then f is holomorphic.



The proof is very similar to the proof of the Taylor series
expansion for holomorphic functions.

Before going through the proof | remind you some of the tools
we will use:

1. If f, — f uniformly on compact sets then [ f, — | f.

2. It f, are holomorphic in U and f, — f uniformly on compact
sets of U then f is holomorphic.

3.This applies in particular to power series. For example if
> -0 @nz" has radius of convergence R then it converges
uniformly on compact sets in B(0, R). So if v is a C'-path in

B(0, R)
/Zanz”dz:Z/anz”.
7 n=0 n=0""7



5. Note that if Y~ , a»z" has radius of convergence R then
> .=~ . anz" converges absolutely for |z| > r =1/Rsoitis
holomorphic in C \ B(0, r).



5. Note that if Y~ , a»z" has radius of convergence R then
> .=~ . anz" converges absolutely for |z| > r =1/Rsoitis
holomorphic in C \ B(0, r).

1 . .
6. —— =1+z+ z% + .... and the convergence is uniform for

|z| < r < 1. More generally we have

T 1
w—z w(l—-2z/w)

=1/w+z/w?+2°/w° + ...

and the convergence is uniform for |z/w| < r < 1.



5. Note that if Y~ , a»z" has radius of convergence R then
> .=~ . anz" converges absolutely for |z| > r =1/Rsoitis
holomorphic in C \ B(0, r).

1

6.
1—2Z
|z| < r < 1. More generally we have

=1+ z+ z° + .... and the convergence is uniform for

T 1
w—z w(l—-2z/w)

=1/w+z/w?+22/w° + ...

and the convergence is uniform for |z/w| < r < 1.

7. CGauchy’s integral formula. Here we will need the general
winding number version of this.



Proof By translation we may assume that z = 0. Since A is the
inside of the cycle I', g 5, it follows from the winding number
form of Cauchy’s integral formula that for w € A we have

27rif(w):/ (2) dz—/ (2) dz

Z— W
,

RZ—W




Proof By translation we may assume that z = 0. Since A is the
inside of the cycle I', g 5, it follows from the winding number
form of Cauchy’s integral formula that for w € A we have

27Tif(W):/ (2) dz—/ (2) dz

pZ—W Z—w

1
z-w > oo W'/ 2™,

converging uniformly in z for |z| > |w| + € for any € > 0.

e

If we fix w, then, for |w| < |z| we have
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Z € b/ﬂ



Proof By translation we may assume that z = 0. Since A is the
inside of the cycle I', g 5, it follows from the winding number
form of Cauchy’s integral formula that for w € A we have

27Tif(W):/ (2) dz—/ (2) dz

pZ—W Z—w

1
z—w > o W'/ 2™,

converging uniformly in z for |z| > |w| + € for any € > 0.
It follows that

LR zf(_z?/vdzzf7 i f(zi)JrV:/”dz: > </m foﬁ dz) w

AR n=0 n>0

If we fix w, then, for |w| < |z| we have

for all w A;

(it wehA [wicr)




Similarly since for |z| < |w| we have




Similarly since for |z| < |w| we have

1 _ n n+1 __ — n/,n+1
Z—W_W(Z/W—1 ZZ/W B ZW/Z ’

n>0 n=—1

again converging uniformly on |z| when |z| < |w| — e for e > 0,
we see that

_/w "'I:(f)zdz :/y _z: f(z)w" /2" dz = _Z: ([y, ;(72 dz)w".

" n=—1 n=—1




Similarly since for |z| < |w| we have

1 _ n n+1 __ — n;-n+1
Z—W_W(Z/W—1 ZZ/W B ZW/Z ’

n>0 n=—1

again converging uniformly on |z| when |z| < |w| — e for e > 0,
we see that

S D [ 5 = S ([ oo

" n=—1 n=—1

taking (¢n)nez as in the statement of the theorem, we see that

f(w):i./ 2) 4 1 f(z dz =" oo,

2] g Z— W 211 v s
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The ¢, can be computed using any circular contour ~s:

If r < sy < s, < Rthen f/(z— zy)™ is holomorphic on the
inside of I = ~5, — 7s,, hence by the homology form of Cauchy’s
theorem 0 = [ f(2)/(z — zp)""'dz =

f%z f(2)/(z — zp)"dz — f%1 f(2)/(z — z9)"dz. In other

words we can redo the proof using the annulus between sy, so.




The ¢, can be computed using any circular contour ~s:

If r < sy < s, < Rthen f/(z— zy)™ is holomorphic on the
inside of I = ~5, — 7s,, hence by the homology form of Cauchy’s
theorem 0 = [ f(2)/(z — zp)""'dz =

f%Z f(2)/(z — zp)"dz — f%1 f(2)/(z — z9)"dz. In other

words we can redo the proof using the annulus between sy, s-.

It follows that ~, in f% %dz can be replaced by v, and
similarly vg can be replaced by vs,. But s, S can take any
values in [r, R]. Hence we obtain

1 f(z) iz

Ch = — ;
" 2ni )., (z - zp)™H



Uniqueness: Let ) ., dnz" be any series expansion for f(z)
on A. By the integral formulae above (for zy = 0):
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Uniqueness: Let ) ., dnz" be any series expansion for f(z)
on A. By the integral formulae above (for zy = 0):

_ 1 [ 2
- 2ni s Zzn+1

Ch dz

Since ) ., dnZ" converges uniformly on compact sets in A to
f(z) we have that

N
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Uniqueness: Let ) ., dnz" be any series expansion for f(z)
on A. By the integral formulae above (for zy = 0):

_ 1 [ 2
- 2ni s Zzn+1

Ch dz

Since ) ., dnZ" converges uniformly on compact sets in A to
f(z) we have that

N
d. 7"
2N 9nZ dZ—>/ @dZ:2TH'Cn
Vs

. Zn+1 Zn—|—1
S

But

N
d.z"
/ Z_/;/ 1,72 dz:/ %dz:Zwidn
s z + s 4

SO d, = Ch.



Remark
Note that

- _ / (2) dz
€W

is a holomorphic function of w in B(zy, R) and

/% Zf(_z?/v iz

is a holomorphic function of w on C\B(z, r).

A ‘ —~

C
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Remark

Note that /
/ (2) 4,
wé€—W
Is a holomorphic function of w in B(zy, R) and
/ f(z) iz
Yy Z—W

is a holomorphic function of w on C\B(zy, ).

This is because we gave a power series expansion for both of
them.



Remark

Note that /
/ (2) 4,
wé€—W
Is a holomorphic function of w in B(zy, R) and
/ f(z) iz
Yy Z—W

is a holomorphic function of w on C\B(zy, ).

This is because we gave a power series expansion for both of
them.

Thus we have actually expressed f(w) on A as the difference of
two functions which are holomorphic on B(zy, R) and
C\B(zy, r) respectively.



Corollary

Iff: U— C is a holomorphic function on an open set U
containing an annulus A = A(r, R, zy) then f has a Laurent
expansion on A. In particular, if f has an isolated singularity at
7y, then it has a Laurent expansion on a punctured disc

B(zy, r)\{zo} for sufficiently small r > Q.




Corollary

Iff: U— C is a holomorphic function on an open set U
containing an annulus A = A(r, R, z9) then f has a Laurent
expansion on A. In particular, if f has an isolated singularity at
7y, then it has a Laurent expansion on a punctured disc

B(zy, r)\{zo} for sufficiently small r > Q.

Proof.
This follows from the previous Theorem and the fact that for any
0 <r < Rwe have

A(r, R, zp) = U A(r, Ri, 20).

r<rn<Ri{<R

The final sentence follows from the fact that
B(z, r)\{z0} = A(0, r, 2o). [



Definition
Let f: U\S — C holomorphic on a domain U except at a
discrete set S C U. Then for any a € S by the previous

corollary for r > 0 sufficiently small, we have

f(z)=) ca(z—a)", vzeB(ar)\{a}.
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discrete set S C U. Then for any a € S by the previous
corollary for r > 0 sufficiently small, we have

f(z)=) ca(z—a)", vzeB(ar)\{a}.
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We define
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Pa(f)= Y  ca(z—a)",
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to be the principal part of f at a.
The coefficient c_4 is the residue of f at a.



Definition

Let f: U\S — C holomorphic on a domain U except at a
discrete set S C U. Then for any a € S by the previous
corollary for r > 0 sufficiently small, we have

f(z)=) ca(z—a)", vzeB(ar)\{a}.
nez

We define

— OO

Pa(f) = Z cn(z — a)",
n=—1
to be the principal part of f at a.
The coefficient c_4 is the residue of f at a.

This generalizes the previous definition we gave for the
principal part of a meromorphic function. Note that the series
P4(f) is uniformly convergent on C\B(a, r) for all r > 0, and
hence defines a holomorphic function on C\{a}.



Calculate the Laurent series for

’
z(z—1)

f(z) = for 0 < |z| < 1 and for |z| > 1.



Calculate the Laurent series for

1

f(z) = .
(2) 2z - 1) for0 < |z| < 1 and for |z| > 1
f(z) = -1 — 1. We have
1 1 5
2_1_—1_2_—1—2—2—...

so the Laurent series for 0 < |z| < 1 is

f(z)=—-1-1-z-22— ...



Calculate the Laurent series for

1

f(z) = .
(2) 2z - 1) for0 < |z| < 1 and for |z| > 1
f(z) = -1 — 1. We have
1 1 5
2_1_—1_2_—1—2—2—...

so the Laurent series for 0 < |z| < 1 is
2

f(z)=—-1-1-z-22— ...

For |z| > 1 we write




