Multifunctions

$$
\begin{gathered}
\text { Panos Papazojlou } \\
\text { e-mail: papazoglou @math or.ac.uk }
\end{gathered}
$$

Multifunctions

We saw earlier how to extend some classical real functions like exp, sin, cos to complex functions using power series.

Multifunctions

We saw earlier how to extend some classical real functions like exp, sin, cos to complex functions using power series.

Today we will consider $\log z$ and fractional powers $z^{m / n}$. How do we extend these to complex functions?

Multifunctions

We saw earlier how to extend some classical real functions like exp, sin, cos to complex functions using power series.

Today we will consider $\log z$ and fractional powers $z^{m / n}$. How do we extend these to complex functions?

It turns out this is more delicate. In fact Leibniz and Bernoulli disagreed for over 15 years on the 'correct' value of $\log (-1)$ and $\log i$.

Multifunctions

We saw earlier how to extend some classical real functions like exp, sin, cos to complex functions using power series.

Today we will consider $\log z$ and fractional powers $z^{m / n}$. How do we extend these to complex functions?

It turns out this is more delicate. In fact Leibniz and Bernoulli disagreed for over 15 years on the 'correct' value of $\log (-1)$ and $\log i$.

These are examples of multifunctions as eg one can take $\log (-1)=i \pi$ or $\log (-1)=-i \pi$.

Branch cuts

«ロ｣可 句

Branch cuts

Consider the square root 'function' $z^{1 / 2}$. Can we make a choice of $z^{1 / 2}$ to obtain a continuous or even better holomorphic function?

Branch cuts

Consider the square root 'function' $z^{1 / 2}$. Can we make a choice of $z^{1 / 2}$ to obtain a continuous or even better holomorphic function?
$z=r e^{i \theta}$ with $\theta \in[0,2 \pi)$. Then $z^{1 / 2}= \pm r^{1 / 2} e^{i \theta / 2}$. So we may define a square root function f by

$$
f(z)=f\left(r e^{i \theta}\right)=r^{1 / 2} e^{i \theta / 2}
$$

Branch cuts

Consider the square root 'function' $z^{1 / 2}$. Can we make a choice of $z^{1 / 2}$ to obtain a continuous or even better holomorphic function?
$z=r e^{i \theta}$ with $\theta \in[0,2 \pi)$. Then $z^{1 / 2}= \pm r^{1 / 2} e^{i \theta / 2}$. So we may define a square root function f by

$$
f(z)=f\left(r e^{i \theta}\right)=r^{1 / 2} e^{i \theta / 2}
$$

But f is not continuous on the whole plane:
For $\theta \rightarrow 0, \quad r e^{i \theta}, r e^{i(2 \pi-\theta)} \rightarrow r$, but
$f\left(r e^{i \theta}\right) \rightarrow r^{1 / 2}, \quad f\left(r e^{i(2 \pi-\theta)}\right)=r^{1 / 2} e^{i(\pi-\theta / 2)} \rightarrow-r^{1 / 2}$.

Branch cuts

Consider the square root 'function' $z^{1 / 2}$. Can we make a choice of $z^{1 / 2}$ to obtain a continuous or even better holomorphic function?
$z=r e^{i \theta}$ with $\theta \in[0,2 \pi)$. Then $z^{1 / 2}= \pm r^{1 / 2} e^{i \theta / 2}$. So we may define a square root function f by

$$
f(z)=f\left(r e^{i \theta}\right)=r^{1 / 2} e^{i \theta / 2}
$$

But f is not continuous on the whole plane:
For $\theta \rightarrow 0, \quad r e^{i \theta}, r e^{i(2 \pi-\theta)} \rightarrow r$, but
$f\left(r e^{i \theta}\right) \rightarrow r^{1 / 2}, \quad f\left(r e^{i(2 \pi-\theta)}\right)=r^{1 / 2} e^{i(\pi-\theta / 2)} \rightarrow-r^{1 / 2}$.
Still $f(z)$ is continuous on $\mathbb{C} \backslash R$ where $R=\{z \in \mathbb{C}: \Im(z)=0, \Re(z)>0\}$.

Branch cuts

Consider the square root 'function' $z^{1 / 2}$. Can we make a choice of $z^{1 / 2}$ to obtain a continuous or even better holomorphic function?
$z=r e^{i \theta}$ with $\theta \in[0,2 \pi)$. Then $z^{1 / 2}= \pm r^{1 / 2} e^{i \theta / 2}$. So we may define a square root function f by

$$
f(z)=f\left(r e^{i \theta}\right)=r^{1 / 2} e^{i \theta / 2} .
$$

But f is not continuous on the whole plane:
For $\theta \rightarrow 0, \quad r e^{i \theta}, r e^{i(2 \pi-\theta)} \rightarrow r$, but
$f\left(r e^{i \theta}\right) \rightarrow r^{1 / 2}, \quad f\left(r e^{i(2 \pi-\theta)}\right)=r^{1 / 2} e^{i(\pi-\theta / 2)} \rightarrow-r^{1 / 2}$.
Still $f(z)$ is continuous on $\mathbb{C} \backslash R$
where $R=\{z \in \mathbb{C}: \Im(z)=0, \Re(z)>0\}$.
$f(z)$ is holomorphic on $\mathbb{C} \backslash R$:

$$
\begin{array}{lc}
\frac{f(a+h)-f(a)}{h}=\frac{f(a+h)-f(a)}{f^{2}(a+h)-f^{2}(a)}=\frac{1}{f(a+h)+f(a)} \rightarrow \frac{1}{2 f(a)} \\
\text { as } h \rightarrow 0 . & a^{\prime \prime} h_{\text {N }}^{\prime \prime} \quad \text { a }
\end{array}
$$

Multifunctions

The positive real axis is called a branch cut for the multi-valued function $z^{1 / 2}$.
If we set

$$
g(z)=g\left(r e^{i \theta}\right)=r^{1 / 2} e^{i\left(\frac{\theta}{2}+\pi\right)}=-r^{1 / 2} e^{i \theta / 2} .
$$

we obtain another branch of $z^{1 / 2}$ on $\mathbb{C} \backslash R$.

Multifunctions

The positive real axis is called a branch cut for the multi-valued function $z^{1 / 2}$.
If we set

$$
g(z)=g\left(r e^{i \theta}\right)=r^{1 / 2} e^{i\left(\frac{\theta}{2}+\pi\right)}=-r^{1 / 2} e^{i \theta / 2} . f
$$

we obtain another branch of $z^{1 / 2}$ on $\mathbb{C} \backslash R$.

Definition

A multi-valued function or multifunction on a subset $U \subseteq \mathbb{C}$ is a map $f: U \rightarrow \mathcal{P}(\mathbb{C})$ assigning to each point in U a subset of the complex numbers. A branch of f on a subset $V \subseteq U$ is a function $g: V \rightarrow \mathbb{C}$ such that $g(z) \in f(z)$, for all $z \in V$. If g is continuous (or holomorphic) on V we refer to it as a continuous, (respectively holomorphic) branch of f.

Multifunctions

The positive real axis is called a branch cut for the multi-valued function $z^{1 / 2}$.
If we set

$$
g(z)=g\left(r e^{i \theta}\right)=r^{1 / 2} e^{i\left(\frac{\theta}{2}+\pi\right)}=-r^{1 / 2} e^{i \theta / 2} .
$$

we obtain another branch of $z^{1 / 2}$ on $\mathbb{C} \backslash R$.

Definition

A multi-valued function or multifunction on a subset $U \subseteq \mathbb{C}$ is a map $f: U \rightarrow \mathcal{P}(\mathbb{C})$ assigning to each point in U a subset of the complex numbers. A branch of f on a subset $V \subseteq U$ is a function $g: V \rightarrow \mathbb{C}$ such that $g(z) \in f(z)$, for all $z \in V$. If g is continuous (or holomorphic) on V we refer to it as a continuous, (respectively holomorphic) branch of f.
Notation: $[f(z)]$ so eg $[\log (z)]=\left\{w \in \mathbb{C}: e^{w}=z\right\}$.

Two types of discontinuity: 'accidental' depending on the branch cut we used and 'unavoidable' called branch points.

Two types of discontinuity: 'accidental' depending on the branch cut we used and 'unavoidable' called branch points.

So for the multifunction $\left[z^{1 / 2}\right.$] we obtain holomorphic branches on $\mathbb{C} \backslash R$ where R is the x-axis. The positive points on x-axis are 'accidental' discontinuities but 0 appears in all branch cuts, it is a branch point.

Two types of discontinuity: 'accidental' depending on the branch cut we used and 'unavoidable' called branch points.

So for the multifunction $\left[z^{1 / 2}\right.$] we obtain holomorphic branches on $\mathbb{C} \backslash R$ where R is the x-axis. The positive points on x-axis are 'accidental' discontinuities but 0 appears in all branch cuts, it is a branch point.

This is because it is not possible to choose a continuous branch of $\left[z^{1 / 2}\right]$ on any open set containing 0 .

To see this note that we can not continuously define $z^{1 / 2}$ on a circle centered at 0 .

To see this note that we can not continuously define $z^{1 / 2}$ on a circle centered at 0 .

Let $z=r e^{2 \pi i t}, t \in[0,1]$ and let's say $f:[0,1] \rightarrow \mathbb{C}$ is a continuous choice of $z^{1 / 2}$ on this circle.

To see this note that we can not continuously define $z^{1 / 2}$ on a circle centered at 0 .

Let $z=r e^{2 \pi i t}, t \in[0,1]$ and let's say $f:[0,1] \rightarrow \mathbb{C}$ is a continuous choice of $z^{1 / 2}$ on this circle.

Then $f(0)= \pm \sqrt{r}$. Consider the function $g:[0,1) \rightarrow \mathbb{C}$, $g(t)=\sqrt{r} e^{\pi i t}$. Then g is continuous.

To see this note that we can not continuously define $z^{1 / 2}$ on a circle centered at 0 .

Let $z=r e^{2 \pi i t}, t \in[0,1]$ and let's say $f:[0,1] \rightarrow \mathbb{C}$ is a
continuous choice of $z^{1 / 2}$ on this circle.
Then $f(0)= \pm \sqrt{r}$. Consider the function $g:[0,1) \rightarrow \mathbb{C}$, $g(t)=\sqrt{r} e^{\pi i t}$. Then g is continuous.

So the quotient f / g is a continuous function defined on $[0,1)$ and $f(t) / g(t)= \pm 1$ for any $t \in[0,1)$. Since $[0,1)$ is connected f / g is necessarily constant, so $f= \pm g$.

To see this note that we can not continuously define $z^{1 / 2}$ on a circle centered at 0 .

Let $z=r e^{2 \pi i t}, t \in[0,1]$ and let's say $f:[0,1] \rightarrow \mathbb{C}$ is a
continuous choice of $z^{1 / 2}$ on this circle.
Then $f(0)= \pm \sqrt{r}$. Consider the function $g:[0,1) \rightarrow \mathbb{C}$, $g(t)=\sqrt{r} e^{\pi i t}$. Then g is continuous.

So the quotient f / g is a continuous function defined on $[0,1)$ and $f(t) / g(t)= \pm 1$ for any $t \in[0,1)$. Since $[0,1)$ is connected f / g is necessarily constant, so $f= \pm g$.

Say $f(t)=g(t)$. Then

$$
f(1)=\lim _{t \rightarrow 1} f(t)=\lim _{t \rightarrow 1} g(t)=\sqrt{r} e^{\pi i}=-\sqrt{r}
$$

To see this note that we can not continuously define $z^{1 / 2}$ on a circle centered at 0 .

Let $z=r e^{2 \pi i t}, t \in[0,1]$ and let's say $f:[0,1] \rightarrow \mathbb{C}$ is a continuous choice of $z^{1 / 2}$ on this circle.

Then $f(0)= \pm \sqrt{r}$. Consider the function $g:[0,1) \rightarrow \mathbb{C}$, $g(t)=\sqrt{r} e^{\pi i t}$. Then g is continuous.

So the quotient f / g is a continuous function defined on $[0,1)$ and $f(t) / g(t)= \pm 1$ for any $t \in[0,1)$. Since $[0,1)$ is connected f / g is necessarily constant, so $f= \pm g$.

Say $f(t)=g(t)$. Then

$$
f(1)=\lim _{t \rightarrow 1} f(t)=\lim _{t \rightarrow 1} g(t)=\sqrt{r} e^{\pi i}=-\sqrt{r}
$$

So $f(0)=\sqrt{r} \neq f(1)=\sqrt{r} e^{\pi i}=-\sqrt{r}$, however $r e^{2 \pi i \cdot 0}=r e^{2 \pi i \cdot 1}$, and similarly we arrive at a contradiction if $f(t)=-g(t)$.

Definition

Suppose that $f: U \rightarrow \mathcal{P}(\mathbb{C})$ is a multi-valued function defined on an open subset U of \mathbb{C}. We say that $z_{0} \in U$ is not a branch point of f if there is an open disk $D \subseteq U$ containing z_{0} such that there is a holomorphic branch of f defined on $D \backslash\left\{z_{0}\right\}$. We say z_{0} is a branch point otherwise.

Definition

Suppose that $f: U \rightarrow \mathcal{P}(\mathbb{C})$ is a multi-valued function defined on an open subset U of \mathbb{C}. We say that $z_{0} \in U$ is not a branch point of f if there is an open disk $D \subseteq U$ containing z_{0} such that there is a holomorphic branch of f defined on $D \backslash\left\{z_{0}\right\}$. We say z_{0} is a branch point otherwise.
When $\mathbb{C} \backslash U$ is bounded, we say that f does not have a branch point at ∞ if there is a holomorphic branch of f defined on $\mathbb{C} \backslash B(0, R) \subseteq U$ for some $R>0$. Otherwise we say that ∞ is a branch point of f.

Definition

Suppose that $f: U \rightarrow \mathcal{P}(\mathbb{C})$ is a multi-valued function defined on an open subset U of \mathbb{C}. We say that $z_{0} \in U$ is not a branch point of f if there is an open disk $D \subseteq U$ containing z_{0} such that there is a holomorphic branch of f defined on $D \backslash\left\{z_{0}\right\}$. We say z_{0} is a branch point otherwise.
When $\mathbb{C} \backslash U$ is bounded, we say that f does not have a branch point at ∞ if there is a holomorphic branch of f defined on $\mathbb{C} \backslash B(0, R) \subseteq U$ for some $R>0$. Otherwise we say that ∞ is a branch point of f.
A branch cut for a multifunction f is a curve in the plane on whose complement we can pick a holomorphic branch of f. Thus a branch cut must contain all the branch points.

Definition

Suppose that $f: U \rightarrow \mathcal{P}(\mathbb{C})$ is a multi-valued function defined on an open subset U of \mathbb{C}. We say that $z_{0} \in U$ is not a branch point of f if there is an open disk $D \subseteq U$ containing z_{0} such that there is a holomorphic branch of f defined on $D \backslash\left\{z_{0}\right\}$. We say z_{0} is a branch point otherwise.
When $\mathbb{C} \backslash U$ is bounded, we say that f does not have a branch point at ∞ if there is a holomorphic branch of f defined on $\mathbb{C} \backslash B(0, R) \subseteq U$ for some $R>0$. Otherwise we say that ∞ is a branch point of f.
A branch cut for a multifunction f is a curve in the plane on whose complement we can pick a holomorphic branch of f. Thus a branch cut must contain all the branch points.

For example $0, \infty$ are the branch points of $\left[z^{1 / 2}\right]$.

The Logarithm

The Logarithm
$[\log (z)]=\{\log (|z|)+i(\theta+2 n \pi): n \in \mathbb{Z}\}$ where $z=|z| e^{i \theta}$. We get a branch on $\mathbb{C} \backslash(-\infty, 0]$ by making a choice for the argument:

The Logarithm

The Logarithm
$[\log (z)]=\{\log (|z|)+i(\theta+2 n \pi): n \in \mathbb{Z}\}$ where $z=|z| e^{i \theta}$. We get a branch on $\mathbb{C} \backslash(-\infty, 0]$ by making a choice for the argument:

$$
\mathrm{L}(z)=\log (|z|)+i \arg (z), \quad \text { where } \arg (z) \in(-\pi, \pi)
$$

this is called the principal branch of Log.

$$
\text { branch cut for } L:(-\infty, 0]
$$

The Logarithm

The Logarithm
$[\log (z)]=\{\log (|z|)+i(\theta+2 n \pi): n \in \mathbb{Z}\}$ where $z=|z| e^{i \theta}$. We get a branch on $\mathbb{C} \backslash(-\infty, 0]$ by making a choice for the argument:

$$
\mathrm{L}(z)=\log (|z|)+i \arg (z), \quad \text { where } \arg (z) \in(-\pi, \pi)
$$

this is called the principal branch of Log.
We may define other branches of the logarithm by

$$
L_{n}(z)=\mathrm{L}(z)+2 i n \pi
$$

The Logarithm

The Logarithm
$[\log (z)]=\{\log (|z|)+i(\theta+2 n \pi): n \in \mathbb{Z}\}$ where $z=|z| e^{i \theta}$.
We get a branch on $\mathbb{C} \backslash(-\infty, 0]$ by making a choice for the argument:

$$
\mathrm{L}(z)=\log (|z|)+i \arg (z), \quad \text { where } \arg (z) \in(-\pi, \pi)
$$

this is called the principal branch of Log.
We may define other branches of the logarithm by

$$
L_{n}(z)=L(z)+2 i n \pi
$$

The branch points of $[\log (z)]$ are 0 and ∞, as it is not possible to make a continuous choice of logarithm on any circle $S(0, r)$.

We note that $L(z)$ is also holomorphic. Indeed for small $h \neq 0$, $L(a+h) \neq L(a)$ and

$$
\frac{L(a+h)-L(a)}{h}=\frac{L(a+h)-L(a)}{\exp (L(a+h))-\exp (L(a))},
$$

We note that $L(z)$ is also holomorphic. Indeed for small $h \neq 0$, $L(a+h) \neq L(a)$ and

$$
\frac{L(a+h)-L(a)}{h}=\frac{L(a+h)-L(a)}{\exp (L(a+h))-\exp (L(a))},
$$

We have

$$
\lim _{h \rightarrow 0} \frac{\exp (L(a+h))-\exp (L(a))}{L(a+h)-L(a)}=\exp ^{\prime}(L(a))=a
$$

since when $h \rightarrow 0, L(a+h)-L(a) \rightarrow 0$ by the continuity of L. So we have $L^{\prime}(a)=1 / a$.

We note that $L(z)$ is also holomorphic. Indeed for small $h \neq 0$, $L(a+h) \neq L(a)$ and

$$
\frac{L(a+h)-L(a)}{h}=\frac{L(a+h)-L(a)}{\exp (L(a+h))-\exp (L(a))},
$$

We have

$$
\lim _{h \rightarrow 0} \frac{\exp (L(a+h))-\exp (L(a))}{L(a+h)-L(a)}=\exp ^{\prime}(L(a))=a
$$

since when $h \rightarrow 0, L(a+h)-L(a) \rightarrow 0$ by the continuity of L. So we have $L^{\prime}(a)=1 / a$.

We note that the same argument applies to any continuous branch of the logarithm.

Complex powers

$\left[z^{\alpha}\right]$ where $\alpha \in \mathbb{C}$:

Complex powers

$\left[z^{\alpha}\right]$ where $\alpha \in \mathbb{C}$:

$$
\left[z^{\alpha}\right]:=\exp (\alpha \cdot[\log (z)])=\left\{\exp (\alpha \cdot w): w \in \mathbb{C}, e^{w}=z\right\}
$$

any holomorphic branch of $[\log (z)]$ gives a holomorphic branch of $\left[z^{\alpha}\right]$.
If we pick $L(z)$ we get the principal branch of $\left[z^{\alpha}\right]$.

Complex powers

$\left[z^{\alpha}\right]$ where $\alpha \in \mathbb{C}$:

$$
\left[z^{\alpha}\right]:=\exp (\alpha \cdot[\log (z)])=\left\{\exp (\alpha \cdot w): w \in \mathbb{C}, e^{w}=z\right\}
$$

any holomorphic branch of $[\log (z)]$ gives a holomorphic branch of $\left[z^{\alpha}\right]$.
If we pick $L(z)$ we get the principal branch of $\left[z^{\alpha}\right]$.
Note $\left(z_{1} z_{2}\right)^{\alpha} \neq z_{1}^{\alpha} z_{2}^{\alpha}$ in general!

Binomial theorem for complex powers

$$
\left[(1+z)^{\alpha}\right]=\{\exp (\alpha \cdot w): w \in \mathbb{C}, \exp (w)=1+z\}
$$

Using $L(z)$ we obtain a branch

$$
f(z)=\exp (\alpha \cdot L(1+z))
$$

Binomial theorem for complex powers

$$
\left[(1+z)^{\alpha}\right]=\{\exp (\alpha \cdot w): w \in \mathbb{C}, \exp (w)=1+z\}
$$

Using $L(z)$ we obtain a branch

$$
f(z)=\exp (\alpha \cdot L(1+z))
$$

Let $\binom{\alpha}{k}=\frac{1}{k!} \alpha \cdot(\alpha-1) \ldots(\alpha-k+1)$. Define

$$
s(z)=\sum_{k=0}^{\infty}\binom{\alpha}{k} z^{k}
$$

Binomial theorem for complex powers

$$
\left[(1+z)^{\alpha}\right]=\{\exp (\alpha \cdot w): w \in \mathbb{C}, \exp (w)=1+z\}
$$

Using $L(z)$ we obtain a branch

$$
f(z)=\exp (\alpha \cdot L(1+z))
$$

Let $\binom{\alpha}{k}=\frac{1}{k!} \alpha \cdot(\alpha-1) \ldots(\alpha-k+1)$. Define

$$
s(z)=\sum_{k=0}^{\infty}\binom{\alpha}{k} z^{k}
$$

By the ratio test, $s(z)$ has radius of convergence equal to 1 , so that $s(z)$ defines a holomorphic function in $B(0,1)$.

$$
\binom{\alpha}{k} /\binom{\alpha}{k+1}=\left|\frac{k+1}{\alpha-k}\right| \underset{k \rightarrow \infty}{\longrightarrow} \infty
$$

Binomial theorem for complex powers

$$
\left[(1+z)^{\alpha}\right]=\{\exp (\alpha \cdot w): w \in \mathbb{C}, \exp (w)=1+z\}
$$

Using $L(z)$ we obtain a branch

$$
f(z)=\exp (\alpha \cdot L(1+z))
$$

Let $\binom{\alpha}{k}=\frac{1}{k!} \alpha \cdot(\alpha-1) \ldots(\alpha-k+1)$. Define

$$
s(z)=\sum_{k=0}^{\infty}\binom{\alpha}{k} z^{k}
$$

By the ratio test, $s(z)$ has radius of convergence equal to 1 , so that $s(z)$ defines a holomorphic function in $B(0,1)$.
Differentiating term by term: $(1+z) s^{\prime}(z)=\alpha \cdot s(z)$.
$s^{\prime}(z)=\sum k\binom{\alpha}{k} z^{k-1}=\sum(\alpha-k+1)\binom{\alpha}{k-1} z^{k-1}, \quad z s^{\prime}(z)=\sum(k-1)\binom{\alpha}{k-1} z^{k-1}$

Binomial theorem for complex powers

$$
\left[(1+z)^{\alpha}\right]=\{\exp (\alpha \cdot w): w \in \mathbb{C}, \exp (w)=1+z\}
$$

Using $L(z)$ we obtain a branch

$$
f(z)=\exp (\alpha \cdot L(1+z))
$$

Let $\binom{\alpha}{k}=\frac{1}{k!} \alpha \cdot(\alpha-1) \ldots(\alpha-k+1)$. Define

$$
s(z)=\sum_{k=0}^{\infty}\binom{\alpha}{k} z^{k}
$$

By the ratio test, $s(z)$ has radius of convergence equal to 1 , so that $s(z)$ defines a holomorphic function in $B(0,1)$. Differentiating term by term: $(1+z) s^{\prime}(z)=\alpha \cdot s(z)$. Now $f(z)$ is defined on all of $B(0,1)$. We claim that $f(z)=s(z)$ on $B(0,1)$.

$$
\text { Let } g(z)=\frac{s(z)}{f(z)}=s(z) \exp (-\alpha \cdot L(1+z))
$$

then $g(z)$ is holomorphic for every $z \in B(0,1)$ and by the chain rule

$$
\text { Let } g(z)=\frac{s(z)}{f(z)}=s(z) \exp (-\alpha \cdot L(1+z))
$$

then $g(z)$ is holomorphic for every $z \in B(0,1)$ and by the chain rule

$$
g^{\prime}(z)=\left(s^{\prime}(z)-\alpha s(z) L^{\prime}((1+z)) \exp (-\alpha \cdot L(1+z))=0\right.
$$

since $s^{\prime}(z)=\frac{\alpha \cdot s(z)}{1+z}$.

$$
\text { Let } g(z)=\frac{s(z)}{f(z)}=s(z) \exp (-\alpha \cdot L(1+z))
$$

then $g(z)$ is holomorphic for every $z \in B(0,1)$ and by the chain rule

$$
g^{\prime}(z)=\left(s^{\prime}(z)-\alpha s(z) L^{\prime}((1+z)) \exp (-\alpha \cdot L(1+z))=0\right.
$$

since $s^{\prime}(z)=\frac{\alpha \cdot s(z)}{1+z}$.
Also $g(0)=1$ so, since $B(0,1)$ is connected g is constant and $s(z)=f(z)$.

The Argument

$$
[\arg (z)]:=\left\{\theta \in \mathbb{R}: z=|z| e^{i \theta}\right\} \text { is defined on } \mathbb{C} \backslash\{0\} .
$$

The Argument

$[\arg (z)]:=\left\{\theta \in \mathbb{R}: z=|z| e^{i \theta}\right\}$ is defined on $\mathbb{C} \backslash\{0\}$.
Claim: There is no continuous branch of $[\arg (z)]$ on $\mathbb{C} \backslash\{0\}$.

The Argument

$[\arg (z)]:=\left\{\theta \in \mathbb{R}: z=|z| e^{i \theta}\right\}$ is defined on $\mathbb{C} \backslash\{0\}$.
Claim: There is no continuous branch of $[\arg (z)]$ on $\mathbb{C} \backslash\{0\}$. Let's say $f: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{R}$ is a continuous branch of the argument.

The Argument

$[\arg (z)]:=\left\{\theta \in \mathbb{R}: z=|z| e^{i \theta}\right\}$ is defined on $\mathbb{C} \backslash\{0\}$.
Claim: There is no continuous branch of $[\arg (z)]$ on $\mathbb{C} \backslash\{0\}$. Let's say $f: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{R}$ is a continuous branch of the argument.
Define $g: \mathbb{C} \backslash[0, \infty)$ by $g\left(r e^{i \theta}\right)=\theta$ where $\theta \in(0,2 \pi)$.

The Argument

$[\arg (z)]:=\left\{\theta \in \mathbb{R}: z=|z| e^{i \theta}\right\}$ is defined on $\mathbb{C} \backslash\{0\}$.
Claim: There is no continuous branch of $[\arg (z)]$ on $\mathbb{C} \backslash\{0\}$. Let's say $f: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{R}$ is a continuous branch of the argument.
Define $g: \mathbb{C} \backslash[0, \infty)$ by $g\left(r e^{i \theta}\right)=\theta$ where $\theta \in(0,2 \pi)$.
Clearly g is continuous, so $F(z)=f(z)-g(z)$ is continuous. However $f(z)-g(z) \in 2 \pi \mathbb{Z}$. Since $\mathbb{C} \backslash[0, \infty)$ is connected, $F(\mathbb{C} \backslash[0, \infty))$ is connected.

The Argument

$[\arg (z)]:=\left\{\theta \in \mathbb{R}: z=|z| e^{i \theta}\right\}$ is defined on $\mathbb{C} \backslash\{0\}$.
Claim: There is no continuous branch of $[\arg (z)]$ on $\mathbb{C} \backslash\{0\}$. Let's say $f: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{R}$ is a continuous branch of the argument.
Define $g: \mathbb{C} \backslash[0, \infty)$ by $g\left(r e^{i \theta}\right)=\theta$ where $\theta \in(0,2 \pi)$.
Clearly g is continuous, so $F(z)=f(z)-g(z)$ is continuous. However $f(z)-g(z) \in 2 \pi \mathbb{Z}$. Since $\mathbb{C} \backslash[0, \infty)$ is connected, $F(\mathbb{C} \backslash[0, \infty))$ is connected.

It follows that $f(z)-g(z)$ is constant, $f(z)-g(z)=2 n \pi$ for some fixed n. But then

The Argument

$[\arg (z)]:=\left\{\theta \in \mathbb{R}: z=|z| e^{i \theta}\right\}$ is defined on $\mathbb{C} \backslash\{0\}$.
Claim: There is no continuous branch of $[\arg (z)]$ on $\mathbb{C} \backslash\{0\}$. Let's say $f: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{R}$ is a continuous branch of the argument.
Define $g: \mathbb{C} \backslash[0, \infty)$ by $g\left(r e^{i \theta}\right)=\theta$ where $\theta \in(0,2 \pi)$.
Clearly g is continuous, so $F(z)=f(z)-g(z)$ is continuous. However $f(z)-g(z) \in 2 \pi \mathbb{Z}$. Since $\mathbb{C} \backslash[0, \infty)$ is connected, $F(\mathbb{C} \backslash[0, \infty))$ is connected.

It follows that $f(z)-g(z)$ is constant, $f(z)-g(z)=2 n \pi$ for some fixed n. But then
$\lim _{\theta \rightarrow 0^{+}} f\left(e^{i \theta}\right)=2 n \pi, \lim _{\theta \rightarrow 0^{-}} f\left(e^{i \theta}\right)=(2 n+2) \pi$, so f is not continuous.

The argument multifunction is closely related to the logarithm. There is a continuous branch of $[\log (z)]$ on a set U if and only if there is continuous branch of $[\arg (z)]$ on U.

The argument multifunction is closely related to the logarithm. There is a continuous branch of $[\log (z)]$ on a set U if and only if there is continuous branch of $[\arg (z)]$ on U.

Indeed if $f(z)$ is a continuous branch of $[\arg (z)]$ on U we may define a continuous branch of $[\log (z)]$ by $g(z)=\log |z|+i f(z)$, and conversely given $g(z)$ we may define $f(z)=\Im(g(z))$.

The argument multifunction is closely related to the logarithm. There is a continuous branch of $[\log (z)]$ on a set U if and only if there is continuous branch of $[\arg (z)]$ on U.

Indeed if $f(z)$ is a continuous branch of $[\arg (z)]$ on U we may define a continuous branch of $[\log (z)]$ by $g(z)=\log |z|+i f(z)$, and conversely given $g(z)$ we may define $f(z)=\Im(g(z))$.

It follows that there is no continuous branch of $[\log (z)]$ defined on $\mathbb{C} \backslash\{0\}$.

Riemann surfaces

Riemann surfaces make it possible to replace 'multifunctions' by actual functions.

Riemann surfaces

Riemann surfaces make it possible to replace 'multifunctions' by actual functions.

Consider [$z^{1 / 2}$]. We can 'join' the two branches of $\left[z^{1 / 2}\right]$ to obtain a function from a Riemann surface to \mathbb{C}.

Complex integration

Complex integration

if $F:[a, b] \rightarrow \mathbb{C}, F(t)=G(t)+i H(t)$, we say that F is integrable if G, H are integrable and define

$$
\int_{a}^{b} F(t) d t=\int_{a}^{b} G(t) d t+i \int_{a}^{b} H(t) d t
$$

Complex integration

if $F:[a, b] \rightarrow \mathbb{C}, F(t)=G(t)+i H(t)$, we say that F is integrable if G, H are integrable and define

$$
\int_{a}^{b} F(t) d t=\int_{a}^{b} G(t) d t+i \int_{a}^{b} H(t) d t
$$

PROPERTIES:

1. $\int_{a}^{b}\left(\alpha \cdot F_{1}+\beta \cdot F_{2}\right) d t=\alpha \cdot \int_{a}^{b} F_{1} d t+\beta \cdot \int_{a}^{b} F_{2} d t . \quad \alpha_{1} B \in \mathbb{C}$
2. $\left|\int_{a}^{b} F(t) d t\right| \leq \int_{a}^{b}|F(t)| d t$.

Complex integration

if $F:[a, b] \rightarrow \mathbb{C}, F(t)=G(t)+i H(t)$, we say that F is integrable if G, H are integrable and define

$$
\int_{a}^{b} F(t) d t=\int_{a}^{b} G(t) d t+i \int_{a}^{b} H(t) d t
$$

PROPERTIES:

1. $\int_{a}^{b}\left(\alpha \cdot F_{1}+\beta \cdot F_{2}\right) d t=\alpha \cdot \int_{a}^{b} F_{1} d t+\beta \cdot \int_{a}^{b} F_{2} d t$.
2. $\left|\int_{a}^{b} F(t) d t\right| \leq \int_{a}^{b}|F(t)| d t$.

Proof of 2.
Set $\int_{a}^{b} F(t) d t=r e^{i \theta}$. Then by $1, \int_{a}^{b} e^{-i \theta} F(t) d t=r \in \mathbb{R}$.

Complex integration

if $F:[a, b] \rightarrow \mathbb{C}, F(t)=G(t)+i H(t)$, we say that F is integrable if G, H are integrable and define

$$
\int_{a}^{b} F(t) d t=\int_{a}^{b} G(t) d t+i \int_{a}^{b} H(t) d t
$$

PROPERTIES:

1. $\int_{a}^{b}\left(\alpha \cdot F_{1}+\beta \cdot F_{2}\right) d t=\alpha \cdot \int_{a}^{b} F_{1} d t+\beta \cdot \int_{a}^{b} F_{2} d t$.
2. $\left|\int_{a}^{b} F(t) d t\right| \leq \int_{a}^{b}|F(t)| d t$.

Proof of 2.
Set $\int_{a}^{b} F(t) d t=r e^{i \theta}$. Then by $1, \int_{a}^{b} e^{-i \theta} F(t) d t=r \in \mathbb{R}$.
so $\int_{a}^{b} e^{-i \theta} F(t) d t=\int_{a}^{b} \operatorname{Re}\left(e^{-i \theta} F(t)\right) d t$

Complex integration

if $F:[a, b] \rightarrow \mathbb{C}, F(t)=G(t)+i H(t)$, we say that F is integrable if G, H are integrable and define

$$
\int_{a}^{b} F(t) d t=\int_{a}^{b} G(t) d t+i \int_{a}^{b} H(t) d t
$$

PROPERTIES:

1. $\int_{a}^{b}\left(\alpha \cdot F_{1}+\beta \cdot F_{2}\right) d t=\alpha \cdot \int_{a}^{b} F_{1} d t+\beta \cdot \int_{a}^{b} F_{2} d t$.
2. $\left|\int_{a}^{b} F(t) d t\right| \leq \int_{a}^{b}|F(t)| d t$.

Proof of 2.
Set $\int_{a}^{b} F(t) d t=r e^{i \theta}$. Then by $1, \int_{a}^{b} e^{-i \theta} F(t) d t=r \in \mathbb{R}$.
so $\int_{a}^{b} e^{-i \theta} F(t) d t=\int_{a}^{b} \operatorname{Re}\left(e^{-i \theta} F(t)\right) d t$
$\left|\int_{a}^{b} F(t) d t\right|=\left|\int_{a}^{b} \operatorname{Re}\left(e^{-i \theta} F(t)\right) d t\right| \leq \int_{a}^{b}|F(t)| d t$ since $|\operatorname{Re}(z)| \leq|z|$.

Paths

Paths

Definition

A path is a continuous function $\gamma:[a, b] \rightarrow \mathbb{C}$. A path is closed if $\gamma(a)=\gamma(b)$. A path is simple if for $x \neq y, \gamma(x) \neq \gamma(y)$ except possibly for $\{x, y\}=\{a, b\}$. If γ is a path, we will write γ^{*} for its image,

$$
\gamma^{*}=\{z \in \mathbb{C}: z=\gamma(t), \text { some } t \in[a, b]\} .
$$

Paths

Definition

A path is a continuous function $\gamma:[a, b] \rightarrow \mathbb{C}$. A path is closed if $\gamma(a)=\gamma(b)$. A path is simple if for $\boldsymbol{x} \neq \boldsymbol{y}, \gamma(\boldsymbol{x}) \neq \gamma(y)$ except possibly for $\{x, y\}=\{a, b\}$. If γ is a path, we will write γ^{*} for its image,

$$
\gamma^{*}=\{z \in \mathbb{C}: z=\gamma(t), \text { some } t \in[a, b]\} .
$$

Definition

A path $\gamma:[a, b] \rightarrow \mathbb{C}$ is differentiable if its real and imaginary parts are differentiable. Equivalently, γ is differentiable at $t_{0} \in[a, b]$ if

$$
\lim _{t \rightarrow t_{0}} \frac{\gamma(t)-\gamma\left(t_{0}\right)}{t-t_{0}}
$$

exists. Notation: $\gamma^{\prime}\left(t_{0}\right)$. (If $t=a$ or b then we take the one-sided limit.) A path is C^{1} if it is differentiable and its derivative $\gamma^{\prime}(t)$ is continuous.

EXAMPLES:

1. Line segment: $t \mapsto a+t(b-a)=(1-t) a+t b, t \in[0,1]$,
2. circle: $z(t)=z_{0}+r e^{2 \pi i t}, t \in[0,1]$ a closed path.

EXAMPLES:

1. Line segment: $t \mapsto a+t(b-a)=(1-t) a+t b, t \in[0,1]$,
2. circle: $z(t)=z_{0}+r e^{2 \pi i t}, t \in[0,1]$ a closed path.
3. spiral

$$
\gamma(t)=t^{3} e^{2 n i / t}, t+[0,1]
$$

EXAMPLES:

1. Line segment: $t \mapsto a+t(b-a)=(1-t) a+t b, t \in[0,1]$,
2. circle: $z(t)=z_{0}+r e^{2 \pi i t}, t \in[0,1]$ a closed path.

NON EXAMPLES:
Pean curves, triangles, $\gamma(t)=t e^{2 n i / t}, t \in[0,1]$.

$$
\alpha: I \longrightarrow
$$

EXAMPLES:

1. Line segment: $t \mapsto a+t(b-a)=(1-t) a+t b, t \in[0,1]$,
2. circle: $z(t)=z_{0}+r e^{2 \pi i t}, t \in[0,1]$ a closed path.

NON EXAMPLES:
Peano curves
Remarks: If γ is a C^{1} path and $\gamma^{\prime}\left(t_{0}\right) \neq 0$ then γ has a tangent at $t_{0}: L(t)=\gamma\left(t_{0}\right)+\left(t-t_{0}\right) \gamma^{\prime}\left(t_{0}\right)$.

EXAMPLES:

1. Line segment: $t \mapsto a+t(b-a)=(1-t) a+t b, t \in[0,1]$,
2. circle: $z(t)=z_{0}+r e^{2 \pi i t}, t \in[0,1]$ a closed path.

NON EXAMPLES:

Peano curves
Remarks: If γ is a C^{1} path and $\gamma^{\prime}\left(t_{0}\right) \neq 0$ then γ has a tangent at $t_{0}: L(t)=\gamma\left(t_{0}\right)+\left(t-t_{0}\right) \gamma^{\prime}\left(t_{0}\right)$.
However a C^{1} path might not have a tangent at every point, eg $\gamma:[-1,1] \rightarrow \mathbb{C}$

$$
\gamma(t)=\left\{\begin{array}{cc}
t^{2} & -1 \leq t \leq 0 \\
i t^{2} & 0 \leq t \leq 1
\end{array}\right.
$$

Definition

Let $\gamma:[c, d] \rightarrow \mathbb{C}$ be a C^{1}-path. If $\phi:[a, b] \rightarrow[c, d]$ is continuously differentiable with $\phi(a)=c$ and $\phi(b)=d$, then we say that $\tilde{\gamma}=\gamma \circ \phi$, is a reparametrization of γ.

Definition

Let $\gamma:[c, d] \rightarrow \mathbb{C}$ be a C^{1}-path. If $\phi:[a, b] \rightarrow[c, d]$ is continuously differentiable with $\phi(a)=c$ and $\phi(b)=d$, then we say that $\tilde{\gamma}=\gamma \circ \phi$, is a reparametrization of γ.

Lemma

Let $\gamma:[c, d] \rightarrow \mathbb{C}$ and $s:[a, b] \rightarrow[c, d]$ and suppose that s is differentiable at t_{0} and γ is differentiable at $s_{0}=s\left(t_{0}\right)$. Then $\gamma \circ s$ is differentiable at t_{0} with derivative

$$
(\gamma \circ s)^{\prime}\left(t_{0}\right)=s^{\prime}\left(t_{0}\right) \cdot \gamma^{\prime}\left(s\left(t_{0}\right)\right) .
$$

Definition

Let $\gamma:[c, d] \rightarrow \mathbb{C}$ be a C^{1}-path. If $\phi:[a, b] \rightarrow[c, d]$ is continuously differentiable with $\phi(a)=c$ and $\phi(b)=d$, then we say that $\tilde{\gamma}=\gamma \circ \phi$, is a reparametrization of γ.

Lemma

Let $\gamma:[c, d] \rightarrow \mathbb{C}$ and $s:[a, b] \rightarrow[c, d]$ and suppose that s is differentiable at t_{0} and γ is differentiable at $s_{0}=s\left(t_{0}\right)$. Then $\gamma \circ s$ is differentiable at t_{0} with derivative

$$
(\gamma \circ s)^{\prime}\left(t_{0}\right)=s^{\prime}\left(t_{0}\right) \cdot \gamma^{\prime}\left(s\left(t_{0}\right)\right) .
$$

Proof.

$$
\gamma(x)=\gamma\left(s_{0}\right)+\gamma^{\prime}\left(s_{0}\right)\left(x-s_{0}\right)+\left(x-s_{0}\right) \epsilon(x), \epsilon(x) \rightarrow 0 \text { as } x \rightarrow s_{0}
$$

$$
\frac{\gamma(x)-\gamma\left(s_{0}\right)}{x-s_{0}}-\gamma^{\prime}\left(s_{0}\right)=\varepsilon(x)
$$

Definition

Let $\gamma:[c, d] \rightarrow \mathbb{C}$ be a C^{1}-path. If $\phi:[a, b] \rightarrow[c, d]$ is continuously differentiable with $\phi(a)=c$ and $\phi(b)=d$, then we say that $\tilde{\gamma}=\gamma \circ \phi$, is a reparametrization of γ.

Lemma

Let $\gamma:[c, d] \rightarrow \mathbb{C}$ and $s:[a, b] \rightarrow[c, d]$ and suppose that s is differentiable at t_{0} and γ is differentiable at $s_{0}=s\left(t_{0}\right)$. Then $\gamma \circ s$ is differentiable at t_{0} with derivative

$$
(\gamma \circ s)^{\prime}\left(t_{0}\right)=s^{\prime}\left(t_{0}\right) \cdot \gamma^{\prime}\left(s\left(t_{0}\right)\right) .
$$

Proof.
$\gamma(x)=\gamma\left(s_{0}\right)+\gamma^{\prime}\left(s_{0}\right)\left(x-s_{0}\right)+\left(x-s_{0}\right) \epsilon(x), \epsilon(x) \rightarrow 0$ as $x \rightarrow s_{0}$
$\frac{\gamma(s(t))-\gamma\left(s\left(t_{0}\right)\right)}{t-t_{0}}=\frac{s(t)-s\left(t_{0}\right)}{t-t_{0}}\left(\gamma^{\prime}\left(s\left(t_{0}\right)\right)+\epsilon(s(t))\right)$.

Definition

Let $\gamma:[c, d] \rightarrow \mathbb{C}$ be a C^{1}-path. If $\phi:[a, b] \rightarrow[c, d]$ is continuously differentiable with $\phi(a)=c$ and $\phi(b)=d$, then we say that $\tilde{\gamma}=\gamma \circ \phi$, is a reparametrization of γ.

Lemma

Let $\gamma:[c, d] \rightarrow \mathbb{C}$ and $s:[a, b] \rightarrow[c, d]$ and suppose that s is differentiable at t_{0} and γ is differentiable at $s_{0}=s\left(t_{0}\right)$. Then $\gamma \circ s$ is differentiable at t_{0} with derivative

$$
(\gamma \circ s)^{\prime}\left(t_{0}\right)=s^{\prime}\left(t_{0}\right) \cdot \gamma^{\prime}\left(s\left(t_{0}\right)\right) .
$$

Proof.
$\gamma(x)=\gamma\left(s_{0}\right)+\gamma^{\prime}\left(s_{0}\right)\left(x-s_{0}\right)+\left(x-s_{0}\right) \epsilon(x), \epsilon(x) \rightarrow 0$ as $x \rightarrow s_{0}$
$\frac{\gamma(s(t))-\gamma\left(s\left(t_{0}\right)\right)}{t-t_{0}}=\frac{s(t)-s\left(t_{0}\right)}{t-t_{0}}\left(\gamma^{\prime}\left(s\left(t_{0}\right)\right)+\epsilon(s(t))\right)$.
$(\gamma \circ s)^{\prime}\left(t_{0}\right)=s^{\prime}\left(t_{0}\right) \gamma^{\prime}\left(s\left(t_{0}\right)\right)$.

Definition

$\gamma_{1}:[a, b] \rightarrow \mathbb{C}$ and $\gamma_{2}:[c, d] \rightarrow \mathbb{C}$ are equivalent if there is a continuously differentiable bijective function $s:[a, b] \rightarrow[c, d]$ such that $s^{\prime}(t)>0$ for all $t \in[a, b]$ and $\gamma_{1}=\gamma_{2} \circ s$.

Definition

$\gamma_{1}:[a, b] \rightarrow \mathbb{C}$ and $\gamma_{2}:[c, d] \rightarrow \mathbb{C}$ are equivalent if there is a continuously differentiable bijective function $s:[a, b] \rightarrow[c, d]$ such that $s^{\prime}(t)>0$ for all $t \in[a, b]$ and $\gamma_{1}=\gamma_{2} \circ s$.
Equivalence classes: oriented curves in the complex plane. Notation: $[\gamma]$.
$s^{\prime}(t)>0$: the path is traversed in the same direction for each of the parametrization γ_{1} and γ_{2}. If $\gamma:[a, b] \rightarrow \mathbb{C}$ then the opposite path is $\gamma^{-}(t)=\gamma(a+b-t)$.

Definition

$\gamma_{1}:[a, b] \rightarrow \mathbb{C}$ and $\gamma_{2}:[c, d] \rightarrow \mathbb{C}$ are equivalent if there is a continuously differentiable bijective function $s:[a, b] \rightarrow[c, d]$ such that $s^{\prime}(t)>0$ for all $t \in[a, b]$ and $\gamma_{1}=\gamma_{2} \circ s$.
Equivalence classes: oriented curves in the complex plane. Notation: [γ].
$s^{\prime}(t)>0$: the path is traversed in the same direction for each of the parametrizations γ_{1} and γ_{2}. If $\gamma:[a, b] \rightarrow \mathbb{C}$ then the opposite path is $\gamma^{-}(t)=\gamma(a+b-t)$.

Definition

If $\gamma:[a, b] \rightarrow \mathbb{C}$ is a C^{1} path then we define the length of γ to be

$$
\ell(\gamma)=\int_{a}^{b}\left|\gamma^{\prime}(t)\right| d t .
$$

Using the chain rule one sees that the length of a parametrized path is also constant on equivalence classes of paths.

Definition

We will say a path $\gamma:[a, b] \rightarrow \mathbb{C}$ is piecewise C^{1} if it is continuous on $[a, b]$ and the interval $[a, b]$ can be divided into subintervals on each of which γ is C^{1}.
So there are $a=a_{0}<a_{1}<\ldots<a_{m}=b$ such that $\gamma_{\left[\left[a_{i}, a_{i+1}\right]\right.}$ is C^{1}.

Definition

We will say a path $\gamma:[a, b] \rightarrow \mathbb{C}$ is piecewise C^{1} if it is continuous on $[a, b]$ and the interval $[a, b]$ can be divided into subintervals on each of which γ is C^{1}.
So there are $a=a_{0}<a_{1}<\ldots<a_{m}=b$ such that $\gamma_{\left[a_{i} ; a_{i+1}\right]}$ is C^{1}.
Note: the left-hand and right-hand derivatives of γ at a_{i}
($1 \leq i \leq m-1$) may not be equal.
A contour is a simple closed piece-wise C^{1} path.

Definition

We will say a path $\gamma:[a, b] \rightarrow \mathbb{C}$ is piecewise C^{1} if it is continuous on $[a, b]$ and the interval $[a, b]$ can be divided into subintervals on each of which γ is C^{1}.
So there are $a=a_{0}<a_{1}<\ldots<a_{m}=b$ such that $\gamma_{\left[a_{i} ; a_{i+1}\right]}$ is C^{1}.
Note: the left-hand and right-hand derivatives of γ at \boldsymbol{a}_{i} ($1 \leq i \leq m-1$) may not be equal.
A contour is a simple closed piece-wise C^{1} path.
Two paths $\gamma_{1}:[a, b] \rightarrow \mathbb{C}$ and $\gamma_{2}:[c, d] \rightarrow \mathbb{C}$ with $\gamma_{1}(b)=\gamma_{2}(c)$ can be concatenated to give a path $\gamma_{1} * \gamma_{2}$, defined by
$\gamma_{1} \star \gamma_{2}(t)=\gamma_{1}(t), t \in[a, b], \gamma_{1} \star \gamma_{2}(t)=\gamma_{2}(t-b+c), t \in[b, d+b-c]$
If $\gamma, \gamma_{1}, \gamma_{2}$ are piecewise C^{1} then so are γ^{-}and $\gamma_{1} \star \gamma_{2}$.

Definition

We will say a path $\gamma:[a, b] \rightarrow \mathbb{C}$ is piecewise C^{1} if it is continuous on $[a, b]$ and the interval $[a, b]$ can be divided into subintervals on each of which γ is C^{1}.
So there are $a=a_{0}<a_{1}<\ldots<a_{m}=b$ such that $\gamma_{\left[a_{i} ; a_{i+1}\right]}$ is C^{1}.
Note: the left-hand and right-hand derivatives of γ at \boldsymbol{a}_{i} ($1 \leq i \leq m-1$) may not be equal.
A contour is a simple closed piece-wise C^{1} path.
Two paths $\gamma_{1}:[a, b] \rightarrow \mathbb{C}$ and $\gamma_{2}:[c, d] \rightarrow \mathbb{C}$ with $\gamma_{1}(b)=\gamma_{2}(c)$ can be concatenated to give a path $\gamma_{1} * \gamma_{2}$, defined by
$\gamma_{1} \star \gamma_{2}(t)=\gamma_{1}(t), t \in[a, b], \gamma_{1} \star \gamma_{2}(t)=\gamma_{2}(t-b+c), t \in[b, d+b-c]$
If $\gamma, \gamma_{1}, \gamma_{2}$ are piecewise C^{1} then so are γ^{-}and $\gamma_{1} \star \gamma_{2}$.
A piecewise C^{1} path is precisely a finite concatenation of C^{1} paths.

We may define equivalence classes, reparametrisations, length as before for piecewise C^{1} paths.

We may define equivalence classes, reparametrisations, length as before for piecewise C^{1} paths.
Example: If $a, b, c \in \mathbb{C}$, we define the triangle:
$T_{a, b, c}=\gamma_{a, b} \star \gamma_{b, c} \star \gamma_{c, a}$ where $\gamma_{x, y}$ is the line segment joining x, y.

We may define equivalence classes, reparametrisations, length as before for piecewise C^{1} paths.
Example: If $a, b, c \in \mathbb{C}$, we define the triangle:
$T_{a, b, c}=\gamma_{a, b} \star \gamma_{b, c} \star \gamma_{c, a}$ where $\gamma_{x, y}$ is the line segment joining
x, y.
Recall the definition of Riemann integrable functions. We have the following:
Lemma
Let $[a, b]$ be a closed interval and $S \subset[a, b]$ a finite set. If f is a bounded continuous function (taking real or complex values) on $[a, b] \backslash S$ then it is Riemann integrable on $[a, b]$.

We may define equivalence classes, reparametrisations, length as before for piecewise C^{1} paths.
Example: If $a, b, c \in \mathbb{C}$, we define the triangle:
$T_{a, b, c}=\gamma_{a, b} \star \gamma_{b, c} \star \gamma_{c, a}$ where $\gamma_{x, y}$ is the line segment joining
x, y.
Recall the definition of Riemann integrable functions. We have the following:
Lemma
Let $[a, b]$ be a closed interval and $S \subset[a, b]$ a finite set. If f is a bounded continuous function (taking real or complex values) on $[a, b] \backslash S$ then it is Riemann integrable on $[a, b]$.
Proof.
Let $a=x_{0}<x_{1}<x_{2}<\ldots<x_{k}=b$ be any partition of $[a, b]$ which includes the elements of S.
On each open interval (x_{i}, x_{i+1}) the function f is bounded and continuous, and hence integrable.

We may define equivalence classes, reparametrisations, length as before for piecewise C^{1} paths.
Example: If $a, b, c \in \mathbb{C}$, we define the triangle:
$T_{a, b, c}=\gamma_{a, b} \star \gamma_{b, c} \star \gamma_{c, a}$ where $\gamma_{x, y}$ is the line segment joining x, y.
Recall the definition of Riemann integrable functions. We have the following:
Lemma
Let $[a, b]$ be a closed interval and $S \subset[a, b]$ a finite set. If f is a bounded continuous function (taking real or complex values) on $[a, b] \backslash S$ then it is Riemann integrable on $[a, b]$.
Proof.
Let $a=x_{0}<x_{1}<x_{2}<\ldots<x_{k}=b$ be any partition of $[a, b]$ which includes the elements of S.
On each open interval (x_{i}, x_{i+1}) the function f is bounded and continuous, and hence integrable.
By the definition of Riemann integrable functions f is integrable on $[a, b]$.

Integral along a path

Definition

If $\gamma:[a, b] \rightarrow \mathbb{C}$ is a piecewise- C^{1} path and $f: \mathbb{C} \rightarrow \mathbb{C}$, then we define the integral of f along γ to be

$$
\int_{\gamma} f(z) d z=\int_{a}^{b} f(\gamma(t)) \gamma^{\prime}(t) d t
$$

Integral along a path

Definition

If $\gamma:[a, b] \rightarrow \mathbb{C}$ is a piecewise- C^{1} path and $f: \mathbb{C} \rightarrow \mathbb{C}$, then we define the integral of f along γ to be

$$
\int_{\gamma} f(z) d z=\int_{a}^{b} f(\gamma(t)) \gamma^{\prime}(t) d t .
$$

We note that if γ is a concatenation of the C^{1} paths $\gamma_{1}, \ldots, \gamma_{n}$ then $\int_{\gamma} f(z) d z=\int_{\gamma_{1}} f(z) d z+\ldots+\int_{\gamma_{n}} f(z) d z$.

Example

Let $\gamma:[0,1] \rightarrow \mathbb{C}$ be the path $\gamma(t)=\exp (2 \pi i t)$ (a circle). Then

$$
\int_{\gamma} z^{n} d z=\left\{\begin{array}{cc}
2 \pi i & \text { if } n=-1 \\
0 & \text { otherwise }
\end{array} \quad(n \in \mathbb{Z})\right.
$$

Example

Let $\gamma:[0,1] \rightarrow \mathbb{C}$ be the path $\gamma(t)=\exp (2 \pi i t)$ (a circle). Then

$$
\int_{\gamma} z^{n} d z=\left\{\begin{array}{cc}
2 \pi i & \text { if } n=-1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Proof.

$$
\int_{\gamma} z^{n} d z=\int_{0}^{1} \gamma(t)^{n} \gamma^{\prime}(t) d t=\int_{0}^{1} \exp (2 \pi i n t) \cdot(2 \pi i \exp (2 \pi i t)) d t
$$

Example

Let $\gamma:[0,1] \rightarrow \mathbb{C}$ be the path $\gamma(t)=\exp (2 \pi i t)$ (a circle). Then

$$
\int_{\gamma} z^{n} d z=\left\{\begin{array}{cc}
2 \pi i & \text { if } n=-1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Proof.

$$
\begin{gathered}
\int_{\gamma} z^{n} d z=\int_{0}^{1} \gamma(t)^{n} \gamma^{\prime}(t) d t=\int_{0}^{1} \exp (2 \pi i n t) \cdot(2 \pi i \exp (2 \pi i t)) d t \\
\quad=2 \pi i\left(\int_{0}^{1} \cos (2 \pi(n+1) t) d t+i \int_{0}^{1} \sin (2 \pi(n+1) t) d t\right)
\end{gathered}
$$

Example

Let $\gamma:[0,1] \rightarrow \mathbb{C}$ be the path $\gamma(t)=\exp (2 \pi i t)$ (a circle). Then

$$
\int_{\gamma} z^{n} d z=\left\{\begin{array}{cc}
2 \pi i & \text { if } n=-1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Proof.

$$
\begin{gathered}
\int_{\gamma} z^{n} d z=\int_{0}^{1} \gamma(t)^{n} \gamma^{\prime}(t) d t=\int_{0}^{1} \exp (2 \pi i n t) \cdot(2 \pi i \exp (2 \pi i t)) d t \\
\quad=2 \pi i\left(\int_{0}^{1} \cos (2 \pi(n+1) t) d t+i \int_{0}^{1} \sin (2 \pi(n+1) t) d t\right) \\
\quad=2 \pi i\left(\left[\frac{\sin (2 \pi(n+1) t)}{2 \pi(n+1)}\right]_{0}^{1}+i\left[\frac{-\cos (2 \pi(n+1) t)}{2 \pi(n+1)}\right]_{0}^{1}\right)=0
\end{gathered}
$$

for $n \neq-1$.

Example

Let $\gamma:[0,1] \rightarrow \mathbb{C}$ be the path $\gamma(t)=\exp (2 \pi i t)$ (a circle). Then

$$
\int_{\gamma} z^{n} d z=\left\{\begin{array}{cc}
2 \pi i & \text { if } n=-1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Proof.

$$
\begin{gathered}
\int_{\gamma} z^{n} d z=\int_{0}^{1} \gamma(t)^{n} \gamma^{\prime}(t) d t=\int_{0}^{1} \exp (2 \pi i n t) \cdot(2 \pi i \exp (2 \pi i t)) d t \\
\quad=2 \pi i\left(\int_{0}^{1} \cos (2 \pi(n+1) t) d t+i \int_{0}^{1} \sin (2 \pi(n+1) t) d t\right) \\
\quad=2 \pi i\left(\left[\frac{\sin (2 \pi(n+1) t)}{2 \pi(n+1)}\right]_{0}^{1}+i\left[\frac{-\cos (2 \pi(n+1) t)}{2 \pi(n+1)}\right]_{0}^{1}\right)=0
\end{gathered}
$$

for $n \neq-1$.
If $n=-1$ we get $2 \pi i \int_{0}^{1} 1 d t=2 \pi i$.

Example

Turn

$$
\int_{0}^{2 \pi} \frac{\cos \theta}{\sin \theta+2} d \theta
$$

into an integral along a path.

Example

Turn

$$
\int_{0}^{2 \pi} \frac{\cos \theta}{\sin \theta+2} d \theta
$$

into an integral along a path.
Solution. We remark that if $z=e^{i \theta}$ then

$$
\cos \theta=\frac{1}{2}\left(z+\frac{1}{z}\right), \quad \sin \theta=\frac{1}{2 i}\left(z-\frac{1}{z}\right) .
$$

Example

Turn

$$
\int_{0}^{2 \pi} \frac{\cos \theta}{\sin \theta+2} d \theta
$$

into an integral along a path.
Solution. We remark that if $z=e^{i \theta}$ then

$$
\cos \theta=\frac{1}{2}\left(z+\frac{1}{z}\right), \quad \sin \theta=\frac{1}{2 i}\left(z-\frac{1}{z}\right) .
$$

Let $\gamma:[0,2 \pi] \rightarrow \mathbb{C}$ be the path $\gamma(t)=e^{i t}$ (a circle). Then

$$
\int_{\gamma} \frac{\frac{1}{2}\left(z+\frac{1}{z}\right)}{i z\left(\frac{1}{2 i}\left(z-\frac{1}{z}\right)+2\right)} d z=\int_{0}^{2 \pi} \frac{\cos t}{i e^{i t}(\sin t+2)} i e^{i t} d t=
$$

Example

Turn

$$
\int_{0}^{2 \pi} \frac{\cos \theta}{\sin \theta+2} d \theta
$$

into an integral along a path.
Solution. We remark that if $z=e^{i \theta}$ then

$$
\cos \theta=\frac{1}{2}\left(z+\frac{1}{z}\right), \quad \sin \theta=\frac{1}{2 i}\left(z-\frac{1}{z}\right) .
$$

Let $\gamma:[0,2 \pi] \rightarrow \mathbb{C}$ be the path $\gamma(t)=e^{i t}$ (a circle). Then

$$
\begin{gathered}
\int_{\gamma} \frac{\frac{1}{2}\left(z+\frac{1}{z}\right)}{i z\left(\frac{1}{2 i}\left(z-\frac{1}{z}\right)+2\right)} d z=\int_{0}^{2 \pi} \frac{\cos t}{i e^{i t}(\sin t+2)} i e^{i t} d t= \\
=\int_{0}^{2 \pi} \frac{\cos t}{\sin t+2} d t .
\end{gathered}
$$

Lemma
If $\gamma:[a, b] \rightarrow \mathbb{C}$ be a piecewise C^{1} path and $\tilde{\gamma}:[c, d] \rightarrow \mathbb{C}$ is an equivalent path, then for any continuous function $f: \mathbb{C} \rightarrow \mathbb{C}$ we have

$$
\int_{\gamma} f(z) d z=\int_{\tilde{\gamma}} f(z) d z .
$$

So the integral only depends on the oriented curve $[\gamma]$.

Lemma

If $\gamma:[a, b] \rightarrow \mathbb{C}$ be a piecewise C^{1} path and $\tilde{\gamma}:[c, d] \rightarrow \mathbb{C}$ is an equivalent path, then for any continuous function $f: \mathbb{C} \rightarrow \mathbb{C}$ we have

$$
\int_{\gamma} f(z) d z=\int_{\tilde{\gamma}} f(z) d z .
$$

So the integral only depends on the oriented curve $[\gamma]$.
Proof.
Since $\tilde{\gamma} \sim \gamma$ there is $s:[c, d] \rightarrow[a, b]$ with $s(c)=a, s(d)=b$ and $s^{\prime}(t)>0, \tilde{\gamma}=\gamma \circ s$. Suppose first that γ is C^{1}. Then by the chain rule we have:

Lemma

If $\gamma:[a, b] \rightarrow \mathbb{C}$ be a piecewise C^{1} path and $\tilde{\gamma}:[c, d] \rightarrow \mathbb{C}$ is an equivalent path, then for any continuous function $f: \mathbb{C} \rightarrow \mathbb{C}$ we have

$$
\int_{\gamma} f(z) d z=\int_{\tilde{\gamma}} f(z) d z .
$$

So the integral only depends on the oriented curve $[\gamma]$.
Proof.
Since $\tilde{\gamma} \sim \gamma$ there is $s:[c, d] \rightarrow[a, b]$ with $s(c)=a, s(d)=b$ and $s^{\prime}(t)>0, \tilde{\gamma}=\gamma \circ s$. Suppose first that γ is C^{1}. Then by the chain rule we have:
$\int_{\tilde{\gamma}} f(z) d z=\int_{c}^{d} f(\gamma(s(t)))(\gamma \circ s)^{\prime}(t) d t$

Lemma

If $\gamma:[a, b] \rightarrow \mathbb{C}$ be a piecewise C^{1} path and $\tilde{\gamma}:[c, d] \rightarrow \mathbb{C}$ is an equivalent path, then for any continuous function $f: \mathbb{C} \rightarrow \mathbb{C}$ we have

$$
\int_{\gamma} f(z) d z=\int_{\tilde{\gamma}} f(z) d z .
$$

So the integral only depends on the oriented curve $[\gamma]$.
Proof.
Since $\tilde{\gamma} \sim \gamma$ there is $s:[c, d] \rightarrow[a, b]$ with $s(c)=a, s(d)=b$ and $s^{\prime}(t)>0, \tilde{\gamma}=\gamma \circ s$. Suppose first that γ is C^{1}. Then by the chain rule we have:
$\int_{\tilde{\gamma}} f(z) d z=\int_{c}^{d} f(\gamma(s(t)))(\gamma \circ s)^{\prime}(t) d t$
$=\int_{c}^{d} f\left(\gamma(s(t)) \gamma^{\prime}(s(t)) s^{\prime}(t) d t \quad\right.$ substitution $s=s(t)$

Lemma

If $\gamma:[a, b] \rightarrow \mathbb{C}$ be a piecewise C^{1} path and $\tilde{\gamma}:[c, d] \rightarrow \mathbb{C}$ is an equivalent path, then for any continuous function $f: \mathbb{C} \rightarrow \mathbb{C}$ we have

$$
\int_{\gamma} f(z) d z=\int_{\tilde{\gamma}} f(z) d z .
$$

So the integral only depends on the oriented curve $[\gamma]$.
Proof.
Since $\tilde{\gamma} \sim \gamma$ there is $s:[c, d] \rightarrow[a, b]$ with $s(c)=a, s(d)=b$ and $s^{\prime}(t)>0, \tilde{\gamma}=\gamma \circ s$. Suppose first that γ is C^{1}. Then by the chain rule we have:
$\int_{\tilde{\gamma}} f(z) d z=\int_{c}^{d} f(\gamma(s(t)))(\gamma \circ s)^{\prime}(t) d t$
$=\int_{c}^{d} f\left(\gamma(s(t)) \gamma^{\prime}(s(t)) s^{\prime}(t) d t\right.$
$=\int_{a}^{b} f(\gamma(s)) \gamma^{\prime}(s) d s$

Lemma

If $\gamma:[a, b] \rightarrow \mathbb{C}$ be a piecewise C^{1} path and $\tilde{\gamma}:[c, d] \rightarrow \mathbb{C}$ is an equivalent path, then for any continuous function $f: \mathbb{C} \rightarrow \mathbb{C}$ we have

$$
\int_{\gamma} f(z) d z=\int_{\tilde{\gamma}} f(z) d z .
$$

So the integral only depends on the oriented curve $[\gamma]$.
Proof.
Since $\tilde{\gamma} \sim \gamma$ there is $s:[c, d] \rightarrow[a, b]$ with $s(c)=a, s(d)=b$ and $s^{\prime}(t)>0, \tilde{\gamma}=\gamma \circ s$. Suppose first that γ is C^{1}. Then by the chain rule we have:
$\int_{\tilde{\gamma}} f(z) d z=\int_{c}^{d} f(\gamma(s(t)))(\gamma \circ s)^{\prime}(t) d t$
$=\int_{c}^{d} f\left(\gamma(s(t)) \gamma^{\prime}(s(t)) s^{\prime}(t) d t\right.$
$=\int_{a}^{b} f(\gamma(s)) \gamma^{\prime}(s) d s$
$=\int_{\gamma} f(z) d z$.

If $a=x_{0}<x_{1}<\ldots<x_{n}=b$ such that γ is C^{1} on $\left[x_{i}, x_{i+1}\right]$ we have a corresponding decomposition of $[c, d]$ given by the points $s^{-1}\left(x_{0}\right)<\ldots<s^{-1}\left(x_{n}\right)$, and

$$
\int_{\tilde{\gamma}} f(z) d z=\int_{c}^{d} f\left(\gamma(s(t)) \gamma^{\prime}(s(t)) s^{\prime}(t) d t\right.
$$

If $a=x_{0}<x_{1}<\ldots<x_{n}=b$ such that γ is C^{1} on $\left[x_{i}, x_{i+1}\right]$ we have a corresponding decomposition of $[c, d]$ given by the points $s^{-1}\left(x_{0}\right)<\ldots<s^{-1}\left(x_{n}\right)$, and
$\int_{\tilde{\gamma}} f(z) d z=\int_{c}^{d} f\left(\gamma(s(t)) \gamma^{\prime}(s(t)) s^{\prime}(t) d t\right.$
$=\sum_{i=0}^{n-1} \int_{s^{-1}\left(x_{i}\right)}^{s^{-1}\left(x_{i+1}\right)} f\left(\gamma(s(t)) \gamma^{\prime}(s(t)) s^{\prime}(t) d t\right.$

If $a=x_{0}<x_{1}<\ldots<x_{n}=b$ such that γ is C^{1} on $\left[x_{i}, x_{i+1}\right]$ we have a corresponding decomposition of $[c, d]$ given by the points $s^{-1}\left(x_{0}\right)<\ldots<s^{-1}\left(x_{n}\right)$, and
$\int_{\tilde{\gamma}} f(z) d z=\int_{c}^{d} f\left(\gamma(s(t)) \gamma^{\prime}(s(t)) s^{\prime}(t) d t\right.$
$=\sum_{i=0}^{n-1} \int_{s^{-1}\left(x_{i}\right)}^{s^{-1}\left(x_{i+1}\right)} f\left(\gamma(s(t)) \gamma^{\prime}(s(t)) s^{\prime}(t) d t\right.$
$=\sum_{i=0}^{n-1} \int_{x_{i}}^{x_{i+1}} f(\gamma(x)) \gamma^{\prime}(x) d x$

If $a=x_{0}<x_{1}<\ldots<x_{n}=b$ such that γ is C^{1} on $\left[x_{i}, x_{i+1}\right]$ we have a corresponding decomposition of $[c, d]$ given by the points $s^{-1}\left(x_{0}\right)<\ldots<s^{-1}\left(x_{n}\right)$, and
$\int_{\tilde{\gamma}} f(z) d z=\int_{c}^{d} f\left(\gamma(s(t)) \gamma^{\prime}(s(t)) s^{\prime}(t) d t\right.$
$=\sum_{i=0}^{n-1} \int_{s^{-1}\left(x_{i}\right)}^{s^{-1}\left(x_{i+1}\right)} f\left(\gamma(s(t)) \gamma^{\prime}(s(t)) s^{\prime}(t) d t\right.$
$=\sum_{i=0}^{n-1} \int_{x_{i}}^{x_{i+1}} f(\gamma(x)) \gamma^{\prime}(x) d x$
$=\int_{a}^{b} f(\gamma(x)) \gamma^{\prime}(x) d x=\int_{\gamma} f(z) d z$

We define also the integral with respect to arc-length of a function $f: U \rightarrow \mathbb{C}$ such that $\gamma^{*} \subseteq U$ to be

$$
\int_{\gamma} f(z)|d z|=\int_{a}^{b} f(\gamma(t))\left|\gamma^{\prime}(t)\right| d t .
$$

We define also the integral with respect to arc-length of a function $f: U \rightarrow \mathbb{C}$ such that $\gamma^{*} \subseteq U$ to be

$$
\int_{\gamma} f(z)|d z|=\int_{a}^{b} f(\gamma(t))\left|\gamma^{\prime}(t)\right| d t .
$$

This integral is invariant with respect to C^{1} reparametrizations $s:[c, d] \rightarrow[a, b]$ if we require $s^{\prime}(t) \neq 0$ for all $t \in[c, d]$. Note that in this case

$$
\int_{\gamma} f(z)|d z|=\int_{\gamma^{-}} f(z)|d z| .
$$

Properties of the integral

Properties of the integral

Let $f, g: U \rightarrow \mathbb{C}$ be continuous functions on an open subset $U \subseteq \mathbb{C}$ and $\gamma, \eta:[a, b] \rightarrow \mathbb{C}$ be piecewise- C^{1} paths whose images lie in U. Then we have the following:

1. (Linearity): For $\alpha, \beta \in \mathbb{C}$,

$$
\int_{\gamma}(\alpha f(z)+\beta g(z)) d z=\alpha \int_{\gamma} f(z) d z+\beta \int_{\gamma} g(z) d z
$$

2. If γ^{-}denotes the opposite path to γ then

$$
\int_{\gamma} f(z) d z=-\int_{\gamma^{-}} f(z) d z
$$

3. (Additivity): If $\gamma \star \eta$ is the concatenation of the paths γ, η in U, we have

$$
\int_{\gamma \star \eta} f(z) d z=\int_{\gamma} f(z) d z+\int_{\eta} f(z) d z
$$

4. (Estimation Lemma.) We have

$$
-\ell_{\gamma}
$$

$$
\left|\int_{\gamma} f(z) d z\right| \leq \sup _{z \in \gamma^{*}}|f(z)| \cdot \ell(\gamma)
$$

Proof of 4.

Proof of 4.

$$
\left|\int_{\gamma} f(z) d z\right|=\left|\int_{a}^{b} f(\gamma(t)) \gamma^{\prime}(t) d t\right|
$$

Proof of 4.

$$
\begin{aligned}
\left|\int_{\gamma} f(z) d z\right| & =\left|\int_{a}^{b} f(\gamma(t)) \gamma^{\prime}(t) d t\right| \\
& \leq \int_{a}^{b}|f(\gamma(t))|\left|\gamma^{\prime}(t)\right| d t
\end{aligned}
$$

Proof of 4.

$$
\begin{aligned}
&\left|\int_{\gamma} f(z) d z\right|=\left|\int_{a}^{b} f(\gamma(t)) \gamma^{\prime}(t) d t\right| \\
& \leq \int_{a}^{b} \underbrace{|f(\gamma(t))|\left|\gamma^{\prime}(t)\right| d t}_{\Lambda_{1}} \\
& \leq \widehat{\sup }_{z \in \gamma^{*}}|f(z)| \\
& \int_{a}^{b}\left|\gamma^{\prime}(t)\right| d t
\end{aligned}
$$

Proof of 4.

$$
\begin{aligned}
\left|\int_{\gamma} f(z) d z\right| & =\left|\int_{a}^{b} f(\gamma(t)) \gamma^{\prime}(t) d t\right| \\
& \leq \int_{a}^{b}|f(\gamma(t))|\left|\gamma^{\prime}(t)\right| d t \\
& \leq \sup _{z \in \gamma^{*}}|f(z)| \int_{a}^{b}\left|\gamma^{\prime}(t)\right| d t \\
& =\sup _{z \in \gamma^{*}}|f(z)| \cdot \ell(\gamma)
\end{aligned}
$$

Proposition

Let $f_{n}: U \rightarrow \mathbb{C}$ be a sequence of continuous functions. Suppose that $\gamma:[a, b] \rightarrow U$ is a piecewise C^{1} path. If $\left(f_{n}\right)$ converges uniformly to a function f on the image of γ then

$$
\int_{\gamma} f_{n}(z) d z \rightarrow \int_{\gamma} f(z) d z
$$

Proposition

Let $f_{n}: U \rightarrow \mathbb{C}$ be a sequence of continuous functions. Suppose that $\gamma:[a, b] \rightarrow U$ is a piecewise C^{1} path. If $\left(f_{n}\right)$ converges uniformly to a function f on the image of γ then

$$
\int_{\gamma} f_{n}(z) d z \rightarrow \int_{\gamma} f(z) d z
$$

Proof. We have

$$
\begin{aligned}
\left|\int_{\gamma} f(z) d z-\int_{\gamma} f_{n}(z) d z\right| & =\left|\int_{\gamma}\left(f(z)-f_{n}(z)\right) d z\right| \\
& \leq \sup _{z \in \gamma^{*}}\left\{\left|f(z)-f_{n}(z)\right|\right\} \cdot \ell(\gamma),
\end{aligned}
$$

by the estimation lemma.

Proposition

Let $f_{n}: U \rightarrow \mathbb{C}$ be a sequence of continuous functions. Suppose that $\gamma:[a, b] \rightarrow U$ is a piecewise C^{1} path. If $\left(f_{n}\right)$ converges uniformly to a function f on the image of γ then

$$
\int_{\gamma} f_{n}(z) d z \rightarrow \int_{\gamma} f(z) d z
$$

Proof. We have

$$
\begin{aligned}
\left|\int_{\gamma} f(z) d z-\int_{\gamma} f_{n}(z) d z\right| & =\left|\int_{\gamma}\left(f(z)-f_{n}(z)\right) d z\right| \\
& \leq \sup _{z \in \gamma^{*}}\left\{\left|f(z)-f_{n}(z)\right|\right\} \cdot \ell(\gamma),
\end{aligned}
$$

by the estimation lemma.
$\sup \left\{\left|f(z)-f_{n}(z)\right|: z \in \gamma^{*}\right\} \rightarrow 0$ as $n \rightarrow \infty$ which implies the result.

Example. Let's say

$$
\sum_{n=1}^{\infty} a_{n} z^{n}
$$

converges on $B(0, R)$. Then convergence is uniform on $B(0, r)$ for $r<R$. So if γ is a piecewise C^{1} path in $B(0, r)$ we have

Example. Let's say

$$
\sum_{n=1}^{\infty} a_{n} z^{n}
$$

converges on $B(0, R)$. Then convergence is uniform on $B(0, r)$ for $r<R$. So if γ is a piecewise C^{1} path in $B(0, r)$ we have

$$
\int_{\gamma} \sum_{n=1}^{N} a_{n} z^{n} d z \rightarrow \int_{\gamma} \sum_{n=1}^{\infty} a_{n} z^{n} d z
$$

so

Example. Let's say

$$
\sum_{n=1}^{\infty} a_{n} z^{n}
$$

converges on $B(0, R)$. Then convergence is uniform on $B(0, r)$ for $r<R$. So if γ is a piecewise C^{1} path in $B(0, r)$ we have
so

$$
\int_{\gamma} \sum_{n=1}^{N} a_{n} z^{n} d z \rightarrow \int_{\gamma} \sum_{n=1}^{\infty} a_{n} z^{n} d z
$$

$$
\sum_{n=1}^{N} \int_{\gamma} a_{n} z^{n} d z \rightarrow \int_{\gamma} \sum_{n=1}^{\infty} a_{n} z^{n} d z
$$

in other words we can interchange \sum, \int :

Example. Let's say

$$
\sum_{n=1}^{\infty} a_{n} z^{n}
$$

converges on $B(0, R)$. Then convergence is uniform on $B(0, r)$ for $r<R$. So if γ is a piecewise C^{1} path in $B(0, r)$ we have

$$
\int_{\gamma} \sum_{n=1}^{N} a_{n} z^{n} d z \rightarrow \int_{\gamma} \sum_{n=1}^{\infty} a_{n} z^{n} d z
$$

so

$$
\sum_{n=1}^{N} \int_{\gamma} a_{n} z^{n} d z \rightarrow \int_{\gamma} \sum_{n=1}^{\infty} a_{n} z^{n} d z
$$

in other words we can interchange \sum, \int :

$$
\sum_{n=1}^{\infty} \int_{\gamma} a_{n} z^{n} d z=\int_{\gamma} \sum_{n=1}^{\infty} a_{n} z^{n} d z
$$

Definition

Let $U \subseteq \mathbb{C}$ be an open set and let $f: U \rightarrow \mathbb{C}$ be a continuous function. If there exists a differentiable function $F: U \rightarrow \mathbb{C}$ with $F^{\prime}(z)=f(z)$ then we say F is a primitive for f on U.

Definition

Let $U \subseteq \mathbb{C}$ be an open set and let $f: U \rightarrow \mathbb{C}$ be a continuous function. If there exists a differentiable function $F: U \rightarrow \mathbb{C}$ with $F^{\prime}(z)=f(z)$ then we say F is a primitive for f on U.

Theorem
(Fundamental theorem of Calculus): Let $U \subseteq \mathbb{C}$ be a open and let $f: U \rightarrow \mathbb{C}$ be a continuous function. If $F: U \rightarrow \mathbb{C}$ is a primitive for f and $\gamma:[a, b] \rightarrow U$ is a piecewise C^{1} path in U then we have

$$
\int_{\gamma} f(z) d z=F(\gamma(b))-F(\gamma(a)) .
$$

In particular the integral of such a function f around any closed path is zero.

Proof.
First suppose that γ is C^{1}. Then we have

$$
\int_{\gamma} f(z) d z=\int_{\gamma} F^{\prime}(z) d z=\int_{a}^{b} F^{\prime}(\gamma(t)) \gamma^{\prime}(t) d t
$$

Proof.
First suppose that γ is C^{1}. Then we have

$$
\begin{aligned}
& \int_{\gamma} f(z) d z=\int_{\gamma} F^{\prime}(z) d z=\int_{a}^{b} F^{\prime}(\gamma(t)) \gamma^{\prime}(t) d t \\
& \quad=\int_{a}^{b} \frac{d}{d t}(F \circ \gamma)(t) d t=F(\gamma(b))-F(\gamma(a))
\end{aligned}
$$

Proof.
First suppose that γ is C^{1}. Then we have

$$
\begin{aligned}
& \int_{\gamma} f(z) d z=\int_{\gamma} F^{\prime}(z) d z=\int_{a}^{b} F^{\prime}(\gamma(t)) \gamma^{\prime}(t) d t \\
& \quad=\int_{a}^{b} \frac{d}{d t}(F \circ \gamma)(t) d t=F(\gamma(b))-F(\gamma(a))
\end{aligned}
$$

If γ is only piecewise C^{1}, then take a partition
$a=a_{0}<a_{1}<\ldots<a_{k}=b$ such that γ is C^{1} on $\left[a_{i}, a_{i+1}\right]$ for each $i \in\{0,1, \ldots, k-1\}$. Then we obtain a telescoping sum:

$$
\begin{aligned}
& \int_{\gamma} f(z)=\int_{a}^{b} f(\gamma(t)) \gamma^{\prime}(t) d t=\sum_{i=0}^{k-1} \int_{a_{i}}^{a_{i+1}} f(\gamma(t)) \gamma^{\prime}(t) d t \\
& =\sum_{i=0}^{k-1}\left(F\left(\gamma\left(a_{i+1}\right)\right)-F\left(\gamma\left(a_{i}\right)\right)\right)=F(\gamma(b))-F(\gamma(a))
\end{aligned}
$$

Proof.
First suppose that γ is C^{1}. Then we have

$$
\begin{aligned}
& \int_{\gamma} f(z) d z=\int_{\gamma} F^{\prime}(z) d z=\int_{a}^{b} F^{\prime}(\gamma(t)) \gamma^{\prime}(t) d t \\
& \quad=\int_{a}^{b} \frac{d}{d t}(F \circ \gamma)(t) d t=F(\gamma(b))-F(\gamma(a))
\end{aligned}
$$

If γ is only piecewise C^{1}, then take a partition
$a=a_{0}<a_{1}<\ldots<a_{k}=b$ such that γ is C^{1} on $\left[a_{i}, a_{i+1}\right]$ for each $i \in\{0,1, \ldots, k-1\}$. Then we obtain a telescoping sum:

$$
\begin{aligned}
& \int_{\gamma} f(z)=\int_{a}^{b} f(\gamma(t)) \gamma^{\prime}(t) d t=\sum_{i=0}^{k-1} \int_{a_{i}}^{a_{i+1}} f(\gamma(t)) \gamma^{\prime}(t) d t \\
& =\sum_{i=0}^{k-1}\left(F\left(\gamma\left(a_{i+1}\right)\right)-F\left(\gamma\left(a_{i}\right)\right)\right)=F(\gamma(b))-F(\gamma(a))
\end{aligned}
$$

Finally, γ is closed iff $\gamma(a)=\gamma(b)$ so the integral of f along a closed path is zero.

Corollary
Let U be a domain and let $f: U \rightarrow \mathbb{C}$ be a function with $f^{\prime}(z)=0$ for all $z \in U$. Then f is constant.

Recall: If $U^{\mathbb{C}}$ is open, connected (a domain) then for any $x, y \in U \quad \exists$ piecewise C^{\prime}-path from x to y.
Sketch of proof Fix $x_{0} \in U$. Let $S=\left\{x: \exists\right.$ piecewise C^{\prime}-path form x_{0} to $\left.x\right\}$
Then 1) S is open:
2) S is closed, since if $x_{n} \rightarrow x$ then $x \in S$

So $\quad S=U$.

Corollary

Let U be a domain and let $f: U \rightarrow \mathbb{C}$ be a function with $f^{\prime}(z)=0$ for all $z \in U$. Then f is constant.

Proof.
Pick $z_{0} \in U$. Since U is path-connected, if $w \in U$, we may find a piecewise C^{1}-path $\gamma:[0,1] \rightarrow U$ such that $\gamma(0)=z_{0}$ and $\gamma(1)=w$. Then by the previous Theorem

$$
f(w)-f\left(z_{0}\right)=\int_{\gamma} f^{\prime}(z) d z=0,
$$

so that f is constant.

Example
Let $\gamma:[0,1] \rightarrow \mathbb{C}$ be a closed curve such that $a \notin \gamma^{*}$. Show that

$$
\int_{\gamma}(z-a)^{n} d z=0 \text { for } n \neq-1 .
$$

Example

Let $\gamma:[0,1] \rightarrow \mathbb{C}$ be a closed curve such that $\boldsymbol{a} \notin \gamma^{*}$. Show that

$$
\int_{\gamma}(z-a)^{n} d z=0 \text { for } n \neq-1
$$

Solution. For $n \neq-1,(z-a)^{n}$ has a primitive $\frac{(z-a)^{n+1}}{n+1}$

Example

Let $\gamma:[0,1] \rightarrow \mathbb{C}$ be a closed curve such that $a \notin \gamma^{*}$. Show that

$$
\int_{\gamma}(z-a)^{n} d z=0 \text { for } n \neq-1 \text {. }
$$

Solution. For $n \neq-1,(z-a)^{n}$ has a primitive $\frac{(z-a)^{n+1}}{n+1}$ so by the FTC

$$
\int_{\gamma}(z-a)^{n} d z=0 .
$$

Example

Let $\gamma:[0,1] \rightarrow \mathbb{C}$ be a closed curve such that $a \notin \gamma^{*}$. Show that

$$
\int_{\gamma}(z-a)^{n} d z=0 \text { for } n \neq-1 .
$$

Solution. For $n \neq-1,(z-a)^{n}$ has a primitive $\frac{(z-a)^{n+1}}{n+1}$ so by the FTC

$$
\int_{\gamma}(z-a)^{n} d z=0 .
$$

Theorem
If U is a domain and $f: U \rightarrow \mathbb{C}$ is a continuous function such that for any closed path in U we have $\int_{\gamma} f(z) d z=0$, then f has a primitive.

$$
\text { piecewise C }{ }^{1}
$$

Proof.

Fix z_{0} in U, and for any $z \in U$ set $F(z)=\int_{\gamma} f(z) d z$. where $\gamma:[a, b] \rightarrow U$ with $\gamma(a)=z_{0}$ and $\gamma(b)=z$.

Proof.

Fix z_{0} in U, and for any $z \in U$ set $F(z)=\int_{\gamma} f(z) d z$. where $\gamma:[a, b] \rightarrow U$ with $\gamma(a)=z_{0}$ and $\gamma(b)=z$. $F(z)$ is independent of the choice of γ : Suppose γ_{1}, γ_{2} are two paths joining z_{0}, z The path $\gamma=\gamma_{1} \star \gamma_{2}^{-}$is closed so

Proof.

Fix z_{0} in U, and for any $z \in U$ set $F(z)=\int_{\gamma} f(z) d z$. where $\gamma:[a, b] \rightarrow U$ with $\gamma(a)=z_{0}$ and $\gamma(b)=z$.
$F(z)$ is independent of the choice of γ : Suppose γ_{1}, γ_{2} are two paths joining z_{0}, z. The path $\gamma=\gamma_{1} \star \gamma_{2}^{-}$is closed so

$$
0=\int_{\gamma} f(z) d z=\int_{\gamma_{1}} f(z) d z+\int_{\gamma_{2}^{-}} f(z) d z=\int_{\gamma_{1}} f(z) d z-\int_{\gamma_{2}} f(z) d z
$$

Proof.

Fix z_{0} in U, and for any $z \in U$ set $F(z)=\int_{\gamma} f(z) d z$.
where $\gamma:[a, b] \rightarrow U$ with $\gamma(a)=z_{0}$ and $\gamma(b)=z$.
$F(z)$ is independent of the choice of γ :
Suppose γ_{1}, γ_{2} are two paths joining z_{0}, z.
The path $\gamma=\gamma_{1} \star \gamma_{2}^{-}$is closed so
$0=\int_{\gamma} f(z) d z=\int_{\gamma_{1}} f(z) d z+\int_{\gamma_{2}^{-}} f(z) d z=\int_{\gamma_{1}} f(z) d z-\int_{\gamma_{2}} f(z) d z$.
Claim: F is differentiable and $F^{\prime}(z)=f(z)$.
Fix $w \in U$ and $\epsilon>0$ such that $B(w, \epsilon) \subseteq U$ and choose a path
$\gamma:[a, b] \rightarrow U$ from z_{0} to w.

Proof.

Fix z_{0} in U, and for any $z \in U$ set $F(z)=\int_{\gamma} f(z) d z$.
where $\gamma:[a, b] \rightarrow U$ with $\gamma(a)=z_{0}$ and $\gamma(b)=z$.
$F(z)$ is independent of the choice of γ :
Suppose γ_{1}, γ_{2} are two paths joining z_{0}, z.
The path $\gamma=\gamma_{1} \star \gamma_{2}^{-}$is closed so
$0=\int_{\gamma} f(z) d z=\int_{\gamma_{1}} f(z) d z+\int_{\gamma_{2}^{-}} f(z) d z=\int_{\gamma_{1}} f(z) d z-\int_{\gamma_{2}} f(z) d z$.
Claim: F is differentiable and $F^{\prime}(z)=f(z)$.
Fix $w \in U$ and $\epsilon>0$ such that $B(w, \epsilon) \subseteq U$ and choose a path
$\gamma:[a, b] \rightarrow U$ from z_{0} to w.
If $z_{1} \in B(w, \epsilon) \subseteq U$, then the concatenation of γ with the straight-line path $s:[0,1] \rightarrow U$ given by $s(t)=w+t\left(z_{1}-w\right)$ from w to z_{1} is a path γ_{1} from z_{0} to z_{1}. It follows that

$$
F\left(z_{1}\right)-F(w)=\int_{\gamma_{1}} f(z) d z-\int_{\gamma} f(z) d z
$$

$$
\gamma_{1}=\gamma * s
$$

$$
\begin{aligned}
F\left(z_{1}\right)-F(w) & =\int_{\gamma_{1}} f(z) d z-\int_{\gamma} f(z) d z \\
& =\left(\int_{\gamma} f(z) d z+\int_{s} f(z) d z\right)-\int_{\gamma} f(z) d z
\end{aligned}
$$

$$
\gamma_{1}=\gamma * s
$$

$$
\begin{aligned}
F\left(z_{1}\right)-F(w) & =\int_{\gamma_{1}} f(z) d z-\int_{\gamma} f(z) d z \\
& =\left(\int_{\gamma} f(z) d z+\int_{s} f(z) d z\right)-\int_{\gamma} f(z) d z \\
& =\int_{s} f(z) d z .
\end{aligned}
$$

$$
\begin{aligned}
F\left(z_{1}\right)-F(w) & =\int_{\gamma_{1}} f(z) d z-\int_{\gamma} f(z) d z \\
& =\left(\int_{\gamma} f(z) d z+\int_{s} f(z) d z\right)-\int_{\gamma} f(z) d z \\
& =\int_{s} f(z) d z .
\end{aligned}
$$

so for $z_{1} \neq w$

$$
\begin{gathered}
\frac{F\left(z_{1}\right)-F(w)}{z_{1}-w}=\frac{1}{z_{1}-w} \int_{0}^{1} f\left(w+t\left(z_{1}-w\right)\right)\left(z_{1}-1\right. \\
S(t)=w+t\left(z_{1}-w\right) \\
S^{\prime}(+)=z_{1}-w
\end{gathered}
$$

$$
\begin{aligned}
F\left(z_{1}\right)-F(w) & =\int_{\gamma_{1}} f(z) d z-\int_{\gamma} f(z) d z \\
& =\left(\int_{\gamma} f(z) d z+\int_{s} f(z) d z\right)-\int_{\gamma} f(z) d z \\
& =\int_{s} f(z) d z .
\end{aligned}
$$

so for $z_{1} \neq w$

$$
\frac{F\left(z_{1}\right)-F(w)}{z_{1}-w}=\frac{1}{z_{1}-w}\left(\int_{0}^{1} f\left(w+t\left(z_{1}-w\right)\right)\left(z_{1}-w\right) d t\right)
$$

$\left|\frac{F\left(z_{1}\right)-F(w)}{z_{1}-w}-f(w)\right|=\left|\left(\int_{0}^{1} f\left(w+t\left(z_{1}-w\right)\right) d t\right)-f(w)\right|$

$$
\begin{aligned}
F\left(z_{1}\right)-F(w) & =\int_{\gamma_{1}} f(z) d z-\int_{\gamma} f(z) d z \\
& =\left(\int_{\gamma} f(z) d z+\int_{s} f(z) d z\right)-\int_{\gamma} f(z) d z \\
& =\int_{s} f(z) d z .
\end{aligned}
$$

so for $z_{1} \neq w$

$$
\frac{F\left(z_{1}\right)-F(w)}{z_{1}-w}=\frac{1}{z_{1}-w}\left(\int_{0}^{1} f\left(w+t\left(z_{1}-w\right)\right)\left(z_{1}-w\right) d t\right)
$$

$$
\begin{aligned}
\left|\frac{F\left(z_{1}\right)-F(w)}{z_{1}-w}-f(w)\right| & =\left|\left(\int_{0}^{1} f\left(w+t\left(z_{1}-w\right)\right) d t\right)-f(w)\right| \\
& =\left|\int_{0}^{1}\left(f\left(w+t\left(z_{1}-w\right)\right)-f(w)\right) d t\right|
\end{aligned}
$$

$$
\begin{aligned}
F\left(z_{1}\right)-F(w) & =\int_{\gamma_{1}} f(z) d z-\int_{\gamma} f(z) d z \\
& =\left(\int_{\gamma} f(z) d z+\int_{s} f(z) d z\right)-\int_{\gamma} f(z) d z \\
& =\int_{s} f(z) d z .
\end{aligned}
$$

so for $z_{1} \neq w$

$$
\frac{F\left(z_{1}\right)-F(w)}{z_{1}-w}=\frac{1}{z_{1}-w}\left(\int_{0}^{1} f\left(w+t\left(z_{1}-w\right)\right)\left(z_{1}-w\right) d t\right)
$$

$$
\begin{aligned}
\left|\frac{F\left(z_{1}\right)-F(w)}{z_{1}-w}-f(w)\right| & =\left|\left(\int_{0}^{1} f\left(w+t\left(z_{1}-w\right)\right) d t\right)-f(w)\right| \\
& =\left|\int_{0}^{1}\left(f\left(w+t\left(z_{1}-w\right)\right)-f(w)\right) d t\right| \\
& \leq \sup _{t \in[0,1]}\left|f\left(w+t\left(z_{1}-w\right)\right)-f(w)\right|
\end{aligned}
$$

$$
\begin{aligned}
F\left(z_{1}\right)-F(w) & =\int_{\gamma_{1}} f(z) d z-\int_{\gamma} f(z) d z \\
& =\left(\int_{\gamma} f(z) d z+\int_{s} f(z) d z\right)-\int_{\gamma} f(z) d z \\
& =\int_{s} f(z) d z .
\end{aligned}
$$

so for $z_{1} \neq w$

$$
\frac{F\left(z_{1}\right)-F(w)}{z_{1}-w}=\frac{1}{z_{1}-w}\left(\int_{0}^{1} f\left(w+t\left(z_{1}-w\right)\right)\left(z_{1}-w\right) d t\right)
$$

$$
\begin{aligned}
\left|\frac{F\left(z_{1}\right)-F(w)}{z_{1}-w}-f(w)\right| & =\left|\left(\int_{0}^{1} f\left(w+t\left(z_{1}-w\right)\right) d t\right)-f(w)\right| \\
& =\left|\int_{0}^{1}\left(f\left(w+t\left(z_{1}-w\right)\right)-f(w)\right) d t\right| \\
& \leq \sup _{t \in[0,1]}\left|f\left(w+t\left(z_{1}-w\right)\right)-f(w)\right| \\
& \rightarrow 0 \text { as } z_{1} \rightarrow w
\end{aligned}
$$

Example

Let $f: \mathbb{C}^{\times} \rightarrow \mathbb{C}^{\times}, f(z)=1 / z$. Then f does not have a primitive on \mathbb{C}^{\times}.

Example

Let $f: \mathbb{C}^{\times} \rightarrow \mathbb{C}^{\times}, f(z)=1 / z$. Then f does not have a primitive on \mathbb{C}^{\times}.
If $\gamma:[0,1] \rightarrow \mathbb{C}$ is the path $\gamma(t)=\exp (2 \pi i t)$ (a circle)
$\int_{\gamma} f(z) d z=\int_{0}^{1} f(\gamma(t)) \gamma^{\prime}(t) d t=\int_{0}^{1} \frac{1}{\exp (2 \pi i t)} \cdot(2 \pi i \exp (2 \pi i t)) d t=2 \pi i$.

Example

Let $f: \mathbb{C}^{\times} \rightarrow \mathbb{C}^{\times}, f(z)=1 / z$. Then f does not have a primitive on \mathbb{C}^{\times}.
If $\gamma:[0,1] \rightarrow \mathbb{C}$ is the path $\gamma(t)=\exp (2 \pi i t)$ (a circle)
$\int_{\gamma} f(z) d z=\int_{0}^{1} f(\gamma(t)) \gamma^{\prime}(t) d t=\int_{0}^{1} \frac{1}{\exp (2 \pi i t)} \cdot(2 \pi i \exp (2 \pi i t)) d t=2 \pi i$.
Say $F^{\prime}(z)=f(z)$. Then by the FTC $\int_{\gamma} f(z) d z=F(\gamma(1))-F(\gamma(0))=F(1)-F(1)=0, \mathrm{a}$ contradiction.

Example

Let $f: \mathbb{C}^{\times} \rightarrow \mathbb{C}^{\times}, f(z)=1 / z$. Then f does not have a primitive on \mathbb{C}^{x}.
If $\gamma:[0,1] \rightarrow \mathbb{C}$ is the path $\gamma(t)=\exp (2 \pi i t)$ (a circle)
$\int_{\gamma} f(z) d z=\int_{0}^{1} f(\gamma(t)) \gamma^{\prime}(t) d t=\int_{0}^{1} \frac{1}{\exp (2 \pi i t)} \cdot(2 \pi i \exp (2 \pi i t)) d t=2 \pi i$.
Say $F^{\prime}(z)=f(z)$. Then by the FTC
$\int_{\gamma} f(z) d z=F(\gamma(1))-F(\gamma(0))=F(1)-F(1)=0, \mathrm{a}$ contradiction.

Remark: $1 / z$ does have a primitive on any domain D where we can chose a branch of $[\log (z)]$:

Example

Let $f: \mathbb{C}^{\times} \rightarrow \mathbb{C}^{\times}, f(z)=1 / z$. Then f does not have a primitive on \mathbb{C}^{x}.
If $\gamma:[0,1] \rightarrow \mathbb{C}$ is the path $\gamma(t)=\exp (2 \pi i t)$ (a circle)
$\int_{\gamma} f(z) d z=\int_{0}^{1} f(\gamma(t)) \gamma^{\prime}(t) d t=\int_{0}^{1} \frac{1}{\exp (2 \pi i t)} \cdot(2 \pi i \exp (2 \pi i t)) d t=2 \pi i$.
Say $F^{\prime}(z)=f(z)$. Then by the FTC
$\int_{\gamma} f(z) d z=F(\gamma(1))-F(\gamma(0))=F(1)-F(1)=0, \mathrm{a}$ contradiction.

Remark: $1 / z$ does have a primitive on any domain D where we can chose a branch of $[\log (z)]$:
If we have $e^{L(z)}=z$ on D by the chain rule

$$
\exp (L(z)) \cdot L^{\prime}(z)=1 \Rightarrow L^{\prime}(z)=1 / z
$$

Cauchy's theorem

Cauchy's theorem

Cauchy's theorem states roughly that if $f: U \rightarrow \mathbb{C}$ is holomorphic and γ is a closed path in U whose interior lies entirely in U then

$$
\begin{array}{r}
\hat{N}^{\prime} C^{\prime} p_{2}+h \\
\int_{\gamma} f(z) d z=0 .
\end{array}
$$

Cauchy's theorem

Cauchy's theorem states roughly that if $f: U \rightarrow \mathbb{C}$ is holomorphic and γ is a closed path in U whose interior lies entirely in U then

$$
\int_{\gamma} f(z) d z=0
$$

This is the single most important theorem of the course. Almost all important facts about holomorphic functions follow from it. Sample applications:

1. If f is holomorphic then it is C^{1} and in fact infinitely differentiable.
2. If $f: \mathbb{C} \rightarrow \mathbb{C}$ is holomorphic and bounded then it is constant.
3. The fundamental theorem of algebra
4. etc etc

Cauchy's theorem

Cauchy's theorem states roughly that if $f: U \rightarrow \mathbb{C}$ is holomorphic and γ is a closed path in U whose interior lies entirely in U then

$$
\int_{\gamma} f(z) d z=0 .
$$

This is the single most important theorem of the course. Almost all important facts about holomorphic functions follow from it. Sample applications:

1. If f is holomorphic then it is C^{1} and in fact infinitely differentiable.
2. If $f: \mathbb{C} \rightarrow \mathbb{C}$ is holomorphic and bounded then it is constant.
3. The fundamental theorem of algebra
4. etc etc

For most of our applications we will need a simpler case of the theorem for starlike domains. We defer the discussion of the general case to later lectures.

Definition

A triangle or triangular path T is a path of the form $\gamma_{1} \star \gamma_{2} \star \gamma_{3}$ where $\gamma_{1}(t)=a+t(b-a), \gamma_{2}(t)=b+t(c-b)$ and $\gamma_{3}(t)=c+t(a-c)$ where $t \in[0,1]$ and $a, b, c \in \mathbb{C}$. (Note that if $\{a, b, c\}$ are collinear, then T is a degenerate triangle.) That is, T traverses the boundary of the triangle with vertices $a, b, c \in \mathbb{C}$. The solid triangle \mathcal{T} bounded by T is the region

$$
\mathcal{T}=\left\{t_{1} a+t_{2} b+t_{3} c: t_{i} \in[0,1], \sum_{i=1}^{3} t_{i}=1\right\},
$$

with the points in the interior of \mathcal{T} corresponding to the points with $t_{i}>0$ for each $i \in\{1,2,3\}$. We will denote by $[a, b]$ the line segment $\{a+t(b-a): t \in[0,1]\}$, the side of T joining vertex a to vertex b. When we need to specify the vertices a, b, c of a triangle T, we will write $T_{a, b, c}$.

Theorem
(Cauchy's theorem for a triangle): Suppose that $U \subseteq \mathbb{C}$ is an open subset and let $T \subseteq U$ be a triangle whose interior is entirely contained in U. Then if $f: U \rightarrow \mathbb{C}$ is holomorphic we have

$$
\int_{T} f(z) d z=0
$$

Theorem
(Cauchy's theorem for a triangle): Suppose that $U \subseteq \mathbb{C}$ is an open subset and let $T \subseteq U$ be a triangle whose interior is entirely contained in U. Then if $f: U \rightarrow \mathbb{C}$ is holomorphic we have

$$
\int_{T} f(z) d z=0
$$

Idea of proof. 1. $f(z)=f\left(z_{0}\right)+f^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)+\left(z-z_{0}\right) \psi(z)$. So if γ is 'small' close to z_{0}
$\int_{\gamma} f(z) d z=\int_{\gamma}\left(z-z_{0}\right) \psi(z) d z$ which by the estimation lemma and since $\psi(z) \rightarrow 0$, is much smaller than length (γ).

Theorem

(Cauchy's theorem for a triangle): Suppose that $U \subseteq \mathbb{C}$ is an open subset and let $T \subseteq U$ be a triangle whose interior is entirely contained in U. Then if $f: U \rightarrow \mathbb{C}$ is holomorphic we have

$$
\int_{T} f(z) d z=0
$$

Idea of proof. 1. $f(z)=f\left(z_{0}\right)+f^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)+\left(z-z_{0}\right) \psi(z)$. So if γ is 'small' close to z_{0}
$\int_{\gamma} f(z) d z=\int_{\gamma}\left(z-z_{0}\right) \psi(z) d z$ which by the estimation lemma and since $\psi(z) \rightarrow 0$, is much smaller than length (γ).
2. Assuming that $I=\left|\int_{T} f(z) d z\right| \neq 0$ we will subdivide T into 4 smaller triangles and represent the integral as sum of the integrals on the smaller triangles. One of the integrals of the smaller triangles will be at least $I / 4$. We will keep subdividing till we get a very small triangle where by part 1 the integral will be smaller than expected, contradiction.

Suppose $I=\left|\int_{T} f(z) d z\right|>0$. We build a sequence of smaller and smaller triangles T^{n}, as follows: Let $T^{0}=T$, and suppose that we have constructed T^{i} for $0 \leq i<k$. Then take the triangle T^{k-1} and join the midpoints of the edges to form four smaller triangles, which we will denote $S_{i}(1 \leq i \leq 4)$. Then $I_{k}=\int_{T^{k-1}} f(z) d z=\sum_{i=1}^{4} \int_{S_{i}} f(z) d z$, since the integrals around the interior edges cancel.

Suppose $I=\left|\int_{T} f(z) d z\right|>0$. We build a sequence of smaller and smaller triangles T^{n}, as follows: Let $T^{0}=T$, and suppose that we have constructed T^{i} for $0 \leq i<k$. Then take the triangle T^{k-1} and join the midpoints of the edges to form four smaller triangles, which we will denote $S_{i}(1 \leq i \leq 4)$.
Then $I_{k}=\int_{T^{k-1}} f(z) d z=\sum_{i=1}^{4} \int_{S_{i}} f(z) d z$, since the integrals around the interior edges cancel.

Figure: Subdivision of a triangle
$I_{k-1}=\left|\int_{T^{k-1}} f(z) d z\right| \leq \sum_{i=1}^{4}\left|\int_{S_{i}} f(z) d z\right|$, so that for some i we must have $\left|\int_{S_{i}} f(z) d z\right| \geq I_{k-1} / 4$. Set T^{k} to be this triangle S_{i}.
Then by induction we see that $\ell\left(T^{k}\right)=2^{-k} \ell(T)$ while $I_{k} \geq 4^{-k}$.
$I_{k-1}=\left|\int_{T^{k-1}} f(z) d z\right| \leq \sum_{i=1}^{4}\left|\int_{S_{i}} f(z) d z\right|$, so that for some i we must have $\left|\int_{S_{i}} f(z) d z\right| \geq I_{k-1} / 4$. Set T^{k} to be this triangle S_{i}. Then by induction we see that $\ell\left(T^{k}\right)=2^{-k} \ell(T)$ while $I_{k} \geq 4^{-k} I$.

Let \mathcal{T}^{k} be the solid triangle with boundary T^{k}. The sets \mathcal{T}^{k} are nested and their diameter tends to 0 , so there is a unique point z_{0}, lying in all of them.

Recall If k_{i} as closed, $k_{i+1} \subseteq k_{i}$ all $\operatorname{dian}\left(k_{i}\right) \rightarrow 0$ then $\cap k_{i}=\{p\}$
$I_{k-1}=\left|\int_{T^{k-1}} f(z) d z\right| \leq \sum_{i=1}^{4}\left|\int_{S_{i}} f(z) d z\right|$, so that for some i we must have $\left|\int_{S_{i}} f(z) d z\right| \geq I_{k-1} / 4$. Set T^{k} to be this triangle S_{i}.
Then by induction we see that $\ell\left(T^{k}\right)=2^{-k} \ell(T)$ while $I_{k} \geq 4^{-k}$.

Let \mathcal{T}^{k} be the solid triangle with boundary T^{k}. The sets \mathcal{T}^{k} are nested and their diameter tends to 0 , so there is a unique point z_{0}, lying in all of them.

$$
f(z)=f\left(z_{0}\right)+f^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)+\left(z-z_{0}\right) \psi(z),
$$

where $\psi(z) \rightarrow 0=\psi\left(z_{0}\right)$ as $z \rightarrow z_{0}$.

$$
\int_{T^{k}} f(z) d z=\int_{T^{k}}\left(z-z_{0}\right) \psi(z) d z
$$

and if z is on T^{k}, we have $\left|z-z_{0}\right| \leq \operatorname{diam}\left(\mathcal{T}^{k}\right)=2^{-k} \operatorname{diam}(T)$.

$$
\int_{T^{k}} f(z) d z=\int_{T^{k}}\left(z-z_{0}\right) \psi(z) d z
$$

and if z is on T^{k}, we have $\left|z-z_{0}\right| \leq \operatorname{diam}\left(\mathcal{T}^{k}\right)=2^{-k} \operatorname{diam}(T)$. Let $\eta_{k}=\sup _{z \in T^{k}}|\psi(z)|$. By the estimation lemma:

$$
\int_{T^{k}} f(z) d z=\int_{T^{k}}\left(z-z_{0}\right) \psi(z) d z
$$

and if z is on T^{k}, we have $\left|z-z_{0}\right| \leq \operatorname{diam}\left(\mathcal{T}^{k}\right)=2^{-k} \operatorname{diam}(T)$.
Let $\eta_{k}=\sup _{z \in T^{k}}|\psi(z)|$. By the estimation lemma:

$$
I_{k}=\left|\int_{T^{k}}\left(z-z_{0}\right) \underline{\psi(z)} d z\right| \leq \eta_{k} \cdot \operatorname{diam}\left(T^{k}\right) \ell\left(T^{k}\right)
$$

$$
\int_{T^{k}} f(z) d z=\int_{T^{k}}\left(z-z_{0}\right) \psi(z) d z
$$

and if z is on T^{k}, we have $\left|z-z_{0}\right| \leq \operatorname{diam}\left(\mathcal{T}^{k}\right)=2^{-k} \operatorname{diam}(T)$. Let $\eta_{k}=\sup _{z \in T^{k}}|\psi(z)|$. By the estimation lemma:

$$
\left.\begin{array}{rl}
I_{k}=\left|\int_{T^{k}}\left(z-z_{0}\right) \psi(z) d z\right| \leq & \eta_{k} \cdot \operatorname{diam}\left(T^{k}\right) \ell\left(T^{k}\right) \\
=4^{-k} \eta \eta_{k} \cdot \underline{\operatorname{diam}(T)} \cdot \underline{\ell(T) \cdot} \\
= & \ell\left(T^{k}\right)=2^{-k} \ell(T)
\end{array}\right\}
$$

$$
\int_{T^{k}} f(z) d z=\int_{T^{k}}\left(z-z_{0}\right) \psi(z) d z
$$

and if z is on T^{k}, we have $\left|z-z_{0}\right| \leq \operatorname{diam}\left(\mathcal{T}^{k}\right)=2^{-k} \operatorname{diam}(T)$. Let $\eta_{k}=\sup _{z \in T^{k}}|\psi(z)|$. By the estimation lemma:

$$
\begin{aligned}
I_{k}=\left|\int_{T^{k}}\left(z-z_{0}\right) \psi(z) d z\right| & \leq \eta_{k} \cdot \operatorname{diam}\left(T^{k}\right) \ell\left(T^{k}\right) \\
& =4^{-k} \eta_{k} \cdot \operatorname{diam}(T) \cdot \ell(T)
\end{aligned}
$$

So $4^{k} I_{k} \rightarrow 0$ as $k \rightarrow \infty$. On the other hand, by construction $I_{k} \geq I / 4^{k} \Rightarrow 4^{k} I_{k} \geq I>0$, contradiction.

Definition

Let X be a subset in \mathbb{C}. We say that X is convex if for each $z, w \in U$ the line segment between z and w is contained in X. We say that X is star-like if there is a point $z_{0} \in X$ such that for every $w \in X$ the line segment $\left[z_{0}, w\right]$ joining z_{0} and w lies in X. We will say that X is star-like with respect to z_{0} in this case. Thus a convex subset is thus starlike with respect to every point it contains.

Definition

Let X be a subset in \mathbb{C}. We say that X is convex if for each $z, w \in U$ the line segment between z and w is contained in X. We say that X is star-like if there is a point $z_{0} \in X$ such that for every $w \in X$ the line segment $\left[z_{0}, w\right]$ joining z_{0} and w lies in X. We will say that X is star-like with respect to z_{0} in this case.
Thus a convex subset is thus starlike with respect to every point it contains.
Example. A disk (open or closed) is convex, as is a solid triangle or rectangle. On the other hand the union of the $x y$-axes is starlike with respect to 0 but not convex.

Definition

Let X be a subset in \mathbb{C}. We say that X is convex if for each $z, w \in U$ the line segment between z and w is contained in X. We say that X is star-like if there is a point $z_{0} \in X$ such that for every $w \in X$ the line segment $\left[z_{0}, w\right]$ joining z_{0} and w lies in X. We will say that X is star-like with respect to z_{0} in this case.
Thus a convex subset is thus starlike with respect to every point it contains.
Example. A disk (open or closed) is convex, as is a solid triangle or rectangle. On the other hand the union of the $x y$-axes is starlike with respect to 0 but not convex.

Theorem

(Cauchy's theorem for a star-like domain): Let U be a star-like domain. Then if $f: U \rightarrow \mathbb{C}$ is holomorphic and $\gamma:[a, b] \rightarrow U$ is a closed path in U we have

$$
\text { piecemise }-C^{\prime}
$$

$$
\int_{\gamma} f(z) d z=0 .
$$

Proof. It suffices to show that f has a primitive in U. Let $z_{0} \in U$ such that for every $z \in U, \gamma_{z}=z_{0}+t\left(z-z_{0}\right)$, $t \in[0,1]$ is contained in U. We claim that

$$
F(z)=\int_{\gamma_{z}} f(\zeta) d \zeta
$$

Proof. It suffices to show that f has a primitive in U.
Let $z_{0} \in U$ such that for every $z \in U, \gamma_{z}=z_{0}+t\left(z-z_{0}\right)$, $t \in[0,1]$ is contained in U. We claim that

$$
F(z)=\int_{\gamma_{z}} f(\zeta) d \zeta
$$

is a primitive for f on U. Let $\epsilon>0$ s.t. $B(z, \epsilon) \subseteq U$. If $w \in B(z, \epsilon)$ the triangle T with vertices z_{0}, z, w lies entirely in U so by
Cauchy's thm for triangles $\int_{T} f(\zeta) d \zeta=0$.

Proof. It suffices to show that f has a primitive in U.
Let $z_{0} \in U$ such that for every $z \in U, \gamma_{z}=z_{0}+t\left(z-z_{0}\right)$, $t \in[0,1]$ is contained in U. We claim that

$$
F(z)=\int_{\gamma_{z}} f(\zeta) d \zeta
$$

is a primitive for f on U. Let $\epsilon>0$ s.t. $B(z, \epsilon) \subseteq U$. If $w \in B(z, \epsilon)$ the triangle T with vertices z_{0}, z, w lies entirely in U so by Cauchy's thm for triangles $\int_{T} f(\zeta) d \zeta=0$. so if $\eta(t)=w+t(z-w), t \in[0,1]$ we have

Proof. It suffices to show that f has a primitive in U.
Let $z_{0} \in U$ such that for every $z \in U, \gamma_{z}=z_{0}+t\left(z-z_{0}\right)$, $t \in[0,1]$ is contained in U. We claim that

$$
F(z)=\int_{\gamma_{z}} f(\zeta) d \zeta
$$

is a primitive for f on U. Let $\epsilon>0$ st. $B(z, \epsilon) \subseteq U$. If $w \in B(z, \epsilon)$ the triangle T with vertices z_{0}, z, w lies entirely in U so by
Cauchy's the for triangles $\int_{T} f(\zeta) d \zeta=0$. so if $\eta(t)=w+t(z-w), t \in[0,1]$ we have

$$
\left|\frac{F(z)-F(w)}{z-w}-f(z)\right|=\left|\int_{\eta} \frac{f(\zeta)}{z-w} d \zeta-f(z)\right|
$$

Proof. It suffices to show that f has a primitive in U.
Let $z_{0} \in U$ such that for every $z \in U, \gamma_{z}=z_{0}+t\left(z-z_{0}\right)$, $t \in[0,1]$ is contained in U. We claim that

$$
F(z)=\int_{\gamma_{z}} f(\zeta) d \zeta
$$

is a primitive for f on U. Let $\epsilon>0$ s.t. $B(z, \epsilon) \subseteq U$. If $w \in B(z, \epsilon)$ the triangle T with vertices z_{0}, z, w lies entirely in U so by
Cauchy's thm for triangles $\int_{T} f(\zeta) d \zeta=0$. so if $\eta(t)=w+t(z-w), t \in[0,1]$ we have

$$
\begin{aligned}
\left|\frac{F(z)-F(w)}{z-w}-f(z)\right| & =\left|\int_{\eta} \frac{f(\zeta)}{z-w} d \zeta-f(z)\right| \\
=\left|\int_{0}^{1} f(w+t(z-w)) d t-f(z)\right| & =\mid \int_{0}^{1}(f(w+t(z-w))-f(z) d t \mid \\
d J & =(z-w) d_{t}
\end{aligned}
$$

Proof. It suffices to show that f has a primitive in U.
Let $z_{0} \in U$ such that for every $z \in U, \gamma_{z}=z_{0}+t\left(z-z_{0}\right)$, $t \in[0,1]$ is contained in U. We claim that

$$
F(z)=\int_{\gamma_{z}} f(\zeta) d \zeta
$$

is a primitive for f on U. Let $\epsilon>0$ s.t. $B(z, \epsilon) \subseteq U$. If $w \in B(z, \epsilon)$ the triangle T with vertices z_{0}, z, w lies entirely in U so by
Cauchy's thm for triangles $\int_{T} f(\zeta) d \zeta=0$. so if $\eta(t)=w+t(z-w), t \in[0,1]$ we have

$$
\begin{aligned}
&\left|\frac{F(z)-F(w)}{z-w}-f(z)\right|=\left|\int_{\eta} \frac{f(\zeta)}{z-w} d \zeta-f(z)\right| \\
&=\left|\int_{0}^{1} f(w+t(z-w)) d t-f(z)\right|=\mid \int_{0}^{1}(f(w+t(z-w))-f(z) d t \mid \\
& \leq \sup _{t \in[0,1]}|f(w+t(z-w))-f(z)| \rightarrow 0 \text { as } w \rightarrow z .
\end{aligned}
$$

Cauchy's Integral formula

Cauchy's Integral formula

To prove Cauchy's integral formula we will need to show that Cauchy's Theorem applies to slightly more general domains than star-like.

Cauchy's Integral formula

To prove Cauchy's integral formula we will need to show that Cauchy's Theorem applies to slightly more general domains than star-like.

Definition
We say that a domain $D \subseteq \mathbb{C}$ is primitive if any holomorphic function $f: D \rightarrow \mathbb{C}$ has a primitive in D.

Cauchy’s Integral formula

To prove Cauchy's integral formula we will need to show that Cauchy's Theorem applies to slightly more general domains than star-like.

Definition
We say that a domain $D \subseteq \mathbb{C}$ is primitive if any holomorphic function $f: D \rightarrow \mathbb{C}$ has a primitive in D.
For example we have shown that all star-like domains are primitive.

Cauchy's Integral formula

To prove Cauchy's integral formula we will need to show that Cauchy's Theorem applies to slightly more general domains than star-like.

Definition

We say that a domain $D \subseteq \mathbb{C}$ is primitive if any holomorphic function $f: D \rightarrow \mathbb{C}$ has a primitive in D.
For example we have shown that all star-like domains are primitive.

Lemma

Suppose that D_{1} and D_{2} are primitive domains and $D_{1} \cap D_{2}$ is connected. Then $D_{1} \cup D_{2}$ is primitive.

Cauchy’s Integral formula

To prove Cauchy's integral formula we will need to show that Cauchy's Theorem applies to slightly more general domains than star-like.

Definition

We say that a domain $D \subseteq \mathbb{C}$ is primitive if any holomorphic function $f: D \rightarrow \mathbb{C}$ has a primitive in D.
For example we have shown that all star-like domains are primitive.

Lemma

Suppose that D_{1} and D_{2} are primitive domains and $D_{1} \cap D_{2}$ is connected. Then $D_{1} \cup D_{2}$ is primitive.

Example

The union of two open intersecting half-discs D_{1}, D_{2} of a disc $B(0, r)$ is primitive.

Cauchy’s Integral formula

To prove Cauchy's integral formula we will need to show that Cauchy's Theorem applies to slightly more general domains than star-like.

Definition

We say that a domain $D \subseteq \mathbb{C}$ is primitive if any holomorphic function $f: D \rightarrow \mathbb{C}$ has a primitive in D.
For example we have shown that all star-like domains are primitive.

Lemma

Suppose that D_{1} and D_{2} are primitive domains and $D_{1} \cap D_{2}$ is connected. Then $D_{1} \cup D_{2}$ is primitive.

Example

The union of two open intersecting half-discs D_{1}, D_{2} of a disc $B(0, r)$ is primitive.
Indeed each D_{1}, D_{2} are convex, so they are primitive. $D_{1} \cap D_{2}$ is connected so by the lemma $D_{1} \cup D_{2}$ is primitive.

Proof.

Let $f: D_{1} \cup D_{2} \rightarrow \mathbb{C}$ be a holomorphic function.

Proof.

Let $f: D_{1} \cup D_{2} \rightarrow \mathbb{C}$ be a holomorphic function.
Then $f_{\mid D_{1}}, f_{\mid D_{2}}$ have primitives F_{1}, F_{2} say.

Proof.

Let $f: D_{1} \cup D_{2} \rightarrow \mathbb{C}$ be a holomorphic function.
Then $f_{D_{1}}, f_{D_{2}}$ have primitives F_{1}, F_{2} say.
Since F_{1} - F_{2} has zero derivative on $D_{1} \cap D_{2}$, and as $D_{1} \cap D_{2}$ is connected it follows $F_{1}-F_{2}=c$ on $D_{1} \cap D_{2}$.

Proof.

Let $f: D_{1} \cup D_{2} \rightarrow \mathbb{C}$ be a holomorphic function.
Then $f_{D_{1}}, f_{D_{2}}$ have primitives F_{1}, F_{2} say.
Since F_{1} - F_{2} has zero derivative on $D_{1} \cap D_{2}$, and as $D_{1} \cap D_{2}$ is connected it follows $F_{1}-F_{2}=c$ on $D_{1} \cap D_{2}$.

If $F: D_{1} \cup D_{2} \rightarrow \mathbb{C}$ is a defined to be F_{1} on D_{1} and $F_{2}+c$ on D_{2} then F is a primitive for f on $D_{1} \cup D_{2}$.

Proof.

Let $f: D_{1} \cup D_{2} \rightarrow \mathbb{C}$ be a holomorphic function.
Then $f_{\mid D_{1}}, f_{D_{2}}$ have primitives F_{1}, F_{2} say.
Since F_{1} - F_{2} has zero derivative on $D_{1} \cap D_{2}$, and as $D_{1} \cap D_{2}$ is connected it follows $F_{1}-F_{2}=c$ on $D_{1} \cap D_{2}$.

If $F: D_{1} \cup D_{2} \rightarrow \mathbb{C}$ is a defined to be F_{1} on D_{1} and $F_{2}+c$ on D_{2} then F is a primitive for f on $D_{1} \cup D_{2}$.

We will need the following simple calculation: Let $\gamma=\gamma(a, r)$ be the path $t \mapsto a+r e^{2 \pi i t}$. We have then

$$
\int_{\gamma} \frac{1}{z-a} d z=\int_{0}^{1} \frac{1}{\exp (2 \pi i t)} \cdot(2 \pi i \exp (2 \pi i t)) d t=2 \pi i .
$$

Theorem

(Cauchy's Integral Formula.) Suppose that $f: U \rightarrow \mathbb{C}$ is a holomorphic function on an open set U which contains the disc $\bar{B}(a, r)$. Then for all $w \in B(a, r)$ we have

$$
f(w)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{z-w} d z,
$$

where γ is the path $t \mapsto a+r e^{2 \pi i t}$.

Theorem

(Cauchy's Integral Formula.) Suppose that $f: U \rightarrow \mathbb{C}$ is a holomorphic function on an open set U which contains the disc $\bar{B}(a, r)$. Then for all $w \in B(a, r)$ we have

$$
f(w)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{z-w} d z,
$$

where γ is the path $t \mapsto a+r e^{2 \pi i t}$.
Proof. The proof has two steps. In the first step we show that we can replace the integral over γ with an integral over an arbitrarily small circle $\gamma(w, \epsilon)$ centered at w. In the second step we show, using the estimation lemma that this integral is equal to $f(w)$.

Theorem

(Cauchy's Integral Formula.) Suppose that $f: U \rightarrow \mathbb{C}$ is a holomorphic function on an open set U which contains the disc $\bar{B}(a, r)$. Then for all $w \in B(a, r)$ we have

$$
f(w)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{z-w} d z,
$$

where γ is the path $t \mapsto a+r e^{2 \pi i t}$.
Proof. The proof has two steps. In the first step we show that we can replace the integral over γ with an integral over an arbitrarily small circle $\gamma(w, \epsilon)$ centered at w. In the second step we show, using the estimation lemma that this integral is equal to $f(w)$.
Consider a circle $\gamma(w, \epsilon)$ centered at w and contained in $B(a, r)$. Pick two anti-diametric points on $\gamma(w, \epsilon)$ and join them by straight segments to points on γ.

We use the contours Γ_{1} and Γ_{2} each consisting of 2 semicircles and two segments and we note that the contributions of line segments cancel out to give:

We use the contours Γ_{1} and Γ_{2} each consisting of 2 semicircles and two segments and we note that the contributions of line segments cancel out to give:

$$
\int_{\Gamma_{1}} \frac{f(z)}{z-w} d z+\int_{\Gamma_{2}} \frac{f(z)}{z-w} d z=\int_{\gamma(a, r)} \frac{f(z)}{z-w} d z-\int_{\gamma(w, \epsilon)} \frac{f(z)}{z-w} d z
$$

$$
\int_{\Gamma_{1}} \frac{f(z)}{z-w} d z+\int_{\Gamma_{2}} \frac{f(z)}{z-w} d z=\int_{\gamma(a, r)} \frac{f(z)}{z-w} d z-\int_{\gamma(w, \epsilon)} \frac{f(z)}{z-w} d z
$$

each of Γ_{1}, Γ_{2} lies in a primitive domain in which $f(z) /(z-w)$ is holomorphic

primitive \Downarrow
$D_{1} \cup D_{2}$
prinitil

$$
\int_{\Gamma_{1}} \frac{f(z)}{z-w} d z+\int_{\Gamma_{2}} \frac{f(z)}{z-w} d z=\int_{\gamma(a, r)} \frac{f(z)}{z-w} d z-\int_{\gamma(w, \epsilon)} \frac{f(z)}{z-w} d z
$$

each of Γ_{1}, Γ_{2} lies in a primitive domain in which $f(z) /(z-w)$ is holomorphic

$$
\text { so } \frac{1}{2 \pi i} \int_{\gamma(a, r)} \frac{f(z)}{z-w} d z=\frac{1}{2 \pi i} \int_{\gamma(w, \epsilon)} \frac{f(z)}{z-w} d z
$$

$$
\int_{\Gamma_{1}} \frac{f(z)}{z-w} d z+\int_{\Gamma_{2}} \frac{f(z)}{z-w} d z=\int_{\gamma(a, r)} \frac{f(z)}{z-w} d z-\int_{\gamma(w, \epsilon)} \frac{f(z)}{z-w} d z
$$

each of Γ_{1}, Γ_{2} lies in a primitive domain in which $f(z) /(z-w)$ is holomorphic

$$
\begin{gathered}
\text { so } \frac{1}{2 \pi i} \int_{\gamma(a, r)} \frac{f(z)}{z-w} d z=\frac{1}{2 \pi i} \int_{\gamma(w, \epsilon)} \frac{f(z)}{z-w} d z \\
\frac{1}{2 \pi i} \int_{\gamma(w, \epsilon)} \frac{f(z)}{z-w} d z=\frac{1}{2 \pi i} \int_{\gamma(w, \epsilon)} \frac{f(z)-f(w)}{z-w} d z+\frac{f(w)}{2 \pi i} \int_{\gamma(w, \epsilon)} \frac{d z}{z-w}
\end{gathered}
$$

$$
\int_{\Gamma_{1}} \frac{f(z)}{z-w} d z+\int_{\Gamma_{2}} \frac{f(z)}{z-w} d z=\int_{\gamma(a, r)} \frac{f(z)}{z-w} d z-\int_{\gamma(w, \epsilon)} \frac{f(z)}{z-w} d z
$$

each of Γ_{1}, Γ_{2} lies in a primitive domain in which $f(z) /(z-w)$ is holomorphic

$$
\begin{gathered}
\text { so } \frac{1}{2 \pi i} \int_{\gamma(a, r)} \frac{f(z)}{z-w} d z=\frac{1}{2 \pi i} \int_{\gamma(w, \epsilon)} \frac{f(z)}{z-w} d z \\
\begin{aligned}
\frac{1}{2 \pi i} \int_{\gamma(w, \epsilon)} \frac{f(z)}{z-w} d z & =\frac{1}{2 \pi i} \int_{\gamma(w, \epsilon)} \frac{f(z)-f(w)}{z-w} d z+\frac{f(w)}{2 \pi i} \int_{\gamma(w, \epsilon)} \frac{d z}{z-w} \\
& =\frac{1}{2 \pi i} \int_{\gamma(w, \epsilon)} \frac{f(z)-f(w)}{z-w} d z+f(w)
\end{aligned}
\end{gathered}
$$

Since f is complex differentiable at $z=w$, the term $(f(z)-f(w)) /(z-w)$ is bounded as $\epsilon \rightarrow 0$, so that by the estimation lemma its integral over $\gamma(\boldsymbol{w}, \epsilon)$ tends to zero.

Since f is complex differentiable at $z=w$, the term $(f(z)-f(w)) /(z-w)$ is bounded as $\epsilon \rightarrow 0$, so that by the estimation lemma its integral over $\gamma(\boldsymbol{w}, \epsilon)$ tends to zero.

However

$$
\frac{1}{2 \pi i} \int_{\gamma(w, \epsilon)} \frac{f(z)-f(w)}{z-w} d z+f(w)=\frac{1}{2 \pi i} \int_{\gamma(a, r)} \frac{f(z)}{z-w} d z
$$

which does not depend on ϵ.

Since f is complex differentiable at $z=w$, the term $(f(z)-f(w)) /(z-w)$ is bounded as $\epsilon \rightarrow 0$, so that by the estimation lemma its integral over $\gamma(w, \epsilon)$ tends to zero.

However

$$
\frac{1}{2 \pi i} \int_{\gamma(w, \epsilon)} \frac{f(z)-f(w)}{z-w} d z+f(w)=\frac{1}{2 \pi i} \int_{\gamma(a, r)} \frac{f(z)}{z-w} d z
$$

which does not depend on ϵ.
It follows that

$$
\frac{1}{2 \pi i} \int_{\gamma(w, \epsilon)} \frac{f(z)-f(w)}{z-w} d z=0
$$

and

$$
f(w)=\frac{1}{2 \pi i} \int_{\gamma(a, r)} \frac{f(z)}{z-w} d z
$$

Definition

If $f: U \rightarrow \mathbb{C}$ is a function on an open subset U of \mathbb{C}, then we say that f is analytic on U if for every $z_{0} \in \mathbb{C}$ there is an $r>0$ with $B\left(z_{0}, r\right) \subseteq U$ such that there is a power series $\sum_{k=0}^{\infty} a_{k}\left(z-z_{0}\right)^{k}$ with radius of convergence at least r and $f(z)=\sum_{k=0}^{\infty} a_{k}\left(z-z_{0}\right)^{k}$. An analytic function is holomorphic, as any power series is (infinitely) complex differentiable.

Definition

If $f: U \rightarrow \mathbb{C}$ is a function on an open subset U of \mathbb{C}, then we say that f is analytic on U if for every $z_{0} \in \mathbb{C}$ there is an $r>0$ with $B\left(z_{0}, r\right) \subseteq U$ such that there is a power series $\sum_{k=0}^{\infty} a_{k}\left(z-z_{0}\right)^{k}$ with radius of convergence at least r and $f(z)=\sum_{k=0}^{\infty} a_{k}\left(z-z_{0}\right)^{k}$. An analytic function is holomorphic, as any power series is (infinitely) complex differentiable.

Theorem
Suppose that $f: U \rightarrow \mathbb{C}$ is a holomorphic function defined on an open set U. Then f is analytic.

Definition

If $f: U \rightarrow \mathbb{C}$ is a function on an open subset U of \mathbb{C}, then we say that f is analytic on U if for every $z_{0} \in \mathbb{C}$ there is an $r>0$ with $B\left(z_{0}, r\right) \subseteq U$ such that there is a power series $\sum_{k=0}^{\infty} a_{k}\left(z-z_{0}\right)^{k}$ with radius of convergence at least r and $f(z)=\sum_{k=0}^{\infty} a_{k}\left(z-z_{0}\right)^{k}$. An analytic function is holomorphic, as any power series is (infinitely) complex differentiable.

Theorem

Suppose that $f: U \rightarrow \mathbb{C}$ is a holomorphic function defined on an open set U. Then f is analytic.
Proof. We will show that for each $z_{0} \in U$ we can find a disk $B\left(z_{0}, \epsilon\right)$ within which $f(w)$ is given by a power series in $\left(w-z_{0}\right)$. Replacing $f(w)$ by $g(w)=f\left(w+z_{0}\right)$ if necessary we may assume $z_{0}=0$.

Definition

If $f: U \rightarrow \mathbb{C}$ is a function on an open subset U of \mathbb{C}, then we say that f is analytic on U if for every $z_{0} \in \mathbb{C}$ there is an $r>0$ with $B\left(z_{0}, r\right) \subseteq U$ such that there is a power series $\sum_{k=0}^{\infty} a_{k}\left(z-z_{0}\right)^{k}$ with radius of convergence at least r and $f(z)=\sum_{k=0}^{\infty} a_{k}\left(z-z_{0}\right)^{k}$. An analytic function is holomorphic, as any power series is (infinitely) complex differentiable.

Theorem

Suppose that $f: U \rightarrow \mathbb{C}$ is a holomorphic function defined on an open set U. Then f is analytic.
Proof. We will show that for each $z_{0} \in U$ we can find a disk $B\left(z_{0}, \epsilon\right)$ within which $f(w)$ is given by a power series in $\left(w-z_{0}\right)$. Replacing $f(w)$ by $g(w)=f\left(w+z_{0}\right)$ if necessary we may assume $z_{0}=0$.
We will use the integral expression $f(w)=\frac{1}{2 \pi i} \int_{\gamma\left(z_{0}, r\right)} \frac{f(z)}{z-w} d z$.

The idea is that we can expand $\frac{1}{z-w}=\frac{1}{z}(1-w / z)^{-1}$ as power series when $|w / z|<1$, so

The idea is that we can expand $\frac{1}{z-w}=\frac{1}{z}(1-w / z)^{-1}$ as power series when $|w / z|<1$, so

$$
\frac{f(z)}{z-w}=\frac{f(z)}{z}(1-w / z)^{-1}=\sum_{n=0}^{\infty} \frac{f(z)}{z}(w / z)^{n}=\sum_{n=0}^{\infty} \frac{f(z) \cdot w^{n}}{z^{n+1}}
$$

The idea is that we can expand $\frac{1}{z-w}=\frac{1}{z}(1-w / z)^{-1}$ as power series when $|w / z|<1$, so

$$
\frac{f(z)}{z-w}=\frac{f(z)}{z}(1-w / z)^{-1}=\sum_{n=0}^{\infty} \frac{f(z)}{z}(w / z)^{n}=\sum_{n=0}^{\infty} \frac{f(z) \cdot w^{n}}{z^{n+1}}
$$

Let r be such that $B(0, r) \subset U$. Let $\gamma=\gamma(0, r)$. We will show that the function is analytic for $w \in B(0, r / 2)$.

The idea is that we can expand $\frac{1}{z-w}=\frac{1}{z}(1-w / z)^{-1}$ as power series when $|w / z|<1$, so

$$
\frac{f(z)}{z-w}=\frac{f(z)}{z}(1-w / z)^{-1}=\sum_{n=0}^{\infty} \frac{f(z)}{z}(w / z)^{n}=\sum_{n=0}^{\infty} \frac{f(z) \cdot w^{n}}{z^{n+1}}
$$

Let r be such that $B(0, r) \subset U$. Let $\gamma=\gamma(0, r)$. We will show that the function is analytic for $w \in B(0, r / 2)$.
We claim that the last series, seen as a function of z, converges uniformly on γ^{*}.

The idea is that we can expand $\frac{1}{z-w}=\frac{1}{z}(1-w / z)^{-1}$ as power series when $|w / z|<1$, so

$$
\frac{f(z)}{z-w}=\frac{f(z)}{z}(1-w / z)^{-1}=\sum_{n=0}^{\infty} \frac{f(z)}{z}(w / z)^{n}=\sum_{n=0}^{\infty} \frac{f(z) \cdot w^{n}}{z^{n+1}}
$$

Let r be such that $B(0, r) \subset U$. Let $\gamma=\gamma(0, r)$. We will show that the function is analytic for $w \in B(0, r / 2)$.
We claim that the last series, seen as a function of z, converges uniformly on γ^{*}.

Recall

Weierstrass M-test:
$\sum f_{n}(z) \operatorname{conv}$ uniformly
if $\left|f_{n}(z)\right| \leqslant M_{n}(\forall z)$ and $\sum M_{n}<\infty$

The idea is that we can expand $\frac{1}{z-w}=\frac{1}{z}(1-w / z)^{-1}$ as power series when $|w / z|<1$, so

$$
\frac{f(z)}{z-w}=\frac{f(z)}{z}(1-w / z)^{-1}=\sum_{n=0}^{\infty} \frac{f(z)}{z}(w / z)^{n}=\sum_{n=0}^{\infty} \frac{f(z) \cdot w^{n}}{z^{n+1}}
$$

Let r be such that $B(0, r) \subset U$. Let $\gamma=\gamma(0, r)$. We will show that the function is analytic for $w \in B(0, r / 2)$.
We claim that the last series, seen as a function of z, converges uniformly on γ^{*}.
Since γ^{*} is compact, $M=\sup \left\{|f(z)|: z \in \gamma^{*}\right\}$ is finite. We apply Weierstrass M-test:
$\left|f(z) \cdot w^{n} / z^{n+1}\right|=|f(z)||z|^{-1}|w / z|^{n}<\frac{M}{2 r}(1 / 2)^{n}, \quad \forall z \in \gamma^{*}$.

Uniform convergence implies that for all $w \in B(0, r)$ we have

$$
\sum_{n=0}^{\infty}(\overbrace{\left.\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{z^{n+1}} d z\right)^{\approx} w_{b_{n}}}^{w^{n}}=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z) d z}{z-w}=f(w)
$$

hence $f(w)$ is given by a power series in $B(0, r / 2)$.

Uniform convergence implies that for all $w \in B(0, r)$ we have
hence $f(w)$ is given by a power series in $B(0, r)$. Recall

$$
\begin{aligned}
& \sum_{n=0}^{N} f_{n}(2) \xrightarrow[\Downarrow]{\text { unit }} f \\
& \int_{\gamma} \sum_{n=0}^{N} f_{n}(z) \longrightarrow \int_{\gamma} f \\
& \sum_{n=0}^{N} \int_{\gamma}^{n} f_{n}(z) \longrightarrow \int_{\gamma} f
\end{aligned}
$$

Uniform convergence implies that for all $w \in B(0, r)$ we have

$$
\sum_{n=0}^{\infty}\left(\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{z^{n+1}} d z\right) w^{n}=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z) d z}{z-w}=f(w)
$$

hence $f(w)$ is given by a power series in $B(0, r)$.
Remark. If $z_{0} \neq 0$ then the formula above applies to $g(w)=f\left(w+z_{0}\right)$ and we obtain:

$$
\sum_{n=0}^{\infty}\left(\frac{1}{2 \pi i} \int_{\gamma(0, r)} \frac{f\left(z+z_{0}\right)}{z^{n+1}} d z\right) w^{n}=f\left(w+z_{0}\right)
$$

and setting $u=w+z_{0}$ and substituting $v=z+z_{0}$ in the integral we get

$$
\sum_{n=0}^{\infty}\left(\frac{1}{2 \pi i} \int_{\gamma\left(z_{0}, r\right)} \frac{f(v)}{\left(v-z_{0}\right)^{n+1}} d v\right)\left(u-z_{0}\right)^{n}=f(u)
$$

Corollary

(Taylor Series Expansion) If $f: U \rightarrow \mathbb{C}$ is holomorphic on an open set U, then for any $z_{0} \in U$, and for any open disc $B\left(z_{0}, r\right)$ centred at z_{0} and lying in U we have the Taylor series expansion

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

Corollary

(Taylor Series Expansion) If $f: U \rightarrow \mathbb{C}$ is holomorphic on an open set U, then for any $z_{0} \in U$, and for any open disc $B\left(z_{0}, r\right)$ centred at z_{0} and lying in U we have the Taylor series expansion

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

Moreover

$$
a_{n}=\frac{1}{2 \pi i} \int_{\gamma(a, r)} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z
$$

for any $a \in \mathbb{C}, r \in \mathbb{R}_{>0}$ with $z_{0} \in B(a, r)$, and we obtain the Cauchy Integral Formulas for the derivatives of f at z_{0} :

$$
f^{(n)}\left(z_{0}\right)=\frac{n!}{2 \pi i} \int_{\gamma(a, r)} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z
$$

Proof.

For the first part note that we have shown it for sufficiently small r.

Proof.

For the first part note that we have shown it for sufficiently small r. However note that if $B\left(z_{0}, r\right) \subseteq U$ then if $w \in B\left(z_{0}, r\right)$ we have that $w \in B\left(z_{0}, r-\epsilon\right)$ for some $\epsilon>0$.

Proof.

For the first part note that we have shown it for sufficiently small r. However note that if $B\left(z_{0}, r\right) \subseteq U$ then if $w \in B\left(z_{0}, r\right)$ we have that $w \in B\left(z_{0}, r-\epsilon\right)$ for some $\epsilon>0$.

In particular there is $m<1$ such that $|w / z|<m<1$ for any $z \in \gamma\left(z_{0}, r\right)$ which was all we needed in the previous proof in order to get a power series expression of $f(w)$.

Proof.

For the first part note that we have shown it for sufficiently small r. However note that if $B\left(z_{0}, r\right) \subseteq U$ then if $w \in B\left(z_{0}, r\right)$ we have that $w \in B\left(z_{0}, r-\epsilon\right)$ for some $\epsilon>0$.

In particular there is $m<1$ such that $|w / z|<m<1$ for any $z \in \gamma\left(z_{0}, r\right)$ which was all we needed in the previous proof in order to get a power series expression of $f(w)$.

For the second part note that

$$
\frac{1}{2 \pi i} \int_{\gamma(a, r)} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z=\frac{1}{2 \pi i} \int_{\gamma\left(z_{0}, r_{1}\right)} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z
$$

where $r_{1}<r$ is such that $B\left(z_{0}, r_{1}\right) \subseteq B(a, r)$.

Proof.

For the first part note that we have shown it for sufficiently small r. However note that if $B\left(z_{0}, r\right) \subseteq U$ then if $w \in B\left(z_{0}, r\right)$ we have that $w \in B\left(z_{0}, r-\epsilon\right)$ for some $\epsilon>0$.

In particular there is $m<1$ such that $|w / z|<m<1$ for any $z \in \gamma\left(z_{0}, r\right)$ which was all we needed in the previous proof in order to get a power series expression of $f(w)$.

For the second part note that

$$
\frac{1}{2 \pi i} \int_{\gamma(a, r)} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z=\frac{1}{2 \pi i} \int_{\gamma\left(z_{0}, r_{1}\right)} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z
$$

where $r_{1}<r$ is such that $B\left(z_{0}, r_{1}\right) \subseteq B(a, r)$.
This follows exactly as in the proof of Cauchy's integral formula.

Proof.

For the first part note that we have shown it for sufficiently small r. However note that if $B\left(z_{0}, r\right) \subseteq U$ then if $w \in B\left(z_{0}, r\right)$ we have that $w \in B\left(z_{0}, r-\epsilon\right)$ for some $\epsilon>0$.

In particular there is $m<1$ such that $|w / z|<m<1$ for any $z \in \gamma\left(z_{0}, r\right)$ which was all we needed in the previous proof in order to get a power series expression of $f(w)$.

For the second part note that

$$
\frac{1}{2 \pi i} \int_{\gamma(a, r)} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z=\frac{1}{2 \pi i} \int_{\gamma\left(z_{0}, r_{1}\right)} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z
$$

where $r_{1}<r$ is such that $B\left(z_{0}, r_{1}\right) \subseteq B(a, r)$.
This follows exactly as in the proof of Cauchy's integral formula.
For the last part note that $f^{(n)}\left(z_{0}\right)=n!a_{n}$.

Recap
Sf=0 AF primitive

1) $S_{0}^{f}=0 F_{F} T C$
2) $\widehat{S}_{\gamma} \rho=0 \quad \exists$ F prinitize.
3)

\downarrow
4)
\downarrow

5) Cuuchy's insegrel forunla
\downarrow
6) f analytic.

Winding numbers

Let $\gamma:[0,1] \rightarrow \mathbb{C}$ closed path which does not pass through 0 . We will give a rigorous definition of the number of times γ "goes around the origin".

Winding numbers
Let $\gamma:[0,1] \rightarrow \mathbb{C}$ closed path which does not pass through 0 . We will give a rigorous definition of the number of times γ "goes around the origin".
The problem is $\arg z$ is not continuous on \mathbb{C}^{\times}!

$$
\text { So cant use } \arg (z(1))-\arg (z(0))
$$

Winding numbers

Let $\gamma:[0,1] \rightarrow \mathbb{C}$ closed path which does not pass through 0 . We will give a rigorous definition of the number of times γ "goes around the origin".
The problem is arg z is not continuous on \mathbb{C}^{\times}!
Recall: In any half plane we can define a holomorphic branch of [Logz], say $L(z)$, so in any half plane we may define $\arg z=\Im(L(z))$.

Winding numbers

Let $\gamma:[0,1] \rightarrow \mathbb{C}$ closed path which does not pass through 0 . We will give a rigorous definition of the number of times γ "goes around the origin".
The problem is arg z is not continuous on \mathbb{C}^{\times}!
Recall: In any half plane we can define a holomorphic branch of [Logz], say $L(z)$, so in any half plane we may define $\arg z=\Im(L(z))$.

Proposition

Let $\gamma:[0,1] \rightarrow \mathbb{C} \backslash\{0\}$ be a path. Then there is continuous function a: $[0,1] \rightarrow \mathbb{R}$ such that

$$
\gamma(t)=|\gamma(t)| e^{2 \pi i a(t)}
$$

Moreover, if a and b are two such functions, then there exists $n \in \mathbb{Z}$ such that $a(t)=b(t)+n$ for all $t \in[0,1]$.

Proof.

By replacing $\gamma(t)$ with $\gamma(t) /|\gamma(t)|$ we may assume that $|\gamma(t)|=1$ for all t.

Proof.

By replacing $\gamma(t)$ with $\gamma(t) /|\gamma(t)|$ we may assume that $|\gamma(t)|=1$ for all t.
γ is uniformly continuous, so $\exists \delta>0$ such that $|\gamma(s)-\gamma(t)|<1$
for any s, t with $|s-t|<\delta$.

Proof.

By replacing $\gamma(t)$ with $\gamma(t) /|\gamma(t)|$ we may assume that $|\gamma(t)|=1$ for all t.
γ is uniformly continuous, so $\exists \delta>0$ such that $|\gamma(s)-\gamma(t)|<1$ for any s, t with $|s-t|<\delta$.
Choose $n \in \mathbb{N}, n>1 / \delta$. Then on each subinterval $[i / n,(i+1) / n]$ we have $|\gamma(s)-\gamma(t)|<1$.

Proof.

By replacing $\gamma(t)$ with $\gamma(t) /|\gamma(t)|$ we may assume that $|\gamma(t)|=1$ for all t.
γ is uniformly continuous, so $\exists \delta>0$ such that $|\gamma(s)-\gamma(t)|<1$ for any s, t with $|s-t|<\delta$.
Choose $n \in \mathbb{N}, n>1 / \delta$. Then on each subinterval $[i / n,(i+1) / n]$ we have $|\gamma(s)-\gamma(t)|<1$.
On any half-plane in \mathbb{C} we may define a holomorphic branch of $[\log (z)]$ so may define a continuous $\arg z$.

Proof.

By replacing $\gamma(t)$ with $\gamma(t) /|\gamma(t)|$ we may assume that $|\gamma(t)|=1$ for all t.
γ is uniformly continuous, so $\exists \delta>0$ such that $|\gamma(s)-\gamma(t)|<1$ for any s, t with $|s-t|<\delta$.
Choose $n \in \mathbb{N}, n>1 / \delta$. Then on each subinterval $[i / n,(i+1) / n]$ we have $|\gamma(s)-\gamma(t)|<1$.
On any half-plane in \mathbb{C} we may define a holomorphic branch of $[\log (z)]$ so may define a continuous arg z.
if $\left|z_{1}\right|=\left|z_{2}\right|=1$ and $\left|z_{1}-z_{2}\right|<1$, then the angle between z_{1} and z_{2} is less than $\pi / 2$. It follows there exists continuous $a_{j}:[j / n,(j+1) / n] \rightarrow \mathbb{R}$ such that $\gamma(t)=e^{2 \pi i i_{j}(t)}$.

Proof.

By replacing $\gamma(t)$ with $\gamma(t) /|\gamma(t)|$ we may assume that $|\gamma(t)|=1$ for all t.
γ is uniformly continuous, so $\exists \delta>0$ such that $|\gamma(s)-\gamma(t)|<1$ for any s, t with $|s-t|<\delta$.
Choose $n \in \mathbb{N}, n>1 / \delta$. Then on each subinterval $[i / n,(i+1) / n]$ we have $|\gamma(s)-\gamma(t)|<1$.
On any half-plane in \mathbb{C} we may define a holomorphic branch of $[\log (z)]$ so may define a continuous arg z.
if $\left|z_{1}\right|=\left|z_{2}\right|=1$ and $\left|z_{1}-z_{2}\right|<1$, then the angle between z_{1} and z_{2} is less than $\pi / 2$. It follows there exists continuous $a_{j}:[j / n,(j+1) / n] \rightarrow \mathbb{R}$ such that $\gamma(t)=e^{2 \pi i i_{j}(t)}$.
Since $e^{2 \pi i a_{j}(j / n)}=e^{2 \pi i a_{j-1}(j / n)}, a_{j-1}(j / n)$ and $a_{j}(j / n)$ differ by an integer. Thus we can successively adjust the a_{j} for $j>1$ by an integer to obtain a continuous $a:[0,1] \rightarrow \mathbb{C}$ such that $\gamma(t)=e^{2 \pi i a(t)}$.

Proof.

By replacing $\gamma(t)$ with $\gamma(t) /|\gamma(t)|$ we may assume that $|\gamma(t)|=1$ for all t.
γ is uniformly continuous, so $\exists \delta>0$ such that $|\gamma(s)-\gamma(t)|<1$ for any s, t with $|s-t|<\delta$.
Choose $n \in \mathbb{N}, n>1 / \delta$. Then on each subinterval $[i / n,(i+1) / n]$ we have $|\gamma(s)-\gamma(t)|<1$.
On any half-plane in \mathbb{C} we may define a holomorphic branch of $[\log (z)]$ so may define a continuous arg z.
if $\left|z_{1}\right|=\left|z_{2}\right|=1$ and $\left|z_{1}-z_{2}\right|<1$, then the angle between z_{1} and z_{2} is less than $\pi / 2$. It follows there exists continuous $a_{j}:[j / n,(j+1) / n] \rightarrow \mathbb{R}$ such that $\gamma(t)=e^{2 \pi i i_{j}(t)}$.
Since $e^{2 \pi i a_{j}(j / n)}=e^{2 \pi i a_{j-1}(j / n)}, a_{j-1}(j / n)$ and $a_{j}(j / n)$ differ by an integer. Thus we can successively adjust the a_{j} for $j>1$ by an integer to obtain a continuous $a:[0,1] \rightarrow \mathbb{C}$ such that $\gamma(t)=e^{2 \pi i a(t)}$.
Uniqueness: $e^{2 \pi i(a(t)-b(t))}=1$, hence $a(t)-b(t) \in \mathbb{Z}$, but $[0,1]$ is connected so $a(t)-b(t)$ is constant.

Definition

If $\gamma:[0,1] \rightarrow \mathbb{C} \backslash\{0\}$ is a closed path and $\gamma(t)=|\gamma(t)| e^{2 \pi i a(t)}$ as in the previous lemma, then $a(1)-a(0) \in \mathbb{Z}$. This integer is called the winding number $I(\gamma, 0)$ of γ around 0 . It is uniquely determined by the path γ because the function a is unique up to an integer.

Definition

If $\gamma:[0,1] \rightarrow \mathbb{C} \backslash\{0\}$ is a closed path and $\gamma(t)=|\gamma(t)| e^{2 \pi i a(t)}$ as in the previous lemma, then $a(1)-a(0) \in \mathbb{Z}$. This integer is called the winding number $I(\gamma, 0)$ of γ around 0 .
It is uniquely determined by the path γ because the function a is unique up to an integer.
If z_{0} is not in the image of γ, we may define the winding number $I\left(\gamma, z_{0}\right)$ of γ about z_{0} similarly:
Let $t: \mathbb{C} \rightarrow \mathbb{C}$ be given by $t(z)=z-z_{0}$, we define
$I\left(\gamma, z_{0}\right)=I(t \circ \gamma, 0)$.

Definition

If $\gamma:[0,1] \rightarrow \mathbb{C} \backslash\{0\}$ is a closed path and $\gamma(t)=|\gamma(t)| e^{2 \pi i a(t)}$ as in the previous lemma, then $a(1)-a(0) \in \mathbb{Z}$. This integer is called the winding number $I(\gamma, 0)$ of γ around 0 .
It is uniquely determined by the path γ because the function a is unique up to an integer.
If z_{0} is not in the image of γ, we may define the winding number $I\left(\gamma, z_{0}\right)$ of γ about z_{0} similarly:
Let $t: \mathbb{C} \rightarrow \mathbb{C}$ be given by $t(z)=z-z_{0}$, we define
$I\left(\gamma, z_{0}\right)=I(t \circ \gamma, 0)$.
Remarks: 1. The definition of the winding number only requires the closed path γ to be continuous, not piecewise C^{1}.

Definition

If $\gamma:[0,1] \rightarrow \mathbb{C} \backslash\{0\}$ is a closed path and $\gamma(t)=|\gamma(t)| e^{2 \pi i a(t)}$ as in the previous lemma, then $a(1)-a(0) \in \mathbb{Z}$. This integer is called the winding number $I(\gamma, 0)$ of γ around 0 . It is uniquely determined by the path γ because the function a is unique up to an integer.
If z_{0} is not in the image of γ, we may define the winding number $I\left(\gamma, z_{0}\right)$ of γ about z_{0} similarly:
Let $t: \mathbb{C} \rightarrow \mathbb{C}$ be given by $t(z)=z-z_{0}$, we define $I\left(\gamma, z_{0}\right)=I(t \circ \gamma, 0)$.

Remarks: 1 . The definition of the winding number only requires the closed path γ to be continuous, not piecewise C^{1}.
2. if $\gamma:[0,1] \rightarrow U$ where $0 \notin U$ and there exists a holomorphic branch $L: U \rightarrow \mathbb{C}$ of $[\log (z)]$ on U, then $I(\gamma, 0)=0$. Indeed in this case we may define $a(t)=\Im(L(\gamma(t)))$, and since $\gamma(0)=\gamma(1)$ it follows $a(1)-a(0)=0$.

The winding number for C^{1} paths can be expressed using integrals:
Lemma
Let γ be a piecewise C^{1} closed path and $z_{0} \in \mathbb{C}$ a point not in the image of γ. Then the winding number $I\left(\gamma, z_{0}\right)$ of γ around z_{0} is given by

$$
I\left(\gamma, z_{0}\right)=\frac{1}{2 \pi i} \int_{\gamma} \frac{d z}{z-z_{0}}
$$

The winding number for C^{1} paths can be expressed using integrals:
Lemma
Let γ be a piecewise C^{1} closed path and $z_{0} \in \mathbb{C}$ a point not in the image of γ. Then the winding number $I\left(\gamma, z_{0}\right)$ of γ around z_{0} is given by

$$
I\left(\gamma, z_{0}\right)=\frac{1}{2 \pi i} \int_{\gamma} \frac{d z}{z-z_{0}}
$$

Proof.
If $\gamma:[0,1] \rightarrow \mathbb{C}$ we may write $\gamma(t)=z_{0}+r(t) e^{2 \pi i a(t)}$. Then

$$
\int_{\gamma} \frac{d z}{z-z_{0}}=\int_{0}^{1} \frac{1}{r(t) e^{2 \pi i a(t)}} \cdot\left(r^{\prime}(t)+2 \pi i r(t) a^{\prime}(t)\right) e^{2 \pi i a(t)} d t
$$

The winding number for C^{1} paths can be expressed using integrals:
Lemma
Let γ be a piecewise C^{1} closed path and $z_{0} \in \mathbb{C}$ a point not in the image of γ. Then the winding number $I\left(\gamma, z_{0}\right)$ of γ around z_{0} is given by

$$
I\left(\gamma, z_{0}\right)=\frac{1}{2 \pi i} \int_{\gamma} \frac{d z}{z-z_{0}}
$$

Proof.
If $\gamma:[0,1] \rightarrow \mathbb{C}$ we may write $\gamma(t)=z_{0}+r(t) e^{2 \pi i a(t)}$. Then

$$
\begin{gathered}
\int_{\gamma} \frac{d z}{z-z_{0}}=\int_{0}^{1} \frac{1}{r(t) e^{2 \pi i a(t)}} \cdot\left(r^{\prime}(t)+2 \pi i \gamma(t) a^{\prime}(t)\right) e^{2 \beta i a(t)} d t \\
=\int_{0}^{1} r^{\prime}(t) / r(t)+2 \pi i a^{\prime}(t) d t=[\log (r(t))+2 \pi i a(t)]_{0}^{1}
\end{gathered}
$$

The winding number for C^{1} paths can be expressed using integrals:
Lemma
Let γ be a piecewise C^{1} closed path and $z_{0} \in \mathbb{C}$ a point not in the image of γ. Then the winding number $I\left(\gamma, z_{0}\right)$ of γ around z_{0} is given by

$$
I\left(\gamma, z_{0}\right)=\frac{1}{2 \pi i} \int_{\gamma} \frac{d z}{z-z_{0}} .
$$

Proof.
If $\gamma:[0,1] \rightarrow \mathbb{C}$ we may write $\gamma(t)=z_{0}+r(t) e^{2 \pi i a(t)}$. Then

$$
\begin{gathered}
\int_{\gamma} \frac{d z}{z-z_{0}}=\int_{0}^{1} \frac{1}{r(t) e^{2 \pi i a(t)}} \cdot\left(r^{\prime}(t)+2 \pi i r(t) a^{\prime}(t)\right) e^{2 \pi i a(t)} d t \\
=\int_{0}^{1} r^{\prime}(t) / r(t)+2 \pi i a^{\prime}(t) d t=[\log (r(t))+2 \pi i a(t)]_{0}^{1} \\
=2 \pi i(a(1)-a(0)), \text { since } r(1)=r(0)=\left|\gamma(0)-z_{0}\right| .
\end{gathered}
$$

Corollary (of the proot: holomorphic \Rightarrow anelytic)
Let U be an open set in \mathbb{C} and let $\gamma:[0,1] \rightarrow U$ be a closed path. If $f(z)$ is a continuous function on γ^{*} then the function

$$
I_{f}(\gamma, w)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{z-w} d z,
$$

is analytic in w.

Proof. This follows by the same argument that we used to show that holomorphic functions are analytic.

In the proof we only used that f is continuous on γ^{*}.
If w_{0} is not on γ^{*} then for some $\epsilon>0$ we have that $\left|\frac{w}{z}\right|<\frac{1}{2}$ for all $w \in B\left(w_{0}, \epsilon\right)$ and this suffices to show that $l_{f}(\gamma, w)$ is analytic.

Proposition

Let U be an open set in \mathbb{C} and let $\gamma:[0,1] \rightarrow U$ be a closed piecewise C^{1} path. Then the function $w \mapsto I(\gamma, w)$ is a continuous function on $\mathbb{C} \backslash \gamma^{*}$, hence constant on the connected components of $\mathbb{C} \backslash \gamma^{*}$.

Proposition

Let U be an open set in \mathbb{C} and let $\gamma:[0,1] \rightarrow U$ be a closed piecewise C^{1} path. Then the function $w \mapsto I(\gamma, w)$ is a continuous function on $\mathbb{C} \backslash \gamma^{*}$, hence constant on the connected components of $\mathbb{C} \backslash \gamma^{*}$.

Proof.
We showed earlier that the function

$$
I(\gamma, w)=\int_{\gamma} \frac{1}{z-w} d z
$$

is analytic, so it is continuous.

If γ is a closed path then γ^{*} is compact and hence bounded. Thus there is an $R>0$ such that the connected set $(\mathbb{C} \backslash B(0, R)) \cap \gamma^{*}=\emptyset$. It follows that $\mathbb{C} \backslash \gamma^{*}$ has exactly one unbounded connected component.

If γ is a closed path then γ^{*} is compact and hence bounded. Thus there is an $R>0$ such that the connected set $(\mathbb{C} \backslash B(0, R)) \cap \gamma^{*}=\emptyset$. It follows that $\mathbb{C} \backslash \gamma^{*}$ has exactly one unbounded connected component.
Since

$$
\left|\int_{\gamma} \frac{d \zeta}{\zeta-z}\right| \leq \ell(\gamma) \cdot \sup _{\zeta \in \gamma^{*}}|1 /(\zeta-z)| \rightarrow 0
$$

as $z \rightarrow \infty$ it follows that $I(\gamma, z)=0$ on the unbounded component of $\mathbb{C} \backslash \gamma^{*}$.

If γ is a closed path then γ^{*} is compact and hence bounded. Thus there is an $R>0$ such that the connected set $(\mathbb{C} \backslash B(0, R)) \cap \gamma^{*}=\emptyset$. It follows that $\mathbb{C} \backslash \gamma^{*}$ has exactly one unbounded connected component.
Since

$$
\left|\int_{\gamma} \frac{d \zeta}{\zeta-z}\right| \leq \ell(\gamma) \cdot \sup _{\zeta \in \gamma^{*}}|1 /(\zeta-z)| \rightarrow 0
$$

as $z \rightarrow \infty$ it follows that $I(\gamma, z)=0$ on the unbounded component of $\mathbb{C} \backslash \gamma^{*}$.

Definition

Let $\gamma:[0,1] \rightarrow \mathbb{C}$ be a closed path. We say that a point z is in the inside of γ if $z \notin \gamma^{*}$ and $I(\gamma, z) \neq 0$. The previous remark shows that the inside of γ is a union of bounded connected components of $\mathbb{C} \backslash \gamma^{*}$. (We don't, however, know that the inside of γ is necessarily non-empty.)

Example

Suppose that $\gamma_{1}:[-\pi, \pi] \rightarrow \mathbb{C}$ is given by $\gamma_{1}=1+e^{i t}$ and $\gamma_{2}:[0,2 \pi] \rightarrow \mathbb{C}$ is given by $\gamma_{2}(t)=-1+e^{-i t}$. Then if
$\gamma=\gamma_{1} \star \gamma_{2}, \gamma$ traverses a figure-of-eight and it is easy to check that the inside of γ is $B(1,1) \cup B(-1,1)$ where $I(\gamma, z)=1$ for $z \in B(1,1)$ while $I(\gamma, z)=-1$ for $z \in B(-1,1)$.

Example
Suppose that $\gamma_{1}:[-\pi, \pi] \rightarrow \mathbb{C}$ is given by $\gamma_{1}=1+e^{i t}$ and $\gamma_{2}:[0,2 \pi] \rightarrow \mathbb{C}$ is given by $\gamma_{2}(t)=-1+e^{-i t}$. Then if $\gamma=\gamma_{1} \star \gamma_{2}, \gamma$ traverses a figure-of-eight and it is easy to check that the inside of γ is $B(1,1) \cup B(-1,1)$ where $I(\gamma, z)=1$ for $z \in B(1,1)$ while $I(\gamma, z)=-1$ for $z \in B(-1,1)$.

$$
I(\gamma, 1)=\underbrace{\frac{1}{2 n i}(\underbrace{\left(\frac{1}{2-1}\right.}_{\gamma_{1}} d z+\int_{2}^{\left(\frac{1}{2-1}\right.} d z)}_{1}
$$

Example

Suppose that $\gamma_{1}:[-\pi, \pi] \rightarrow \mathbb{C}$ is given by $\gamma_{1}=1+e^{i t}$ and $\gamma_{2}:[0,2 \pi] \rightarrow \mathbb{C}$ is given by $\gamma_{2}(t)=-1+e^{-i t}$. Then if $\gamma=\gamma_{1} \star \gamma_{2}, \gamma$ traverses a figure-of-eight and it is easy to check that the inside of γ is $B(1,1) \cup B(-1,1)$ where $I(\gamma, z)=1$ for $z \in B(1,1)$ while $I(\gamma, z)=-1$ for $z \in B(-1,1)$.

Remark.

It is a theorem, known as the Jordan Curve Theorem, that if $\gamma:[0,1] \rightarrow \mathbb{C}$ is a simple closed curve, so that $\gamma(t)=\gamma(s)$ if and only if $s=t$ or $s, t \in\{0,1\}$, then $\mathbb{C} \backslash \gamma^{*}$ is the union of precisely one bounded and one unbounded component, and on the bounded component $I(\gamma, z)$ is either 1 or -1 . If $l(\gamma, z)=1$ for z on the inside of γ we say γ is positively oriented and we say it is negatively oriented if $l(\gamma, z)=-1$ for z on the inside.

