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Today we will consider log z and fractional powers zm/n. How
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Branch cuts

Consider the square root ‘function’ z1/2. Can we make a choice
of z1/2 to obtain a continuous or even better holomorphic
function?
z = rei✓ with ✓ 2 [0, 2⇡). Then z1/2 = ±r1/2ei✓/2. So we may
define a square root function f by

f (z) = f (rei✓) = r1/2ei✓/2.

But f is not continuous on the whole plane:
For ✓ ! 0, rei✓, rei(2⇡�✓) ! r , but
f (rei✓) ! r1/2, f (rei(2⇡�✓)) = r1/2ei(⇡�✓/2) ! �r1/2.

Still f (z) is continuous on C\R
where R = {z 2 C : =(z) = 0,<(z) > 0}.
f (z) is holomorphic on C\R:

f (a + h)� f (a)
h

=
f (a + h)� f (a)

f 2(a + h)� f 2(a)
=

1
f (a + h) + f (a)

! 1
2f (a)

as h ! 0.
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Multifunctions
The positive real axis is called a branch cut for the multi-valued
function z1/2.
If we set

g(z) = g(rei✓) = r1/2ei( ✓2+⇡) = �r1/2ei✓/2.

we obtain another branch of z1/2 on C\R.

Definition
A multi-valued function or multifunction on a subset U ✓ C is a
map f : U ! P(C) assigning to each point in U a subset of the
complex numbers. A branch of f on a subset V ✓ U is a
function g : V ! C such that g(z) 2 f (z), for all z 2 V . If g is
continuous (or holomorphic) on V we refer to it as a continuous,
(respectively holomorphic) branch of f .

Notation: [f (z)] so eg [Log(z)] = {w 2 C : ew = z}.
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Two types of discontinuity: ‘accidental’ depending on the
branch cut we used and ‘unavoidable’ called branch points.

So for the multifunction [z1/2] we obtain holomorphic branches
on C\R where R is the x-axis. The positive points on x-axis are
‘accidental’ discontinuities but 0 appears in all branch cuts, it is
a branch point.

This is because it is not possible to choose a continuous
branch of [z1/2] on any open set containing 0.
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To see this note that we can not continuously define z1/2 on a
circle centered at 0.

Let z = re2⇡it , t 2 [0, 1] and let’s say f : [0, 1] ! C is a
continuous choice of z1/2 on this circle.

Then f (0) = ±
p

r . Consider the function g : [0, 1) ! C,
g(t) =

p
re⇡it . Then g is continuous.

So the quotient f/g is a continuous function defined on [0, 1)
and f (t)/g(t) = ±1 for any t 2 [0, 1). Since [0, 1) is connected
f/g is necessarily constant, so f = ±g.

Say f (t) = g(t). Then

f (1) = lim
t!1

f (t) = lim
t!1

g(t) =
p

re⇡i = �
p

r .

So f (0) =
p

r 6=f (1) =
p

re⇡i = �
p

r , however re2⇡i·0 = re2⇡i·1,
and similarly we arrive at a contradiction if f (t) = �g(t).
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Definition
Suppose that f : U ! P(C) is a multi-valued function defined on
an open subset U of C. We say that z0 2 U is not a branch
point of f if there is an open disk D ✓ U containing z0 such that
there is a holomorphic branch of f defined on D\{z0}. We say
z0 is a branch point otherwise.

When C\U is bounded, we say that f does not have a branch
point at 1 if there is a holomorphic branch of f defined on
C\B(0,R) ✓ U for some R > 0. Otherwise we say that 1 is a
branch point of f .
A branch cut for a multifunction f is a curve in the plane on
whose complement we can pick a holomorphic branch of f .
Thus a branch cut must contain all the branch points.

For example 0,1 are the branch points of [z1/2].
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The Logarithm

The Logarithm
[Log(z)] = {log(|z|) + i(✓ + 2n⇡) : n 2 Z} where z = |z|ei✓.
We get a branch on C \ (�1, 0] by making a choice for the
argument:

L(z) = log(|z|) + i arg(z), where arg(z) 2 (�⇡,⇡)

this is called the principal branch of Log.
We may define other branches of the logarithm by

Ln(z) = L(z) + 2in⇡

The branch points of [Log(z)] are 0 and 1, as it is not possible
to make a continuous choice of logarithm on any circle S(0, r).
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We note that L(z) is also holomorphic. Indeed for small h 6= 0,
L(a + h) 6= L(a) and

L(a + h)� L(a)
h

=
L(a + h)� L(a)

exp(L(a + h))� exp(L(a))
,

We have

lim
h!0

exp(L(a + h))� exp(L(a))
L(a + h)� L(a)

= exp0(L(a)) = a

since when h ! 0, L(a + h)� L(a) ! 0 by the continuity of L.
So we have L0(a) = 1/a.

We note that the same argument applies to any continuous
branch of the logarithm.

ath a
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Complex powers

[z↵] where ↵ 2 C:

[z↵] := exp(↵ · [Log(z)]) = {exp(↵ · w) : w 2 C, ew = z}

any holomorphic branch of [Log(z)] gives a holomorphic
branch of [z↵].
If we pick L(z) we get the principal branch of [z↵].

Note (z1z2)
↵ 6= z↵

1 z↵
2 in general!
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Binomial theorem for complex powers

[(1 + z)↵] = {exp(↵ · w) : w 2 C, exp(w) = 1 + z}.

Using L(z) we obtain a branch

f (z) = exp(↵ · L(1 + z))

Let
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k
�
= 1

k!↵ · (↵� 1) . . . (↵� k + 1). Define
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✓
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k

◆
zk ,

By the ratio test, s(z) has radius of convergence equal to 1, so
that s(z) defines a holomorphic function in B(0, 1).
Differentiating term by term: (1 + z)s0(z) = ↵ · s(z).
Now f (z) is defined on all of B(0, 1). We claim that f (z) = s(z)
on B(0, 1).
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Let g(z) =
s(z)
f (z)

= s(z) exp(�↵ · L(1 + z))

then g(z) is holomorphic for every z 2 B(0, 1) and by the chain
rule

g0(z) = (s0(z)� ↵s(z)L0((1 + z)) exp(�↵ · L(1 + z)) = 0

since s0(z) = ↵·s(z)
1+z .

Also g(0) = 1 so, since B(0, 1) is connected g is constant and
s(z) = f (z).
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The Argument

[arg(z)] := {✓ 2 R : z = |z|ei✓} is defined on C \ {0}.

Claim: There is no continuous branch of [arg(z)] on C \ {0}.
Let’s say f : C \ {0} ! R is a continuous branch of the
argument.
Define g : C \ [0,1) by g(rei✓) = ✓ where ✓ 2 (0, 2⇡).

Clearly g is continuous, so F (z) = f (z)� g(z) is continuous.
However f (z)� g(z) 2 2⇡Z. Since C \ [0,1) is connected,
F (C \ [0,1)) is connected.

It follows that f (z)� g(z) is constant, f (z)� g(z) = 2n⇡ for
some fixed n. But then
lim✓!0+ f (ei✓) = 2n⇡ , lim✓!0� f (ei✓) = (2n + 2)⇡, so f is not
continuous.
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The argument multifunction is closely related to the logarithm.
There is a continuous branch of [Log(z)] on a set U if and only
if there is continuous branch of [arg(z)] on U.

Indeed if f (z) is a continuous branch of [arg(z)] on U we may
define a continuous branch of [Log(z)] by g(z) = log|z|+ if (z),
and conversely given g(z) we may define f (z) = =(g(z)).

It follows that there is no continuous branch of [Log(z)] defined
on C \ {0}.



The argument multifunction is closely related to the logarithm.
There is a continuous branch of [Log(z)] on a set U if and only
if there is continuous branch of [arg(z)] on U.

Indeed if f (z) is a continuous branch of [arg(z)] on U we may
define a continuous branch of [Log(z)] by g(z) = log|z|+ if (z),
and conversely given g(z) we may define f (z) = =(g(z)).

It follows that there is no continuous branch of [Log(z)] defined
on C \ {0}.



The argument multifunction is closely related to the logarithm.
There is a continuous branch of [Log(z)] on a set U if and only
if there is continuous branch of [arg(z)] on U.

Indeed if f (z) is a continuous branch of [arg(z)] on U we may
define a continuous branch of [Log(z)] by g(z) = log|z|+ if (z),
and conversely given g(z) we may define f (z) = =(g(z)).

It follows that there is no continuous branch of [Log(z)] defined
on C \ {0}.



Riemann surfaces

Riemann surfaces make it possible to replace ‘multifunctions’
by actual functions.

Consider [z1/2]. We can ‘join’ the two branches of [z1/2] to
obtain a function from a Riemann surface to C.
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Complex integration

if F : [a, b] ! C, F (t) = G(t) + iH(t), we say that F is integrable

if G,H are integrable and define
Z

b

a

F (t)dt =

Z
b

a

G(t)dt + i

Z
b

a

H(t)dt

PROPERTIES:
1.

R
b

a
(↵ · F1 + � · F2)dt = ↵ ·

R
b

a
F1dt + � ·

R
b

a
F2dt .

2.
�� R b

a
F (t)dt

�� 
R

b

a
|F (t)|dt .

Proof of 2.
Set

R
b

a
F (t)dt = rei✓. Then by 1,

R
b

a
e�i✓F (t)dt = r 2 R.

so
R

b

a
e�i✓F (t)dt =

R
b

a
Re(e�i✓F (t))dt

�� R b

a
F (t)dt

�� =
�� R b

a
Re(e�i✓F (t))dt

�� 
R

b

a
|F (t)|dt

since |Re(z)|  |z|.
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Paths

Definition
A path is a continuous function � : [a, b] ! C. A path is closed if
�(a) = �(b). A path is simple if for x 6= y , �(x) 6= �(y) except
possibly for {x , y} = {a, b}. If � is a path, we will write �⇤ for its
image,

�⇤ = {z 2 C : z = �(t), some t 2 [a, b]}.

Definition
A path � : [a, b] ! C is differentiable if its real and imaginary
parts are differentiable. Equivalently, � is differentiable at
t0 2 [a, b] if

lim
t!t0

�(t)� �(t0)

t � t0

exists. Notation: �0(t0). (If t = a or b then we take the one-sided
limit.) A path is C1 if it is differentiable and its derivative �0(t) is
continuous.



Paths
Definition
A path is a continuous function � : [a, b] ! C. A path is closed if
�(a) = �(b). A path is simple if for x 6= y , �(x) 6= �(y) except
possibly for {x , y} = {a, b}. If � is a path, we will write �⇤ for its
image,

�⇤ = {z 2 C : z = �(t), some t 2 [a, b]}.

Definition
A path � : [a, b] ! C is differentiable if its real and imaginary
parts are differentiable. Equivalently, � is differentiable at
t0 2 [a, b] if

lim
t!t0

�(t)� �(t0)

t � t0

exists. Notation: �0(t0). (If t = a or b then we take the one-sided
limit.) A path is C1 if it is differentiable and its derivative �0(t) is
continuous.

a

Y'T



Paths
Definition
A path is a continuous function � : [a, b] ! C. A path is closed if
�(a) = �(b). A path is simple if for x 6= y , �(x) 6= �(y) except
possibly for {x , y} = {a, b}. If � is a path, we will write �⇤ for its
image,

�⇤ = {z 2 C : z = �(t), some t 2 [a, b]}.

Definition
A path � : [a, b] ! C is differentiable if its real and imaginary
parts are differentiable. Equivalently, � is differentiable at
t0 2 [a, b] if

lim
t!t0

�(t)� �(t0)

t � t0

exists. Notation: �0(t0). (If t = a or b then we take the one-sided
limit.) A path is C1 if it is differentiable and its derivative �0(t) is
continuous.



EXAMPLES:
1. Line segment: t 7! a + t(b � a) = (1 � t)a + tb, t 2 [0, 1] ,
2. circle: z(t) = z0 + re2⇡it , t 2 [0, 1] a closed path.

NON EXAMPLES:
Peano curves, spirals.
Remarks: If � is a C1 path and �0(t0) 6= 0 then � has a tangent
at t0: L(t) = �(t0) + (t � t0)�

0(t0)

.

However a C1 path might not have a tangent at every point, eg
� : [�1, 1] ! C

�(t) =

⇢
t2 �1  t  0
it2 0  t  1.

.
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t2 �1  t  0
it2 0  t  1.
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Definition
Let � : [c, d ] ! C be a C1-path. If � : [a, b] ! [c, d ] is
continuously differentiable with �(a) = c and �(b) = d , then we
say that �̃ = � � �, is a reparametrization of �.

Lemma
Let � : [c, d ] ! C and s : [a, b] ! [c, d ] and suppose that s is

differentiable at t0 and � is differentiable at s0 = s(t0). Then

� � s is differentiable at t0 with derivative

(� � s)0(t0) = s
0(t0).�

0(s(t0)).

Proof.
�(x) = �(s0)+�0(s0)(x �s0)+(x �s0)✏(x), ✏(x) ! 0 as x ! s0

�(s(t))��(s(t0))
t�t0

= s(t)�s(t0)
t�t0

�
�0(s(t0)) + ✏(s(t))

�
.

(� � s)0(t0) = s0(t0)�
0(s(t0)).
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Definition
�1 : [a, b] ! C and �2 : [c, d ] ! C are equivalent if there is a
continuously differentiable bijective function s : [a, b] ! [c, d ]
such that s0(t) > 0 for all t 2 [a, b] and �1 = �2 � s.

Equivalence classes: oriented curves in the complex plane.
Notation: [�].
s0(t) > 0: the path is traversed in the same direction for each of
the parametrizations �1 and �2. If � : [a, b] ! C then the
opposite path is ��(t) = �(a + b � t).

Definition
If � : [a, b] ! C is a C1 path then we define the length of � to be

`(�) =

Z
b

a

|�0(t)|dt .

Using the chain rule one sees that the length of a parametrized
path is also constant on equivalence classes of paths.
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Definition
We will say a path � : [a, b] ! C is piecewise C1 if it is
continuous on [a, b] and the interval [a, b] can be divided into
subintervals on each of which � is C1.
So there are a = a0 < a1 < . . . < am = b such that �|[ai ,ai+1] is
C1.

Note: the left-hand and right-hand derivatives of � at ai

(1  i  m � 1) may not be equal.
A contour is a simple closed piece-wise C1 path.
Two paths �1 : [a, b] ! C and �2 : [c, d ] ! C with �1(b) = �2(c)
can be concatenated to give a path �1 ? �2, defined by

�1?�2(t) = �1(t), t 2 [a, b], �1?�2(t) = �2(t�b+c), t 2 [b, d+b�c]

If �, �1, �2 are piecewise C1 then so are �� and �1 ? �2.
A piecewise C1 path is precisely a finite concatenation of C1

paths

.
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We may define equivalence classes, reparametrisations, length
as before for piecewise C1 paths.

Example: If a, b, c 2 C, we define the triangle:
Ta,b,c = �a,b ? �b,c ? �c,a where �x ,y is the line segment joining
x , y .
Recall the definition of Riemann integrable functions. We have
the following:

Lemma
Let [a, b] be a closed interval and S ⇢ [a, b] a finite set. If f is a

bounded continuous function (taking real or complex values) on

[a, b]\S then it is Riemann integrable on [a, b].

Proof.
Let a = x0 < x1 < x2 < . . . < xk = b be any partition of [a, b]
which includes the elements of S.
On each open interval (xi , xi+1) the function f is bounded and
continuous, and hence integrable.
By the definition of Riemann integrable functions f is integrable
on [a, b].
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Integral along a path

Definition
If � : [a, b] ! C is a piecewise-C1 path and f : C ! C, then we
define the integral of f along � to be

Z

�
f (z)dz =

Z
b

a

f (�(t))�0(t)dt .

We note that if � is a concatenation of the C1 paths �1, ..., �n

then
R
� f (z)dz =

R
�1

f (z)dz + ...+
R
�n

f (z)dz.
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Example
Let � : [0, 1] ! C be the path �(t) = exp(2⇡it) (a circle). Then

Z

�
z

n
dz =

⇢
2⇡i if n = �1
0 otherwise

Proof.
Z

�
z

n
dz =

Z 1

0
�(t)n�0(t)dt =

Z 1

0
exp(2⇡int) · (2⇡i exp(2⇡it))dt

= 2⇡i
� Z 1

0
cos(2⇡(n + 1)t)dt + i

Z 1

0
sin(2⇡(n + 1)t)dt

�

= 2⇡i

⇣⇥sin(2⇡(n + 1)t)
2⇡(n + 1)

⇤1
0 + i

⇥� cos(2⇡(n + 1)t)
2⇡(n + 1)

⇤1
0

⌘
= 0

for n 6= �1.
If n = �1 we get 2⇡i

R 1
0 1dt = 2⇡i .
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Example
Turn Z 2⇡

0

cos ✓

sin ✓ + 2
d✓

into an integral along a path.

Solution. We remark that if z = ei✓ then

cos ✓ =
1
2
(z +

1
z
), sin ✓ =

1
2i
(z � 1

z
).

Let � : [0, 2⇡] ! C be the path �(t) = eit (a circle). Then

Z

�

1
2(z + 1

z
)

iz( 1
2i
(z � 1

z
) + 2)

dz =

Z 2⇡

0

cos t

ieit(sin t + 2)
ie

it
dt =

=

Z 2⇡

0

cos t

sin t + 2
dt .
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Lemma
If � : [a, b] ! C be a piecewise C1 path and �̃ : [c, d ] ! C is an

equivalent path, then for any continuous function f : C ! C we

have Z

�
f (z)dz =

Z

�̃
f (z)dz.

So the integral only depends on the oriented curve [�].

Proof.
Since �̃ ⇠ � there is s : [c, d ] ! [a, b] with s(c) = a, s(d) = b

and s0(t) > 0, �̃ = � � s. Suppose first that � is C1. Then by the
chain rule we have:
R
�̃ f (z)dz =

R
d

c
f (�(s(t)))(� � s)0(t)dt

=
R

d

c
f (�(s(t))�0(s(t))s0(t)dt

=
R

b

a
f (�(s))�0(s)ds

=
R
� f (z)dz.
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If a = x0 < x1 < . . . < xn = b such that � is C1 on [xi , xi+1] we
have a corresponding decomposition of [c, d ] given by the
points s�1(x0) < . . . < s�1(xn), andR
�̃ f (z)dz =

R
d

c
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n�1
i=0
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n�1
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We define also the integral with respect to arc-length of a
function f : U ! C such that �⇤ ✓ U to be

Z

�
f (z)|dz| =

Z
b

a

f (�(t))|�0(t)|dt .

This integral is invariant with respect to C1 reparametrizations
s : [c, d ] ! [a, b] if we require s0(t) 6= 0 for all t 2 [c, d ]. Note
that in this case

Z

�
f (z)|dz| =

Z

��
f (z)|dz|.
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Properties of the integral

Let f , g : U ! C be continuous functions on an open subset
U ✓ C and �, ⌘ : [a, b] ! C be piecewise-C1 paths whose
images lie in U. Then we have the following:

1. (Linearity ): For ↵,� 2 C,
Z

�
(↵f (z) + �g(z))dz = ↵

Z

�
f (z)dz + �

Z

�
g(z)dz.

2. If �� denotes the opposite path to � then
Z

�
f (z)dz = �

Z

��
f (z)dz.

3. (Additivity ): If � ? ⌘ is the concatenation of the paths �, ⌘ in
U, we have

Z

�?⌘
f (z)dz =

Z

�
f (z)dz +

Z

⌘
f (z)dz.

4. (Estimation Lemma.) We have
��
Z

�
f (z)dz

��  sup
z2�⇤

|f (z)|.`(�).

 



Properties of the integral
Let f , g : U ! C be continuous functions on an open subset
U ✓ C and �, ⌘ : [a, b] ! C be piecewise-C1 paths whose
images lie in U. Then we have the following:

1. (Linearity ): For ↵,� 2 C,
Z

�
(↵f (z) + �g(z))dz = ↵

Z

�
f (z)dz + �

Z

�
g(z)dz.

2. If �� denotes the opposite path to � then
Z

�
f (z)dz = �

Z

��
f (z)dz.

3. (Additivity ): If � ? ⌘ is the concatenation of the paths �, ⌘ in
U, we have

Z

�?⌘
f (z)dz =

Z

�
f (z)dz +

Z

⌘
f (z)dz.

4. (Estimation Lemma.) We have
��
Z

�
f (z)dz

��  sup
z2�⇤

|f (z)|.`(�).

length of
r



Proof of 4.
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Z

�
f (z)dz

�� =
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Z b

a
f (�(t))�0(t)dt

��


Z b

a
|f (�(t))||�0(t)|dt

 sup
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|f (z)|
Z b

a
|�0(t)|dt

= sup
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|f (z)| · `(�).
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Proposition
Let fn : U ! C be a sequence of continuous functions. Suppose
that � : [a, b] ! U is a piecewise C1 path. If (fn) converges
uniformly to a function f on the image of � then

Z

�
fn(z)dz !

Z

�
f (z)dz.

Proof. We have
����
Z

�
f (z)dz �

Z

�
fn(z)dz

���� =
����
Z

�
(f (z)� fn(z))dz

����

 sup
z2�⇤

{|f (z)� fn(z)|}.`(�),

by the estimation lemma.
sup{|f (z)� fn(z)| : z 2 �⇤} ! 0 as n ! 1 which implies the
result.
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Example. Let’s say
1X

n=1

anzn

converges on B(0,R). Then convergence is uniform on B(0, r)
for r < R. So if � is a piecewise C1 path in B(0, r) we have

Z

�

NX

n=1

anzndz !
Z

�

1X

n=1

anzndz

so

NX

n=1

Z

�
anzndz !

Z

�

1X

n=1

anzndz

in other words we can interchange
P

,
R

:

1X

n=1

Z

�
anzndz =

Z

�

1X

n=1

anzndz
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Definition
Let U ✓ C be an open set and let f : U ! C be a continuous
function. If there exists a differentiable function F : U ! C with
F 0(z) = f (z) then we say F is a primitive for f on U.

Theorem
(Fundamental theorem of Calculus): Let U ✓ C be a open and
let f : U ! C be a continuous function. If F : U ! C is a
primitive for f and � : [a, b] ! U is a piecewise C1 path in U
then we have

Z

�
f (z)dz = F (�(b))� F (�(a)).

In particular the integral of such a function f around any closed
path is zero.
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Proof.
First suppose that � is C1. Then we have

Z

�
f (z)dz =

Z

�
F 0(z)dz =

Z b

a
F 0(�(t))�0(t)dt

=

Z b

a

d
dt

(F � �)(t)dt = F (�(b))� F (�(a))

If � is only piecewise C1, then take a partition
a = a0 < a1 < . . . < ak = b such that � is C1 on [ai , ai+1] for
each i 2 {0, 1, . . . , k � 1}. Then we obtain a telescoping sum:

Z

�
f (z) =

Z b

a
f (�(t))�0(t)dt =

k�1X

i=0

Z ai+1

ai

f (�(t))�0(t)dt

=
k�1X

i=0

(F (�(ai+1))� F (�(ai))) = F (�(b))� F (�(a))

Finally, � is closed iff �(a) = �(b) so the integral of f along a
closed path is zero.
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Corollary
Let U be a domain and let f : U ! C be a function with
f 0(z) = 0 for all z 2 U. Then f is constant.

Proof.
Pick z0 2 U. Since U is path-connected, if w 2 U, we may find
a piecewise C1-path � : [0, 1] ! U such that �(0) = z0 and
�(1) = w . Then by the previous Theorem

f (w)� f (z0) =

Z

�
f 0(z)dz = 0,

so that f is constant.

Recall If Uti's open connected a domain

then for any X Y EU F piecewise path from X to Y

sketdoProof Fix x EU Let S X I piecewise C path from to tox

Then 1 Soper
Ft

2 Edsel since if Xu x then xes
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Proof.
Fix z0 in U, and for any z 2 U set F (z) =

R
� f (z)dz.

where � : [a, b] ! U with �(a) = z0 and �(b) = z.

F (z) is independent of the choice of �:
Suppose �1, �2 are two paths joining z0, z.
The path � = �1 ? �

�
2 is closed so

0 =

Z

�
f (z)dz =

Z

�1

f (z)dz+
Z

��
2

f (z)dz =

Z

�1

f (z)dz�
Z

�2

f (z)dz.

Claim: F is differentiable and F 0(z) = f (z).
Fix w 2 U and ✏ > 0 such that B(w , ✏) ✓ U and choose a path
� : [a, b] ! U from z0 to w .
If z1 2 B(w , ✏) ✓ U, then the concatenation of � with the
straight-line path s : [0, 1] ! U given by
s(t) = w + t(z1 � w) from w to z1 is a path �1 from z0 to z1. It
follows that
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�
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Z
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f (z)dz +

Z

s
f (z)dz)�

Z

�
f (z)dz

=

Z

s
f (z)dz.

so for z1 6= w
����
F (z1)� F (w)

z1 � w

���� =

�����
1

z1 � w

 Z 1

0
f (w + t(z1 � w))(z1 � w)dt

!�����

����
F (z1)� F (w)

z1 � w
� f (w)

���� =

�����

 Z 1

0
f (w + t(z1 � w))dt

!
� f (w)

�����

=

�����

Z 1

0
(f (w + t(z1 � w))� f (w))dt

�����

 sup
t2[0,1]

|f (w + t(z1 � w))� f (w)|

! 0 as z1 ! w
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Example
Let f : C⇥ ! C⇥, f (z) = 1/z. Then f does not have a primitive
on C⇥.

If � : [0, 1] ! C is the path �(t) = exp(2⇡it) (a circle)
Z

�
f (z)dz =

Z 1

0
f (�(t))�0(t)dt =

Z 1

0

1
exp(2⇡it)

·(2⇡i exp(2⇡it))dt = 2⇡i .

Say F 0(z) = f (z). Then by the FTCR
� f (z)dz = F (�(1))� F (�(0)) = F (1)� F (1) = 0, a

contradiction.

Remark: 1/z does have a primitive on any domain D where we
can chose a branch of [Log(z)]:
If we have eL(z) = z on D by the chain rule

exp(L(z)) · L0(z) = 1 ) L0(z) = 1/z.
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Cauchy’s theorem

Cauchy’s theorem states roughly that if f : U ! C is

holomorphic and � is a closed path in U whose interior lies

entirely in U then Z

�
f (z)dz = 0.

This is the single most important theorem of the course. Almost

all important facts about holomorphic functions follow from it.

Sample applications:

1. If f is holomorphic then it is C1 and in fact infinitely

differentiable.

2. If f : C ! C is holomorphic and bounded then it is constant.

3. The fundamental theorem of algebra

4. etc etc

For most of our applications we will need a simpler case of the

theorem for starlike domains. We defer the discussion of the

general case to later lectures.
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Definition

A triangle or triangular path T is a path of the form �1 ? �2 ? �3

where �1(t) = a + t(b � a), �2(t) = b + t(c � b) and

�3(t) = c + t(a� c) where t 2 [0, 1] and a, b, c 2 C. (Note that if

{a, b, c} are collinear, then T is a degenerate triangle.) That is,

T traverses the boundary of the triangle with vertices

a, b, c 2 C. The solid triangle T bounded by T is the region

T = {t1a + t2b + t3c : ti 2 [0, 1],
3X

i=1

ti = 1},

with the points in the interior of T corresponding to the points

with ti > 0 for each i 2 {1, 2, 3}. We will denote by [a, b] the line

segment {a + t(b � a) : t 2 [0, 1]}, the side of T joining vertex a
to vertex b. When we need to specify the vertices a, b, c of a

triangle T , we will write Ta,b,c .

i



Theorem

(Cauchy’s theorem for a triangle): Suppose that U ✓ C is an
open subset and let T ✓ U be a triangle whose interior is
entirely contained in U. Then if f : U ! C is holomorphic we
have Z

T
f (z)dz = 0

Idea of proof. 1. f (z) = f (z0) + f 0(z0)(z � z0) + (z � z0) (z).
So if � is ‘small’ close to z0R
� f (z)dz =

R
�(z � z0) (z)dz which by the estimation lemma

and since  (z) ! 0, is much smaller than length(�).

2. Assuming that I = |
R

T f (z)dz| 6= 0 we will subdivide T into 4

smaller triangles and represent the integral as sum of the

integrals on the smaller triangles. One of the integrals of the

smaller triangles will be at least I/4. We will keep subdividing
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Suppose I = |
R

T f (z)dz| > 0. We build a sequence of smaller

and smaller triangles T n, as follows: Let T 0 = T , and suppose

that we have constructed T i for 0  i < k . Then take the

triangle T k�1 and join the midpoints of the edges to form four

smaller triangles, which we will denote Si (1  i  4).

Then Ik =
R

T k�1 f (z)dz =
P

4

i=1

R
Si

f (z)dz, since the integrals

around the interior edges cancel.

Figure: Subdivision of a triangle
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Ik�1 = |
R

T k�1 f (z)dz| 
P

4

i=1
|
R

Si
f (z)dz|, so that for some i we

must have |
R

Si
f (z)dz| � Ik�1/4. Set T k to be this triangle Si .

Then by induction we see that `(T k ) = 2�k`(T ) while Ik � 4�k I.

Let T k be the solid triangle with boundary T k . The sets T k are

nested and their diameter tends to 0, so there is a unique point

z0, lying in all of them.

f (z) = f (z0) + f 0(z0)(z � z0) + (z � z0) (z),

where  (z) ! 0 =  (z0) as z ! z0.
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T k
f (z)dz =
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T k
(z � z0) (z)dz

and if z is on T k , we have |z � z0|  diam(T k ) = 2�kdiam(T ).

Let ⌘k = supz2T k | (z)|. By the estimation lemma:

Ik =
��
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T k
(z � z0) (z)dz

��  ⌘k · diam(T k )`(T k )

= 4
�k⌘k · diam(T ) · `(T ).

So 4k Ik ! 0 as k ! 1. On the other hand, by construction

Ik � I/4k ) 4k Ik � I > 0, contradiction.
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Definition

Let X be a subset in C. We say that X is convex if for each

z,w 2 U the line segment between z and w is contained in X .

We say that X is star-like if there is a point z0 2 X such that for

every w 2 X the line segment [z0,w ] joining z0 and w lies in X .

We will say that X is star-like with respect to z0 in this case.

Thus a convex subset is thus starlike with respect to every point

it contains.

Example. A disk (open or closed) is convex, as is a solid

triangle or rectangle. On the other hand the union of the

xy -axes is starlike with respect to 0 but not convex.

Theorem

(Cauchy’s theorem for a star-like domain): Let U be a star-like
domain. Then if f : U ! C is holomorphic and � : [a, b] ! U is a
closed path in U we have

Z

�
f (z)dz = 0.
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Proof. It suffices to show that f has a primitive in U.

Let z0 2 U such that for every z 2 U, �z = z0 + t(z � z0),
t 2 [0, 1] is contained in U. We claim that

F (z) =
Z

�z

f (⇣)d⇣

is a primitive for f on U. Let ✏ > 0 s.t. B(z, ✏) ✓ U. If w 2 B(z, ✏)
the triangle T with vertices z0, z,w lies entirely in U so by

Cauchy’s thm for triangles
R

T f (⇣)d⇣ = 0

.

so if ⌘(t) = w + t(z � w) , t 2 [0, 1] we have

��F (z)� F (w)

z � w
� f (z)

�� =
��
Z

⌘

f (⇣)
z � w

d⇣ � f (z)
��

=
��
Z

1

0

f (w + t(z�w))dt � f (z)
�� =

��
Z

1

0

(f (w + t(z�w))� f (z)dt
��

 sup
t2[0,1]

|f (w + t(z � w))� f (z)| ! 0 as w ! z.
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Cauchy’s Integral formula

To prove Cauchy’s integral formula we will need to show that

Cauchy’s Theorem applies to slightly more general domains

than star-like.

Definition

We say that a domain D ✓ C is primitive if any holomorphic

function f : D ! C has a primitive in D.

For example we have shown that all star-like domains are

primitive.

Lemma

Suppose that D1 and D2 are primitive domains and D1 \ D2 is
connected. Then D1 [ D2 is primitive.

Example

The union of two open intersecting half-discs D1,D2 of a disc

B(0, r) is primitive.

Indeed each D1,D2 are convex, so they are primitive. D1 \D2 is

connected so by the lemma D1 [ D2 is primitive.
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Proof.

Let f : D1 [ D2 ! C be a holomorphic function.

Then f|D1
, f|D2

have primitives F1,F2 say.

Since F1 � F2 has zero derivative on D1 \ D2, and as D1 \ D2 is

connected it follows F1 � F2 = c on D1 \ D2.

If F : D1 [ D2 ! C is a defined to be F1 on D1 and F2 + c on D2

then F is a primitive for f on D1 [ D2.

We will need the following simple calculation: Let � = �(a, r) be

the path t 7! a + re2⇡it . We have then

Z

�

1

z � a
dz =

Z
1

0

1

exp(2⇡it)
· (2⇡i exp(2⇡it))dt = 2⇡i .
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Theorem

(Cauchy’s Integral Formula.) Suppose that f : U ! C is a
holomorphic function on an open set U which contains the disc
B̄(a, r). Then for all w 2 B(a, r) we have

f (w) =
1

2⇡i

Z

�

f (z)
z � w

dz,

where � is the path t 7! a + re2⇡it .

Proof. The proof has two steps. In the first step we show that

we can replace the integral over � with an integral over an

arbitrarily small circle �(w , ✏) centered at w . In the second step

we show, using the estimation lemma that this integral is equal

to f (w).
Consider a circle �(w , ✏) centered at w and contained in

B(a, r). Pick two anti-diametric points on �(w , ✏) and join them

by straight segments to points on �.
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We use the contours �1 and �2 each consisting of 2 semicircles

and two segments and we note that the contributions of line

segments cancel out to give:

Figure: Contours for the proof of Theorem ??.
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Since f is complex differentiable at z = w , the term

(f (z)� f (w))/(z � w) is bounded as ✏ ! 0, so that by the

estimation lemma its integral over �(w , ✏) tends to zero.

However

1

2⇡i

Z

�(w ,✏)

f (z)� f (w)

z � w
dz + f (w) =

1

2⇡i

Z

�(a,r)

f (z)
z � w

dz

which does not depend on ✏.

It follows that

1

2⇡i

Z

�(w ,✏)

f (z)� f (w)

z � w
dz = 0

and

f (w) =
1

2⇡i

Z

�(a,r)

f (z)
z � w

dz.
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Definition

If f : U ! C is a function on an open subset U of C, then we say

that f is analytic on U if for every z0 2 C there is an r > 0 with

B(z0, r) ✓ U such that there is a power series
P1

k=0
ak (z � z0)

k

with radius of convergence at least r and

f (z) =
P1

k=0
ak (z � z0)

k . An analytic function is holomorphic,

as any power series is (infinitely) complex differentiable.

Theorem

Suppose that f : U ! C is a holomorphic function defined on an
open set U. Then f is analytic.

Proof. We will show that for each z0 2 U we can find a disk

B(z0, ✏) within which f (w) is given by a power series in

(w � z0). Replacing f (w) by g(w) = f (w + z0) if necessary we

may assume z0 = 0.

We will use the integral expression f (w) = 1

2⇡i
R
�(z0,r)

f (z)
z�w dz.
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The idea is that we can expand
1

z�w = 1

z (1 � w/z)�1 as power

series when |w/z| < 1, so

f (z)
z � w

=
f (z)

z
(1 � w/z)�1 =

1X

n=0

f (z)
z

(w/z)n =
1X

n=0

f (z) · wn

zn+1

Let r be such that B(0, r) ⇢ U. Let � = �(0, r). We will show

that the function is analytic for w 2 B(0, r/2).

We claim that the last series, seen as a function of z,

converges uniformly on �⇤.

Since �⇤ is compact, M = sup{|f (z)| : z 2 �⇤} is finite. We

apply Weierstrass M-test:

|f (z) · wn/zn+1| = |f (z)||z|�1|w/z|n < M
2r (1/2)n, 8z 2 �⇤.
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Uniform convergence implies that for all w 2 B(0, r) we have

1X

n=0

✓
1

2⇡i

Z

�

f (z)
zn+1

dz
◆

wn =
1

2⇡i

Z

�

f (z)dz
z � w

= f (w)

hence f (w) is given by a power series in B(0, r).

Remark. If z0 6= 0 then the formula above applies to

g(w) = f (w + z0) and we obtain:

1X

n=0

 
1

2⇡i

Z

�(0,r)

f (z + z0)

zn+1
dz

!
wn = f (w + z0)

and setting u = w + z0 and substituting v = z + z0 in the

integral we get

1X

n=0

 
1

2⇡i

Z

�(z0,r)

f (v)
(v � z0)n+1

dv

!
(u � z0)

n = f (u)
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Corollary

(Taylor Series Expansion) If f : U ! C is holomorphic on an
open set U, then for any z0 2 U, and for any open disc B(z0, r)
centred at z0 and lying in U we have the Taylor series
expansion

f (z) =
1X

n=0

an(z � z0)
n.

Moreover an =
1

2⇡i

Z

�(a,r)

f (z)
(z � z0)n+1

dz

for any a 2 C, r 2 R>0 with z0 2 B(a, r), and we obtain the
Cauchy Integral Formulas for the derivatives of f at z0:

f (n)(z0) =
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Proof.

For the first part note that we have shown it for sufficiently small

r .

However note that if B(z0, r) ✓ U then if w 2 B(z0, r) we

have that w 2 B(z0, r � ✏) for some ✏ > 0.

In particular there is m < 1 such that |w/z| < m < 1 for any

z 2 �(z0, r) which was all we needed in the previous proof in

order to get a power series expression of f (w).

For the second part note that
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This follows exactly as in the proof of Cauchy’s integral formula.

For the last part note that f (n)(z0) = n!an.
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Winding numbers

Let � : [0, 1] ! C closed path which does not pass through 0.

We will give a rigorous definition of the number of times � “goes

around the origin”.

The problem is arg z is not continuous on C⇥!

Recall: In any half plane we can define a holomorphic branch

of [Logz], say L(z), so in any half plane we may define

arg z = =(L(z)).

Proposition

Let � : [0, 1] ! C\{0} be a path. Then there is continuous
function a : [0, 1] ! R such that

�(t) = |�(t)|e2⇡ia(t).

Moreover, if a and b are two such functions, then there exists
n 2 Z such that a(t) = b(t) + n for all t 2 [0, 1].
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Proof.

By replacing �(t) with �(t)/|�(t)| we may assume that

|�(t)| = 1 for all t .

� is uniformly continuous, so 9� > 0 such that |�(s)� �(t)| < 1

for any s, t with |s � t | < �.

Choose n 2 N, n > 1/�. Then on each subinterval

[i/n, (i + 1)/n] we have |�(s)� �(t)| < 1.

On any half-plane in C we may define a holomorphic branch of

[Log(z)] so may define a continuous arg z.

if |z1| = |z2| = 1 and |z1 � z2| < 1, then the angle between z1

and z2 is less than ⇡/2. It follows there exists continuous

aj : [j/n, (j + 1)/n] ! R such that �(t) = e2⇡iaj (t).

Since e2⇡iaj (j/n) = e2⇡iaj�1(j/n), aj�1(j/n) and aj(j/n) differ by an

integer. Thus we can successively adjust the aj for j > 1 by an

integer to obtain a continuous a : [0, 1] ! C such that

�(t) = e2⇡ia(t).

Uniqueness: e2⇡i(a(t)�b(t)) = 1, hence a(t)� b(t) 2 Z, but [0, 1]
is connected so a(t)� b(t) is constant.
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Definition

If � : [0, 1] ! C\{0} is a closed path and �(t) = |�(t)|e2⇡ia(t) as

in the previous lemma, then a(1)� a(0) 2 Z. This integer is

called the winding number I(�, 0) of � around 0.

It is uniquely determined by the path � because the function a
is unique up to an integer.

If z0 is not in the image of �, we may define the winding number

I(�, z0) of � about z0 similarly:

Let t : C ! C be given by t(z) = z � z0, we define

I(�, z0) = I(t � �, 0).

Remarks: 1. The definition of the winding number only requires

the closed path � to be continuous, not piecewise C1.

2. if � : [0, 1] ! U where 0 /2 U and there exists a holomorphic

branch L : U ! C of [Log(z)] on U, then I(�, 0) = 0. Indeed in

this case we may define a(t) = =(L(�(t))), and since

�(0) = �(1) it follows a(1)� a(0) = 0.
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The winding number for C1 paths can be expressed using

integrals:

Lemma

Let � be a piecewise C1 closed path and z0 2 C a point not in
the image of �. Then the winding number I(�, z0) of � around
z0 is given by

I(�, z0) =
1

2⇡i

Z

�

dz
z � z0

.

Proof.

If � : [0, 1] ! C we may write �(t) = z0 + r(t)e2⇡ia(t). Then

Z

�

dz
z � z0

=

Z
1

0

1

r(t)e2⇡ia(t) ·
�
r 0(t) + 2⇡ir(t)a0(t)

�
e2⇡ia(t)dt

=

Z
1

0

r 0(t)/r(t) + 2⇡ia0(t)dt = [log(r(t)) + 2⇡ia(t)]10
= 2⇡i(a(1)� a(0)), since r(1) = r(0) = |�(0)� z0|.
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dz
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Z
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r(t)e2⇡ia(t) ·
�
r 0(t) + 2⇡ir(t)a0(t)

�
e2⇡ia(t)dt
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Z
1

0

r 0(t)/r(t) + 2⇡ia0(t)dt = [log(r(t)) + 2⇡ia(t)]10

= 2⇡i(a(1)� a(0)), since r(1) = r(0) = |�(0)� z0|.
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Corollary

Let U be an open set in C and let � : [0, 1] ! U be a closed
path. If f (z) is a continuous function on �⇤ then the function

If (�,w) =
1

2⇡i

Z

�

f (z)
z � w

dz,

is analytic in w.

Proof. This follows by the same argument that we used to show

that holomorphic functions are analytic.

In the proof we only used that f is continuous on �⇤.

If w0 is not on �⇤ then for some ✏ > 0 we have that |w
z | <

1

2
for

all w 2 B(w0, ✏) and this suffices to show that If (�,w) is

analytic.

of the proof holomorphic analytic
piecewise

c path



Proposition

Let U be an open set in C and let � : [0, 1] ! U be a closed
piecewise C1 path. Then the function w 7! I(�,w) is a
continuous function on C\�⇤, hence constant on the connected
components of C\�⇤.

Proof.

We showed earlier that the function

I(�,w) =

Z

�

1

z � w
dz

is analytic, so it is continuous.
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If � is a closed path then �⇤ is compact and hence bounded.

Thus there is an R > 0 such that the connected set

(C\B(0,R)) \ �⇤ = ;. It follows that C\�⇤ has exactly one

unbounded connected component.

Since ��
Z

�

d⇣
⇣ � z

��  `(�). sup
⇣2�⇤

|1/(⇣ � z)| ! 0

as z ! 1 it follows that I(�, z) = 0 on the unbounded

component of C\�⇤.

Definition

Let � : [0, 1] ! C be a closed path. We say that a point z is in

the inside of � if z /2 �⇤ and I(�, z) 6= 0. The previous remark

shows that the inside of � is a union of bounded connected

components of C\�⇤. (We don’t, however, know that the inside

of � is necessarily non-empty.)
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Example

Suppose that �1 : [�⇡,⇡] ! C is given by �1 = 1 + eit and

�2 : [0, 2⇡] ! C is given by �2(t) = �1 + e�it . Then if

� = �1 ? �2, � traverses a figure-of-eight and it is easy to check

that the inside of � is B(1, 1) [ B(�1, 1) where I(�, z) = 1 for

z 2 B(1, 1) while I(�, z) = �1 for z 2 B(�1, 1).

Remark.

It is a theorem, known as the Jordan Curve Theorem, that if

� : [0, 1] ! C is a simple closed curve, so that �(t) = �(s) if and

only if s = t or s, t 2 {0, 1}, then C\�⇤ is the union of precisely

one bounded and one unbounded component, and on the

bounded component I(�, z) is either 1 or �1. If I(�, z) = 1 for z
on the inside of � we say � is positively oriented and we say it is

negatively oriented if I(�, z) = �1 for z on the inside.
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