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Multifunctions

We saw earlier how to extend some classical real functions like
exp, sin, cos to complex functions using power series.

Today we will consider log z and fractional powers z™/". How
do we extend these to complex functions?

It turns out this is more delicate. In fact Leibniz and Bernoulli
disagreed for over 15 years on the ‘correct’ value of log(—1)
and log /.

These are examples of multifunctions as eg one can take
log(—1) = im or log(—1) = —in.
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Branch cuts
Consider the square root ‘function’ z'/2. Can we make a choice

of z'/2 to obtain a continuous or even better holomorphic
function?

z = re' with 6 € [0,27). Then z'/2 = +r1/2¢%/2 So we may
define a square root function f by
f(z) = f(re'®) = r'/2¢'9/2.
But f is not continuous on the whole plane:
Foro — 0, re? re/em=0 _ r but
f(rel®) — r1/2, f(relm=0)y = p1/2gi(r=0/2) _, _f1/2
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Branch cuts
Consider the square root ‘function’ z'/2. Can we make a choice

of z'/2 to obtain a continuous or even better holomorphic
function?

z = re' with 6 € [0,27). Then z'/2 = +r1/2¢%/2 So we may
define a square root function f by
f(z) = f(re'®) = r'/2¢'9/2.
But f is not continuous on the whole plane:
Foro — 0, re? re/em=0 _ r but
f(rel®) — r1/2, f(relm=0)y = p1/2gi(r=0/2) _, _f1/2

Still f(z) is continuous on C\R
where R={z e C:3(z) =0,R(z) > 0}.
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Branch cuts
Consider the square root ‘function’ z'/2. Can we make a choice

of z'/2 to obtain a continuous or even better holomorphic
function?

z = re' with 6 € [0,27). Then z'/2 = +r1/2¢%/2 So we may
define a square root function f by

f(z) = f(re'®) = r'/2¢'9/2.
But f is not continuous on the whole plane:

Foro — 0, re? re/em=0 _ r but
f(ref®) — r1/2, f(reir=0)) = f1/2gi(r=0/2) _, _1/2,

Still f(z) is continuous on C\R
where R={z e C:3(z) =0,R(z) > 0}.
f(z) is holomorphic on C\ R:

fla+h)—fa) fla+h) —fa) 1 1

\

h B f2(a+ h) - f2l(a) ~ fla+h)+f(a) ~ 2f(a)

as h— 0. a+hn a
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The positive real axis is called a branch cut for the multi-valued
function z'/2.

If we set
g(Z) _ g(reie) _ r1/26i(g+7r) _ —r1/26i8/2.

we obtain another branch of z'/2 on C\R.
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The positive real axis is called a branch cut for the multi-valued
function z'/2.

If we set
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we obtain another branch of z'/2 on C\R.
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A multi-valued function or multifunction on a subset U C Cis a
map f: U — P(C) assigning to each point in U a subset of the
complex numbers. A branch of fona subset V C Uis a
function g: V — C such that g(z) € f(z),forallze V. If gis
continuous (or holomorphic) on V we refer to it as a continuous,
(respectively holomorphic) branch of f.



Multifunctions

The positive real axis is called a branch cut for the multi-valued
function z'/2.

If we set
g(Z) _ g(reiQ) _ r1/26i(g+7r) _ —r1/26i8/2.

we obtain another branch of z'/2 on C\R.

Definition

A multi-valued function or multifunction on a subset U C Cis a
map f: U — P(C) assigning to each point in U a subset of the
complex numbers. A branch of fona subset V C Uis a
function g: V — C such that g(z) € f(z),forallze V. If gis
continuous (or holomorphic) on V we refer to it as a continuous,
(respectively holomorphic) branch of f.

Notation: [f(z)] so eg [Log(z)] = {w € C: e" = z}.
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Two types of discontinuity: depending on the
branch cut we used and ‘unavoidable’ called branch points.

So for the multifunction [z'/2] we obtain holomorphic branches

on C\ R where R is the x-axis. The positive points on x-axis are
‘accidental’ discontinuities but 0 appears in all branch cuts, it is

a branch point.

This is because it is not possible to choose a continuous
branch of [z'/2] on any open set containing 0.
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To see this note that we can not continuously define z'/2 on a
circle centered at 0.

Let z=re®™ t c [0,1] and let's say f: [0,1] — Cis a
choice of z1/2 on this circle.

Then f(0) = ++/r. Consider the function g : [0,1) — C,
g(t) = /re™. Then g is
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To see this note that we can not continuously define z'/2 on a
circle centered at 0.

Let z=re®™ t c [0,1] and let's say f: [0,1] — Cis a
choice of z1/2 on this circle.

Then f(0) = ++/r. Consider the function g : [0,1) — C,
g(t) = /re™. Then g is

So the quotient f/g is a function defined on [0, 1)
and f(t)/g(t) = =1 forany t € [0,1). Since [0, 1) is connected
f/g is necessarily constant, so f = +g.

Say f(t) = g(t). Then
f(1) = lim (1) = lim g(1) = Vre™ = —V/T.

So f(0) = /r#f(1) = /re™ = —/r, however re*™ 0 = rg?m"1,
and similarly we arrive at a contradiction if f(f) = —g(1).
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Suppose that f: U — P(C) is a multi-valued function defined on
an open subset U of C. We say that z; € U is not a branch
point of f if there is an open disk D C U containing z; such that
there is a holomorphic branch of f defined on D\{z;}. We say
Zp Is a branch point otherwise.

When C\ U is bounded, we say that f does not have a branch
point at oo If there is a holomorphic branch of f defined on
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Definition

Suppose that f: U — P(C) is a multi-valued function defined on
an open subset U of C. We say that z; € U is not a branch
point of f if there is an open disk D C U containing z; such that
there is a holomorphic branch of f defined on D\{z;}. We say
Zp Is a branch point otherwise.

When C\ U is bounded, we say that f does not have a branch
point at oo If there is a holomorphic branch of f defined on
C\B(0, R) C U for some R > 0. Otherwise we say that co is a
branch point of £.

A branch cut for a multifunction f is a curve in the plane on
whose
Thus a branch cut must contain all the branch points.

For example 0, co are the branch points of [2'/2].
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The Logarithm

The Logarithm
[Log(2)] = {log(|z|) + i(6 + 2nx) : n € Z} where z = |z|e".

We get a branch on C\ (—o0, 0] by making a choice for the
argument:

L(z) = log(|z|) + iarg(z), where arg(z) € (—m, )

this is called the principal branch of Log.
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The Logarithm

The Logarithm
[Log(2)] = {log(|z|) + i(6 + 2nx) : n € Z} where z = |z|e".

We get a branch on C\ (—o0, 0] by making a choice for the
argument:

L(z) = log(|z|) + iarg(z), where arg(z) € (—m, )

this is called the principal branch of Log.
We may define other branches of the logarithm by

Ln(z) =L(z) + 2inm

The branch points of [Log(z)] are 0 and oo, as it is not possible
to make a continuous choice of logarithm on any circle S(0, r).



We note that L(z) is also holomorphic. Indeed for small h = 0,
L(a+ h) # L(a) and

L(a+ h)—L(a) L(a+ h) — L(a)
h  exp(l(ath) - exp(L(a))
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We note that L(z) is also holomorphic. Indeed for small h = 0,
L(a+ h) # L(a) and

L(a+ h)—L(a) L(a+ h) — L(a)
h ~ exp(L(a+ h)) — exp(L(a))’

We have

im ©P(L(@+ M) — exp(L(2))
h—0 L(a+ h) — L(a)

= exp'(L(a)) = a

since when h — 0, L(a+ h) — L(a) — 0 by the continuity of L.
So we have L'(a) = 1/a.



We note that L(z) is also holomorphic. Indeed for small h = 0,
L(a+ h) # L(a) and

L(a+ h)—L(a) L(a+ h) — L(a)
h ~ exp(L(a+ h)) — exp(L(a))’

We have

. exp(L(a+ h)) — exp(L(a))

h—0 L(a+ h) — L(a) = exp(L(a) = 2

since when h — 0, L(a+ h) — L(a) — 0 by the continuity of L.
So we have L'(a) = 1/a.

We note that the same argument applies to any continuous
branch of the logarithm.
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[z%] where a € C:

[z%] := exp(a - [Log(Z2)]) = {exp(a- W) : w € C, " = z}

any holomorphic branch of [Log(z)] gives a holomorphic
branch of [z¢].
If we pick L(z) we get the principal branch of [z%].



Complex powers

[z%] where a € C:

[z%] := exp(a - [Log(Z2)]) = {exp(a- W) : w € C, " = z}

any holomorphic branch of [Log(z)] gives a holomorphic
branch of [z¢].
If we pick L(z) we get the principal branch of [z%].

Note (z122)“ # z{'z5 in general!
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Binomial theorem for complex powers

[(1+2)%] = {exp(a- W) : we C,exp(w) =1+ z}.
Using L(z) we obtain a branch
f(z) = exp(a- L(1+ 2))

Let () = fa-(a—1)...(a— k+1). Define
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Binomial theorem for complex powers

(14 2)°] = {exp(a- w) : w € C,exp(w) = 1 + z}.

Using L(z) we obtain a branch
f(z) = exp(a- L(1+ 2))
Let (%) = fia-(a—1)...(a — k+1). Define
s(z) =) <i) z,
k=0

By the ratio test, s(z) has radius of convergence equal to 1, so
that s(z) defines a holomorphic function in B(0, 1).
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Binomial theorem for complex powers

[(1+2)%] = {exp(a- W) : we C,exp(w) =1+ z}.
Using L(z) we obtain a branch
f(z) = exp(a- L(1+ 2))
Let () = fa-(a—1)...(a— k+1). Define

s(2) = i <i) zx.

k=0

By the ratio test, s(z) has radius of convergence equal to 1, so
that s(z) defines a holomorphic function in B(0, 1).
Differentiating term by term: (1 + 2)s'(z) = a - s(2).
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Binomial theorem for complex powers

(14 2)°] = {exp(a- w) : w € C,exp(w) = 1 + z}.

Using L(z) we obtain a branch
f(z) = exp(a- L(1+ 2))

Let () = fa-(a—1)...(a— k+1). Define

s(2) = i <i) zx.

k=0

By the ratio test, s(z) has radius of convergence equal to 1, so
that s(z) defines a holomorphic function in B(0, 1).
Differentiating term by term: (1 + 2)s'(z) = a - s(2).

Now f(z) is defined on all of B(0, 1). We claim that f(z) = s(2)
on B(0,1).
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then g(z) is holomorphic for every z € B(0, 1) and by the chain
rule



Let g(z) = ?g)) = S(z)exp(—a - L(1 + 2))

then g(z) is holomorphic for every z € B(0, 1) and by the chain
rule

9 (2) = (s'(2) — as(2)L'(1 + 2)) exp(—a - L(1 + 2)) = O

since §'(z) = 0‘1'1(?.




Let g(z) = ?g)) = S(z)exp(—a - L(1 + 2))

then g(z) is holomorphic for every z € B(0, 1) and by the chain
rule

9 (2) = (s'(2) — as(2)L'(1 + 2)) exp(—a - L(1 + 2)) = O

since §'(z) = %(ZZ)

Also g(0) = 1 so, since B(0, 1) is connected g is constant and
s(z) = f(2).
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The Argument

[arg(z)] ;== {0 € R : z = |z|e"?} is defined on C \ {0}.
Claim: There is no continuous branch of [arg(z)] on C \ {0}.

Let'ssay f: C\ {0} — R is a continuous branch of the
argument.

Define g : C\ [0, co0) by g(re'?) = 6 where 6 € (0, 27).

Clearly g is continuous, so F(z) = f(z) — g(z) is continuous.
However f(z) — g(z) € 27Z. Since C \ [0, c0) is connected,
F(C\ [0, 0)) is connected.

It follows that f(z) — g(z) is constant, f(z) — g(z) = 2nm for
some fixed n. But then

limg_,o+ f(€") = 2nm ,limy_o- f(€") = (2n+ 2)7, so f is not

continuous. Q{,
f
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if there is continuous branch of [arg(z)] on U.

Indeed if 7(z) is a continuous branch of [arg(z)] on U we may
define a continuous branch of [Log(z)] by g(z) = log|z| + if(z),
and conversely given g(z) we may define f(z) = 3(g(2)).



The argument multifunction is closely related to the logarithm.
There is a continuous branch of [Log(z)] on a set U if and only
if there is continuous branch of [arg(z)] on U.

Indeed if 7(z) is a continuous branch of [arg(z)] on U we may
define a continuous branch of [Log(z)] by g(z) = log|z| + if(z),
and conversely given g(z) we may define f(z) = 3(g(2)).

It follows that there is no continuous branch of [Log(z)] defined
on C\ {0}.
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Riemann surfaces

Riemann surfaces make it possible to replace ‘multifunctions
by actual functions.

Consider [2z'/2]. We can ‘join’ the two branches of [z'/?] to
obtain a function from a Riemann surface to C.
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if F:[a,b] — C, F(t) = G(t) + iH(t), we say that F is integrable
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Complex integration

if F:[a,b] — C, F(t) = G(t) + iH(t), we say that F is integrable
if G, H are integrable and define

/: F(t)dt = /: G(t)dt + i/: H(t)dlt

PROPERTIES:

1. [2(a-Fi+8-R)dt=a- [PFidt+ 8- [2 Fat.

2. | [2F(t)dt] < [P |F(t)|at.

Proof of 2.
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Complex integration

if F:[a,b] — C, F(t) = G(t) + iH(t), we say that F is integrable
if G, H are integrable and define

/: F(t)dt = /: G(t)dt + i/: H(t)dt

PROPERTIES:

1. [2(a-Fi+8-R)dt=a- [PFidt+ 8- [2 Fat.

2. | [2F(t)dt] < [P |F(t)|at.

Proof of 2. | |

Set f: F(t)dt = re’’. Then by 1, fab e ""F(t)dt =r € R.
so [P e F(t)dt = [° Re(e " F(t))dt

| [P F(t)at| = | [2 Re(e F(t))adt| < [2|F(t)|dt

since |Re(z)| < |z|.
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Paths

Definition
A path is a continuous function ~: [a, b] — C. A path is closed if
v(a) = v(b). A path is simple if for x # y, v(x) # ~v(y) except
possibly for {x, y} = {a, b}. If v is a path, we will write ~* for its
image,

v ={ze€C:z=~(t), sometc|a,b|}.
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Paths

Definition
A path is a continuous function ~: [a, b] — C. A path is closed if
v(a) = v(b). A path is simple if for x # y, v(x) # ~v(y) except
possibly for {x, y} = {a, b}. If v is a path, we will write ~* for its
image,

v ={ze€C:z=~(t), sometc|a,b|}.

Definition
A path ~: [a, b] — C is differentiable if its real and imaginary
parts are differentiable. Equivalently, ~ is differentiable at
i € [a, b] if
o 2(1) = (k)
t—t [ — 1o

exists. Notation: ~/(fy). (If t = a or b then we take the one-sided
limit.) A path is C' if it is differentiable and its derivative /(t) is
continuous.



1. Line segment: t— a+t(b—a)=(1—-t)a+tb, t[0,1],
2. circle: z(t) = zy + re®™, t € [0, 1] a closed path.



1. Line segment: t— a+t(b—a)=(1—-t)a+tb, t[0,1],
2. circle: z(t) = zy + re®™, t € [0, 1] a closed path.
5.5°F l‘\fme

9Nt
Y€)= f3€ /i t€]o,17]

£
3
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1. Line segment: t— a+t(b—a)=(1—-t)a+tb, t[0,1],
2. circle: z(t) = zy + re®™, t € [0, 1] a closed path.

NON EXAMPLES:
Peano curves, {y,ra ‘g Ceg » (b




1. Line segment: t— a+t(b—a)=(1—-t)a+tb, t[0,1],
2. circle: z(t) = zy + re®™, t € [0, 1] a closed path.

NON EXAMPLES:
Peano curves.

Remarks: If v is a C' path and +/(f;) # 0 then ~ has a tangent
at fo: L(t) =~v(fo) + (t — fo)'(fo)-




1. Line segment: t— a+t(b—a)=(1—-t)a+tb, t[0,1],
2. circle: z(t) = zy + re®™, t € [0, 1] a closed path.

NON EXAMPLES:
Peano curves

Remarks: If v is a C' path and +/(f;) # 0 then ~ has a tangent
at fo: L(t) =~v(fo) + (t — fo)'(fo)-

However a C' path might not have a tangent at every point, eg
v:[-1,1] = C

2 —1<t<0
7(t):{it2 o<t<t U

0




Definition

Let v: [c,d] — C be a C'-path. If ¢: [a,b] — [c, d] is
continuously differentiable with ¢(a) = ¢ and ¢(b) = d, then we
say that 4 = v o ¢, Is a reparametrization of ~.




Definition

Let v: [c,d] — C be a C'-path. If ¢: [a,b] — [c, d] is
continuously differentiable with ¢(a) = ¢ and ¢(b) = d, then we
say that 4 = v o ¢, Is a reparametrization of ~.

Lemma

Letv: [c,d] — C ands: [a, b] — [c, d] and suppose that s is
differentiable at ty and  is differentiable at sy = s(ty). Then
~ o S IS differentiable at ty with derivative

(v08)(to) = s'(to)-7'(s(t))-



Definition

Let v: [c,d] — C be a C'-path. If ¢: [a,b] — [c, d] is
continuously differentiable with ¢(a) = ¢ and ¢(b) = d, then we
say that 4 = v o ¢, Is a reparametrization of ~.

Lemma

Letv: [c,d] — C ands: [a, b] — [c, d] and suppose that s is
differentiable at ty and  is differentiable at sy = s(ty). Then
~ o S IS differentiable at ty with derivative

(v08)(to) = s'(to)-7'(s(t))-

Proof.
v(X) = v(S0) +7'(S0)(X —So) + (X —Sp)e(x), e(x) = 0asx — sg

— X (50 ] r
b/(x)x?—g( o 2’[50) - Zé() —> DO



Definition

Let v: [c,d] — C be a C'-path. If ¢: [a,b] — [c, d] is
continuously differentiable with ¢(a) = ¢ and ¢(b) = d, then we
say that 4 = v o ¢, Is a reparametrization of ~.

Lemma

Letv: [c,d] — C ands: [a, b] — [c, d] and suppose that s is
differentiable at ty and  is differentiable at sy = s(ty). Then
~ o S IS differentiable at ty with derivative

(v08)(to) = s'(to)-7'(s(t))-

Proof.
v(X) = v(S0) +7'(S0)(X —So) + (X —Sp)e(x), e(x) = 0asx — sg

AsO) 7 (s(6)) — s=8(0) (/(5(15)) + €(s(1))).



Definition

Let v: [c,d] — C be a C'-path. If ¢: [a,b] — [c, d] is
continuously differentiable with ¢(a) = ¢ and ¢(b) = d, then we
say that 4 = v o ¢, Is a reparametrization of ~.

Lemma

Letv: [c,d] — C ands: [a, b] — [c, d] and suppose that s is
differentiable at ty and  is differentiable at sy = s(ty). Then
~ o S IS differentiable at ty with derivative

(v08)(to) = s'(to)-7'(s(t))-

Proof.
v(X) = v(S0) +7'(S0)(X —So) + (X —Sp)e(x), e(x) = 0asx — sg

AsO) 7 (s(6)) — s=8(0) (/(5(15)) + €(s(1))).

(yos)(h)=s (fo) "(s(t))-



Definition

v1: (@ b] — Cand ~»: [c,d] — C are equivalent if there is a
continuously differentiable bijective function s: [a, b] — [c, d]
such that s’(f) > 0 forall t € [a,b] and v4 = 1o 0 S.



Definition

v1: (@ b] = Cand vs: [c,d] — C are equivalent if there is a
continuously differentiable bijective function s: [a, b] — [c, d]
such that s’(f) > 0 forall t € [a,b] and v4 = 1o 0 S.
Equivalence classes: oriented curves in the complex plane.

Notation: [v].
s'(t) > 0: the path is traversed in the same direction for each of

the parametrizations 1 and v». If v : [a, b] — C then the
opposite pathis v~ (t) = vy(a+ b —t).

g



Definition

v1: (@ b] = Cand vs: [c,d] — C are equivalent if there is a
continuously differentiable bijective function s: [a, b] — [c, d]
such that s’(f) > 0 forall t € [a,b] and v4 = 1o 0 S.

Equivalence classes: oriented curves in the complex plane.
Notation: [v].

s'(t) > 0: the path is traversed in the same direction for each of
the parametrizations 1 and v». If v : [a, b] — C then the
opposite pathis v~ (t) = vy(a+ b —t).

Definition
If v: [a,b] — Cis a C' path then we define the length of ~ to be

b
() = / (b))t

Using the chain rule one sees that the length of a parametrized
path is also constant on equivalence classes of paths.



Definition

We will say a path v: [a, b] — C is piecewise C' if it is
continuous on [a, b] and the interval [a, b] can be divided into
subintervals on each of which v is C.

Sothereare a=ap < a; < ... < am= bsuchthaty, 4,15

C'.

R PN



Definition

We will say a path v: [a, b] — C is piecewise C' if it is
continuous on [a, b] and the interval [a, b] can be divided into
subintervals on each of which ~ is C'.

Sothereare a=ap < a; < ... < am= bsuchthaty, 4,15
C'.

Note: the left-hand and right-hand derivatives of v at a;

(1 <i< m-1) may not be equal.

A contour is a simple closed piece-wise C' path.



Definition

We will say a path v: [a, b] — C is piecewise C' if it is
continuous on [a, b] and the interval [a, b] can be divided into
subintervals on each of which v is C.

Sothereare a=ap < a; < ... < am= bsuchthaty, 4,15
C'.

Note: the left-hand and right-hand derivatives of v at a;

(1 <i< m-1) may not be equal.

A contour is a simple closed piece-wise C' path.

Two paths v¢: [a,b] — C and »: [¢, d] — C with v{(b) = ~2(c)
can be concatenated to give a path 4 x v, defined by

Yi*xy2(f) = 11(t), t € [a,b], y1x72(t) = y2(t—b+C), t € [b, d+b—C]

If v, ~v1,~» are piecewise C' then so are v~ and 4 x Y.

Ly, SN



Definition

We will say a path v: [a, b] — C is piecewise C' if it is
continuous on [a, b] and the interval [a, b] can be divided into
subintervals on each of which ~ is C'.

Sothereare a=ap < a; < ... < am= bsuchthaty, 4,15
C'.

Note: the left-hand and right-hand derivatives of v at a;

(1 <i< m-1) may not be equal.

A contour is a simple closed piece-wise C' path.

Two paths v¢: [a,b] — C and »: [¢, d] — C with v{(b) = ~2(c)
can be concatenated to give a path 4 x v, defined by

Yi*xy2(f) = 11(t), t € [a,b], y1x72(t) = y2(t—b+C), t € [b, d+b—C]

If v, ~v1,~» are piecewise C' then so are v~ and 4 x Y.

A piecewise C' path is precisely a finite concatenation of C!
paths.



We may define equivalence classes, reparametrisations, length
as before for piecewise C' paths.



We may define equivalence classes, reparametrisations, length
as before for piecewise C' paths.

Example: If a, b, ¢ € C, we define the triangle:
Tapc = Yab*Vb,c*Vc,a Where vy is the line segment joining

X,V.
b
4)/6(,1,, C




We may define equivalence classes, reparametrisations, length
as before for piecewise C' paths.

Example: If a, b, ¢ € C, we define the triangle:

Tab,c = Yab*Vb,c* Vc,a Where 7x  is the line segment joining
X, Y.

Recall the definition of Riemann integrable functions. We have
the following:

Lemma

Let [a, b] be a closed interval and S C |a, b| a finite set. If f is a
bounded continuous function (taking real or complex values) on
[a, b]\'S then it is Riemann integrable on [a, b].



We may define equivalence classes, reparametrisations, length
as before for piecewise C' paths.

Example: If a, b, ¢ € C, we define the triangle:

Tab,c = Yab*Vb,c* Vc,a Where 7x  is the line segment joining
X, Y.

Recall the definition of Riemann integrable functions. We have
the following:

Lemma

Let [a, b] be a closed interval and S C |a, b| a finite set. If f is a
bounded continuous function (taking real or complex values) on
[a, b]\'S then it is Riemann integrable on [a, b].

Proof.

Leta=xp < Xy < X2 < ... < X, = b be any partition of [a, b]
which includes the elements of S.

On each open interval (x;, X;+1) the function f is bounded and
continuous, and hence integrable.



We may define equivalence classes, reparametrisations, length
as before for piecewise C' paths.

Example: If a, b, ¢ € C, we define the triangle:

Tab,c = Yab*Vb,c* Vc,a Where 7x  is the line segment joining
X, Y.

Recall the definition of Riemann integrable functions. We have
the following:

Lemma

Let [a, b] be a closed interval and S C |a, b| a finite set. If f is a
bounded continuous function (taking real or complex values) on
[a, b]\'S then it is Riemann integrable on [a, b].

Proof.

Leta=xp < Xy < X2 < ... < X, = b be any partition of [a, b]
which includes the elements of S.

On each open interval (x;, X;+1) the function f is bounded and
continuous, and hence integrable.

By the definition of Riemann integrable functions f is integrable
on [a, b].



Integral along a path

« Co hwwoeS
Definition ¢
If v: [a, b] — C is a piecewise-C' path and f: C — C, then we
define the integral of f along ~ to be

b
[ 1@z = [ty et



Integral along a path

Definition
If v: [a, b] — C is a piecewise-C' path and f: C — C, then we
define the integral of f along ~ to be

b
/ f(z)dz = / F (D) (1)t

We note that if v is a concatenation of the C' paths 71, ..., vn
then [ f(z)dz = [ f(z)dz+ ..+ [ f(z)dz.



Example
Let v: [0,1] — C be the path (t) = exp(2xit) (a circle). Then

/z”dz:{&ﬂ if n=—1 [“(/-Z[\
8

0 otherwise



Example
Let v: [0,1] — C be the path (t) = exp(2xit) (a circle). Then

/z”dz:{ 2] |fn:.—1
Y 0 otherwise

Proof.

1 1
/ 2dz = /O (1) (1) dlt = /O exp(2rint) - (27 exp(2rit))dlt



Example
Let v: [0,1] — C be the path (t) = exp(2xit) (a circle). Then

/anzz{ 27| |fn:.—1
Y 0 otherwise

Proof.

1 1
/ 2dz = /O (1) (1) dlt = /O exp(2rint) - (27 exp(2rit))dlt

:27ri(/01 cos(2r(n + 1)t)dt+i/01 sin(2r(n + 1)t)at)



Example
Let v: [0,1] — C be the path (t) = exp(2xit) (a circle). Then

/anzz{ 2] |fn:.—1
Y 0 otherwise

Proof.

1 1
/ 2dz = /O (1) (1) dlt = /O exp(2rint) - (27 exp(2rit))dlt

:27ri(/01 cos(2r(n + 1)t)dt+i/01 sin(2r(n + 1)t)at)

/rsin(2m(n+ 1)t) .r—cos(2m(n+ 1)t)
= 2| 2r(n+1) Jo+i] 2r(n+1) Jo) =0

for n # —1.




Example
Let v: [0,1] — C be the path (t) = exp(2xit) (a circle). Then

/anzz{ 2] |fn:.—1
Y 0 otherwise

Proof.

1 1
/ 2dz = /O (1) (1) dlt = /O exp(2rint) - (27 exp(2rit))dlt

:27ri(/01 cos(2r(n + 1)t)dt+i/01 sin(2r(n + 1)t)at)

/rsin(2m(n+ 1)t) .r—cos(2m(n+ 1)t)
= 2| 2r(n+1) Jo+i] 2r(n+1) Jo) =0

for n # —1.
If n = —1 we get 2xi [ 1dt = 2xi.




Example
Turn

21
cos 0
0
/0 sin9+2d

Into an integral along a path.



Example
Turn

2T
/ .COSH 40
o Sinf—+2
Into an integral along a path.
Solution. We remark that if z = €'Y then

1 1
cosf = §(Z+ E)’ sinf =

1 1
52— )



Example
Turn

27
cos 6
ao
/0 sinf + 2
Into an integral along a path.

Solution. We remark that if z = e® then

1 1 _ 1 1
cosf = §(Z+ E)’ sinf = E(Z — E)

Let ~v: [0,27] — C be the path +(t) = €' (a circle). Then

1 1 2m
/. 12( +1Z) dz:/ - C.OSt ie"dt =
v 1Z(5:(z — 3)+2) o le'(sint+2)




Example
Turn

21
cos 0
0
/0 sin9+2d

Into an integral along a path.
Solution. We remark that if z = e then

1 1 _ 1 1
cosf = §(Z+ E)’ sinf = E(Z — E)

Let ~v: [0,27] — C be the path +(t) = €' (a circle). Then
1 1 2
5(2+3) B cost . .
/ iz(l(z— 1Z)+2)dz_/ ie’f(sint—|—2)lel at =
g 2i z 0

2m
t
:/ 0t
0 Slnt—|—2




Lemma
Ifv: [a, b] — C be a piecewise C' path and 7: [c,d] — C is an
equivalent path, then for any continuous function f: C — C we

have
/f(z)dz:[f(z)dz.

So the integral only depends on the oriented curve [v].



Lemma
Ifv: [a, b] — C be a piecewise C' path and 7: [c,d] — C is an
equivalent path, then for any continuous function f: C — C we

have
/f(z)dz:[f(z)dz.

So the integral only depends on the oriented curve [v].

Proof.

Since ¥ ~ v there is s: [c,d] — [a, b] with s(¢c) = a, s(d) = b
and s'(t) > 0, 7# = v o s. Suppose first that v is C'. Then by the
chain rule we have:



Lemma
Ifv: [a, b] — C be a piecewise C' path and 7: [c,d] — C is an
equivalent path, then for any continuous function f: C — C we

have
/f(z)dz:[f(z)dz.

So the integral only depends on the oriented curve [v].

Proof.

Since ¥ ~ v there is s: [c,d] — [a, b] with s(¢c) = a, s(d) = b
and s'(t) > 0, 7# = v o s. Suppose first that v is C'. Then by the
chain rule we have:

J< (2)dz = [ F((s(1))(v o s) ()t



Lemma
Ifv: [a, b] — C be a piecewise C' path and 7: [c,d] — C is an
equivalent path, then for any continuous function f: C — C we

have
/f(z)dz:[f(z)dz.

So the integral only depends on the oriented curve [v].

Proof.

Since ¥ ~ v there is s: [c,d] — [a, b] with s(¢c) = a, s(d) = b
and s'(t) > 0, &4 = v o s. Suppose first that v is C'. Then by the
chain rule we have:

J< (2)dz = [ F((s(1))(v o s) ()t

— fcd f(’Y(S(t))”}/(S(t))S/(t)dt S b S turion S= SG‘)
de = S'k) 0\‘\’



Lemma
Ifv: [a, b] — C be a piecewise C' path and 7: [c,d] — C is an
equivalent path, then for any continuous function f: C — C we

have
/f(z)dz:[f(z)dz.

So the integral only depends on the oriented curve [v].
Proof.

Since 4 ~ v thereis s: [c,d]| — [a, b] with s(¢c) = a, s(d) = b
and s'(t) > 0, 7# = v o s. Suppose first that v is C'. Then by the
chain rule we have:

J< (2)dz = [ F((s(1))(v o s) ()t
— [9F(y(s(1))Y (s(1))$'(t)dlt
= [2f(7(s))y/(s)ds



Lemma
Ifv: [a, b] — C be a piecewise C' path and 7: [c,d] — C is an
equivalent path, then for any continuous function f: C — C we

have
/f(z)dz:[f(z)dz.

So the integral only depends on the oriented curve [v].

Proof.

Since ¥ ~ v there is s: [c,d] — [a, b] with s(¢c) = a, s(d) = b
and s'(t) > 0, 7# = v o s. Suppose first that v is C'. Then by the
chain rule we have:

J< (2)dz = [ F((s(1))(v o s) ()t
— [9F(y(s(1))Y (s(1))$'(t)dlt

= [2f(7(s))Y(s)ds
= J, f(z)dz.



Ifa=xp <Xy <...<xp,=bsuchthat~is C'on [x;, xj11] we
have a corresponding decomposition of [c, d] given by the
points s~ 1(xp) < ... < s71(x,), and

J- f(2)dz = [7 f(v(s())¥(s(1))s (1)t



Ifa=xp <Xy <...<xp,=bsuchthat~is C'on [x;, xj11] we
have a corresponding decomposition of [c, d] given by the
points s~ (xo) <...< s (xp), and

f @ dz = 2 F(+(s(D)'(s(1) (1)t
= 00 S K (s (s(1)$ (e



Ifa=xp <Xy <...<xp,=bsuchthat~is C'on [x;, xj11] we
have a corresponding decomposition of [c, d] given by the
points s~ (xo) <...< s (xp), and

f f(z dz = 2 F(+(s(D)'(s(1) (1)t
= 00 S K (s (s(1)$ (e
= S0 S F(v(x)y (x)dx



Ifa=xp <Xy <...<xp,=bsuchthat~is C'on [x;, xj11] we
have a corresponding decomposition of [c, d] given by the
points s~ (xo) <...< s (xp), and

f f(z dz = J2 F(>(s(t)/(s(1))s (1)t
= 00 S K (s (s(1)$ (e
= Y0 S H(v(x)) (x)ax

— fa Fy(x))' (x)dx = [ f(z)dz



We define also the integral with respect to arc-length of a
function f: U — C such that v* C U to be

b
/ f(2) dz) = / F (1)1 ()]at.



We define also the integral with respect to arc-length of a
function f: U — C such that v* C U to be

b
/ f(2) dz) = / F (1)1 ()]at.

This integral is invariant with respect to C' reparametrizations
s: [c,d] — [a, b] if we require s'(t) # 0 for all t € [c, d]. Note
that in this case

Lf(z)\dz\ = A f(z)|dz|.



Properties of the integral



Properties of the integral
Let f,g: U — C be continuous functions on an open subset
U C Cand~,n: [a,b] — C be piecewise-C' paths whose
images lie in U. Then we have the following:
1. (Linearity): For o, 5 € C,

/(af(z) + 5g(z))dz = a/ f(z)dz + ﬁ/g(z)dz.

8
2. If v~ denotes the opposite path to ~ then

/f(z)dz = — /_ f(z)dz

3. (Additivity): If v % n is the concatenation of the paths ~, n in
U, we have

/* f(z)dz:/f(z)dz+/f(z)dz.

\ \ e
4. (Estimation Lemma.) We have leayth L

& Y
| f (z)dz| < sup |f(2)]-£(7).

zey*



Proof of 4.



Proof of 4.

b
[ @)z = | | awn o



Proof of 4.

b
[ @)z = | | awn o
b

< / () (D] dt



Proof of 4.

b
[ @)z = | | awn o
b

< / () (D] dt
a \___~

— 4 — b
< sup |f(Z)| | |7 (t)|dt
zZey* a




Proof of 4.

b
[ @)z = | | awn o
! b
< / (D)7 (1)t
b
< sup |f(2) / (b)) alt

zZey*

= sup |f(2)] - £(7).

zZey*




Proposition

Let f,: U — C be a sequence of continuous functions. Suppose
that v: [a, b] — U is a piecewise C' path. If (f,) converges
uniformly to a function f on the image of + then

/fn(Z)dZ%/f(Z)dZ.



Proposition

Let f,: U — C be a sequence of continuous functions. Suppose
that v: [a, b] — U is a piecewise C' path. If (f,) converges
uniformly to a function f on the image of + then

/fn(Z)dZ%/f(Z)dZ.

Proof. We have

f(z)dz — / fa(z)dz /(f(z) — fh(2))dz

sup {|f(z) — 1n(2)|}-£(7),

zZey*

IA

by the estimation lemma.



Proposition

Let f,: U — C be a sequence of continuous functions. Suppose
that v: [a, b] — U is a piecewise C' path. If (f,) converges
uniformly to a function f on the image of + then

/fn(Z)dZ%/f(Z)dZ.

Proof. We have

f(z)dz—/fn(z)dz

/(f(z) — fr(2))dz

< sup{|f(z) — fa(2)|}.4(7),

zZey*

by the estimation lemma.

sup{|f(z) — fr(2)| : z € v*} — 0 as n — oo which implies the
result.



Let’s say
> a2
n=1

converges on B(0, R). Then convergence is uniform on B(0, r)
for r < R. So if v is a piecewise C' path in B(0, r) we have



Let’s say
> a2
n=1

converges on B(0, R). Then convergence is uniform on B(0, r)
for r < R. So if v is a piecewise C' path in B(0, r) we have

N 00
/Zanz”dz — /Zanz”dz
v n=1

n=1 i
SO



Let’s say
> a2
n=1

converges on B(0, R). Then convergence is uniform on B(0, r)
for r < R. So if v is a piecewise C' path in B(0, r) we have

N 00

/Zanz”dz—> /Zanz”dz
y

n=1 7 n=1

S0 \

N
Z/anz”dZﬁ /Zanz”dz
Y

—1 7 n=1

S

in other words we can interchange >, |:



Let’s say
> a2
n=1

converges on B(0, R). Then convergence is uniform on B(0, r)
for r < R. So if v is a piecewise C' path in B(0, r) we have

N 00
/Zanz”dz — /Zanz”dz
v n=1

n=1 i
SO

N 00
Z/anz”dZﬁ /Zanz”dz
n=1""7 7 n=1

in other words we|can interchange >, |:

0. @) 0. @)
Z/anz”dz: /Zanz”dz
n=1v"7 7 n=1



Definition

Let U C C be anopensetandlet f: U — C be a continuous
function. If there exists a differentiable function F: U — C with
F'(z) = f(z) then we say F is a primitive for f on U.



Definition

Let U C C be anopensetandlet f: U — C be a continuous
function. If there exists a differentiable function F: U — C with
F'(z) = f(z) then we say F is a primitive for f on U.

Theorem
(Fundamental theorem of Calculus): Let U C C be a open and

let f: U— C be a continuous function. If F: U — C is a
primitive for f and ~: [a, b] — U is a piecewise C' path in U
then we have

/ f(z)dz = F(+(b)) — F(~(a)).

In particular the integral of such a function f around any closed
path is zero.



Proof.
First suppose that v is C'. Then we have

L f(2)dz = [y F(2)dz = /a " F () (Dot



Proof.
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Proof.
First suppose that v is C'. Then we have

L f(2)dz = [y F(2)dz = /a " F () (Dot

/ C(Fo(t)at = F(3(b)) ~ F(5(a)

If ~ is only piecewise C', then take a partition
a=4y<a; <...<ax=bsuchthat~is C' on [a;, ;4] for

eachje {0,1,...,k —1}. Then we obtain a telescoping sum:
b k-1 aj41
[ 1@ = [ e ma =3 [ oy b
Y a j—0 7 @i

k—1
= (F(v(ai+1)) — F(v(a))) = F(v(b)) — F(~(a))
i=0



Proof.
First suppose that v is C'. Then we have

L f(2)dz = [y F(2)dz = /a " F () (Dot

/ C(Fo(t)at = F(3(b)) ~ F(5(a)

If ~ is only piecewise C', then take a partition
a=4y<a; <...<ax=bsuchthat~is C' on [a;, ;4] for

eachje {0,1,...,k —1}. Then we obtain a telescoping sum:
b k-1 aj41
[ 1@ = [ e ma =3 [ oy b
Y a j—0 7 @i

k—1
= (F(v(ai+1)) — F(v(a))) = F(v(b)) — F(~(a))
i=0

Finally, v is closed iff v(a) = v(b) so the integral of f along a
closed path is zero.



Corollary

Let U be a domain and let f: U — C be a function with
f'(z) =0 forall z € U. Then f is constant.
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Corollary

Let U be a domain and let f: U — C be a function with
f'(z) =0 forall z € U. Then f is constant.

Proof.
Pick zy € U. Since U is path-connected, if w € U, we may find

a piecewise C'-path v: [0,1] — U such that v(0) = z and
v(1) = w. Then by the previous Theorem

f(w) — f(z9) = / f'(z)dz = 0, \J

v

so that f is constant. []
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Solution. For n # —1, (z — a)" has a primitive



Example
Let v: [0,1] — C be a closed curve such that a ¢ v*. Show that

/(z—a)”dz:Oforn;é—L
Y

Solution. For n # —1, (z — a)" has a primitive (Z;j)1n+1 so by the

FTC

/(z—a)”dz:o.



Example
Let v: [0,1] — C be a closed curve such that a ¢ v*. Show that

/(z—a)”dz:Oforn;é—L
Y

Solution. For n # —1, (z — a)" has a primitive (Z;ﬂm so by the
FTC

/(z—a)”dz:o.

Theorem

If U is adomain and f: U — C is a continuous function such
that for any closed path in U we have | f(z)dz = O, then f has
a primitive. /\ o
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Proof.

Fix zo in U, and for any z € U set F(z) = [ f(z)dz.
where v: [a, b] — U with v(a) = zy and v(b) = z.
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where v: [a, b] — U with v(a) = zp and ~(b) = z.

F(z) is independent of the choice of ~: Y,
Suppose v1, 2 are two paths joining zp, z. §2
The path v = v¢ x v, is closed so > >
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Fix zo in U, and for any z € U set F(z) = [ f(z)dz.
where v: [a, b] — U with v(a) = zp and ~(b) = z.
F(z) is independent of the choice of ~:

Suppose v1, 2 are two paths joining zp, z.
The path v = v¢ x v, is closed so
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Claim: F is differentiable and F'(z) = f(z).
Fix w € U and € > 0 such that B(w, ¢) C U and choose a path

v: [a, b] — U from zy to w.




Proof.

Fix zo in U, and for any z € U set F(z) = [ f(z)dz.
where v: [a, b] — U with v(a) = zy and v(b) = z.
F(z) is independent of the choice of ~:

Suppose v1, 2 are two paths joining zp, z.
The path v = v¢ x v, is closed so

O:/f(z)dz:/ f(z)dz+/_ f(z)dz:/ f(z)dz—/ f(z)dz.

Claim: F is differentiable and F'(z) = f(z).

Fix w € U and € > 0 such that B(w, ¢) C U and choose a path
v: [a, b] — U from zy to w.

If z; € B(w, ¢) C U, then the concatenation of ~ with the
straight-line path s: [0,1] — U given by

s(t) = w+ t(zy — w) from w to z is a path v from zg to z;. It
follows that



F(Z1)—F(W):/ f(z)dz—/f(z)dz

1

)',:B*S



F(zy) — F(w) = /% f(z)dz — L f(z)dz
— (/ f(z)dz+/3f(z)dz)—/f(z)dz

3 "

¥



F(zy) — F(W):/ f(z)dz — /f(z )az

= (/ f(2) dz+/f(z)dz / (z)dz
/Sf(z)dz



F(zy) — F(w) = /% f(z)dz — [y f(z)dz
— (/ f(z)dz+/sf(z)dz)—/f(z)dz

so for zy # w L

F(z1) - Fw) 1

Z1 — W Z1 — W

(/1 (W + t(zy — w))(zy — w)dt |,
0

_ wet (2

G @)
s'(*): Z,- W



F(zy) — F(w) = [H f(z)dz — [y f(z)dz
— (/ f(z)dz+/sf(z)dz)—/f(z)dz

:/f(z)dz.
so for zy # w )

o7 1 ;
F(z;)_{/—'v(w) - 1 . (/O (W + t(z; W))(é‘//w)dt>

F(z1) — F(w)

Z1 — W

1
— f(W)‘ = </o flw+ t(zy — W))dt) — f(w)




F(zy) — F(w) = [H f(z)dz — [y f(z)dz
— (/ f(z)dz+/sf(z)dz)—/f(z)dz

:/f(z)dz.
so for zy # w )

F(z1) — F(w) _ 1 (/1 fw - Hzy — w))(z, W)df)
| 0

Z1 — W | Z1 — W

F(z1) — F(w)

Z1 — W

1
— f(W)‘ = </o flw+ t(zy — W))dt) — f(w)

— /01(f(w+ t(zy — w)) — f(w))dt




F(zy) — F(w) = [H f(z)dz — [y f(z)dz
— (/ f(z)dz+/sf(z)dz)—/f(z)dz

:/f(z)dz.
so for zy # w )

F(zi) - F(w) 1 (/1 f(w+t(zy — w))(z1 — W)dt> |
0

Zi — W =W

F(z1) — F(w)

Z1 — W

1
— f(W)‘ = </o flw+ t(zy — W))dt) — f(w)

— /01(f(w+ t(zy — w)) — f(w))dt

< sup |[f(Ww+t(zy —w))—f(w)
te[0,1]




F(zy) — F(w) = [H f(z)dz — [y f(z)dz
— (/ f(z)dz+/sf(z)dz)—/f(z)dz

:/f(z)dz.
so for zy # w )

F(z1) - F(w) _ 1 (/1 f(w + t(zy — w))(z4 — W)dt)
| 0

Z1 — W Z1 — W

F(z1) — F(w)

1
— f(W)‘ = </o flw+ t(zy — W))dt) — f(w)

Z1 — W

)

— /01(f(w+ t(zy — w)) — f(w))dt

< sup |[f(Ww+t(zy —w))—f(w)
te[0,1]

—0aszy - w
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on C~.

If v: [0,1] — C is the path ~(t) = exp(2xit) (a circle)
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L f(2)dz = /0 Fv ()Y (D)t = /O exp(;ﬂt)-(2wiexp(2wit))dt:27T/.
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Let f: C* — C*, f(z) = 1/z. Then f does not have a primitive
on C~.

If v: [0,1] — C is the path ~(t) = exp(2xit) (a circle)

1 1
L f(2)dz = /0 Fv ()Y (D)t = /O exp(;ﬂt)-(2wiexp(2wit))dt:27T/.

Say F'(z) = f(z). Then by the FTC

J, f(z)dz = F(v(1)) — F(7(0)) = F(1) - F(1) =0, a
contradiction.
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on C~.
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Say F'(z) = f(z). Then by the FTC
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Remark: 1/z does have a primitive on any domain D where we
can chose a branch of [Log(z)]:



Example

Let f: C* — C*, f(z) = 1/z. Then f does not have a primitive
on C~.

If v: [0,1] — C is the path ~(t) = exp(2xit) (a circle)

1 1
L f(2)dz = /0 Fv ()Y (D)t = /O exp(;ﬂt)-(2wiexp(2wit))dt:27T/.

Say F'(z) = f(z). Then by the FTC

J, f(z)dz = F(v(1)) — F(7(0)) = F(1) - F(1) =0, a
contradiction.

Remark: 1/z does have a primitive on any domain D where we
can chose a branch of [Log(z)]:
If we have et(?) = z on D by the chain rule

exp(L(2))-L'(z)=1=L'(2z)=1/z
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Cauchy’s theorem

Cauchy’s theorem states roughly thatif f: U — C is
holomorphic and ~ is a closed path in U whose interior lies
entirely in U then A pach

/ f(z)dz = 0.
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Cauchy’s theorem states roughly thatif f: U — C is
holomorphic and ~ is a closed path in U whose interior lies

entirely in U then
/ f(z)dz = 0.
Y

This is the single most important theorem of the course. Almost
all important facts about holomorphic functions follow from it.
Sample applications:

1. If f is holomorphic then it is C! and in fact infinitely
differentiable.

2. If f: C — Cis holomorphic and bounded then it is constant.
3. The fundamental theorem of algebra

4. etc etc



Cauchy’s theorem

Cauchy’s theorem states roughly thatif f: U — C is
holomorphic and ~ is a closed path in U whose interior lies

entirely in U then
/ f(z)dz = 0.
Y

This is the single most important theorem of the course. Almost
all important facts about holomorphic functions follow from it.
Sample applications:

1. If f is holomorphic then it is C! and in fact infinitely
differentiable.

2. If f: C — Cis holomorphic and bounded then it is constant.
3. The fundamental theorem of algebra

4. etc etc

For most of our applications we will need a simpler case of the
theorem for starlike domains. We defer the discussion of the
general case to later lectures.



Definition

A triangle or triangular path T is a path of the form ~¢ x y2 x 3
where v¢(t) = a+ t(b— a), y»(t) = b+ t(c — b) and

v3(t) = c+t(a— c) where t € [0,1] and a, b, ¢ € C. (Note that if
{a, b, c} are collinear, then T is a degenerate triangle.) That is,
T traverses the boundary of the triangle with vertices

a, b, c € C. The solid triangle 7 bounded by T is the region

T 3
/7\ T:{t1a—|—t2b+t303ti6[071]>Zti:1}7
C i=1

CA

with the points in the interior of 7 corresponding to the points
with t; > 0 for each i € {1,2,3}. We will denote by [a, b] the line
segment {a+ t(b— a) : t € [0, 1]}, the side of T joining vertex a
to vertex b. When we need to specify the vertices a, b, ¢ of a
triangle T, we will write T, p .



Theorem

(Cauchy’s theorem for a triangle): Suppose that U C C is an
open subset and let T C U be a triangle whose interior is
entirely contained in U. Then if f: U — C is holomorphic we

/Tf(z)dz =0

have




Theorem

(Cauchy’s theorem for a triangle): Suppose that U C C is an
open subset and let T C U be a triangle whose interior is
entirely contained in U. Then if f: U — C is holomorphic we

have
/ f(Z)O'Z =0
-

Idea of proof. 1. f(z) = f(Z9) + f(20)(z — 20) + (z — 20)¥(2).
So if v is ‘small’ close to z;

J, f(z)dz = | (z — z0)1(z)dz which by the estimation lemma
and since ¢(z) — 0, is much smaller than length(~).



Theorem

(Cauchy’s theorem for a triangle): Suppose that U C C is an
open subset and let T C U be a triangle whose interior is
entirely contained in U. Then if f: U — C is holomorphic we

have
/ f(Z)O'Z =0
-

Idea of proof. 1. f(z) = f(Z9) + f(20)(z — 20) + (z — 20)¥(2).
So if v is ‘small’ close to z;

J, f(z)dz = | (z — z0)1(z)dz which by the estimation lemma
and since ¢(z) — 0, is much smaller than length(~).

2. Assuming that / = | [ f(z)dz| # 0 we will subdivide T into 4
smaller triangles and represent the integral as sum of the
integrals on the smaller triangles. One of the integrals of the
smaller triangles will be at least //4. We will keep subdividing
till we get a very small triangle where by part 1 the integral will
be smaller than expected, contradiction.



Suppose | = | |+ f(z)dz| > 0. We build a sequence of smaller
and smaller triangles T", as follows: Let T° = T, and suppose
that we have constructed T' for 0 < i < k. Then take the
triangle T%~' and join the midpoints of the edges to form four
smaller triangles, which we will denote S; (1 </ < 4).

Then Iy = [t f(2)dz = 314 [5 f(2)dz, since the integrals
around the interior edges cancel.



Suppose | = | |+ f(z)dz| > 0. We build a sequence of smaller
and smaller triangles T", as follows: Let T° = T, and suppose
that we have constructed T' for 0 < i < k. Then take the
triangle T%~' and join the midpoints of the edges to form four
smaller triangles, which we will denote S; (1 </ < 4).

Then Iy = [t f(2)dz = 314 [5 f(2)dz, since the integrals
around the interior edges cancel.

Figure: Subdivision of a triangle



Ik—1 = [7x-1 f(2)dz] < ST | s f(2)dz], so that for some / we
must have | [ f(z)dz| > l_1/4. Set T* to be this triangle S;.
Then by induction we see that ¢(TX) = 2=%¢(T) while I, > 47/,



k1 =| [ F(2)dz] < 327, | s f(2)dz], so that for some / we
must have | [ f(z)dz| > l_1/4. Set T* to be this triangle S;.
Then by induction we see that ¢(TX) = 2=%¢(T) while I, > 47/,

Let 7% be the solid triangle with boundary TX. The sets 7 are
nested and their diameter tends to 0, so there is a unique point
Zp, lying in all of them.
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Ik—1 = [7x-1 f(2)dz] < ST | s f(2)dz], so that for some / we
must have | [ f(z)dz| > l_1/4. Set T* to be this triangle S;.
Then by induction we see that ¢(TX) = 2=%¢(T) while I, > 47/,

Let 7% be the solid triangle with boundary TX. The sets 7 are
nested and their diameter tends to 0, so there is a unique point
Zp, lying in all of them.

f(z) = f(20) + f'(20)(Z2 — 20) + (2 — 20)¥(2),

where ¢(z) — 0 = Y(zy) as z — Zp.



f(z)dz = / (z — zp)Y(2)dz
Tk Tk

and if zis on T, we have |z — zy| < diam(7*) = 2= kdiam(T).



f(z)dz = / (z — zp)Y(2)dz
Tk Tk

and if zis on T, we have |z — zy| < diam(7*) = 2= kdiam(T).
Let nx = sup,c 7« [1(Z)|. By the estimation lemma:



f(z)dz = / (z — zp)Y(2)dz
Tk Tk

and if zis on T*, we have |z — z5| < diam(T*) = 2"¥diam(T).
Let nx = sup,c 7« [1(Z)|. By the estimation lemma:

o= | /T (2= 20)0(2)dz]| < i - diam(TF)L(TH)



f(z)dz = / (z — zp)Y(2)dz
Tk Tk

and if zis on T, we have |z — zy| < diam(7*) = 2= kdiam(T).
Let nx = sup,c 7« [1(Z)|. By the estimation lemma:

Ik = | /Tk(z — 20)¥(2)dz| < ny - diam(T*)¢(T)
= 4 Ky, - diam(T) - ¢(T).

—
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Vi
f(z)dz = / (z — z0)(2)dz 15
Tk Tk

and if zis on T, we have |z — zy| < diam(7*) = 2-kdiam(T)
Let nx = sup,c 7« [1(Z)|. By the estimation lemma:

Ik = | /Tk(z — 20)Y(2)dz| < n - diam(TX)e(TX)
= 4= kp, . diam(T) - ¢(T).

So 4], — 0 as k — oo. On the other hand, by construction
Iy > 1/4% = 4K, > | > 0, contradiction.

[ ]



Definition

Let X be a subset in C. We say that X is convex if for each

z,w € U the line segment between z and w is contained in X.
We say that X is star-like if there is a point z; € X such that for
every w € X the line segment [zy, w] joining zg and w lies in X.
We will say that X is star-like with respect to z; in this case.
Thus a convex subset is thus starlike with respect to every point

It contains.
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Definition

Let X be a subset in C. We say that X is convex if for each
z,w € U the line segment between z and w is contained in X.
We say that X is star-like if there is a point z; € X such that for
every w € X the line segment [zy, w] joining zg and w lies in X.
We will say that X is star-like with respect to z; in this case.
Thus a convex subset is thus starlike with respect to every point
It contains.

Example. A disk (open or closed) is convex, as is a solid
triangle or rectangle. On the other hand the union of the
xy-axes Is starlike with respect to 0 but not convex.
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Definition

Let X be a subset in C. We say that X is convex if for each
z,w € U the line segment between z and w is contained in X.
We say that X is star-like if there is a point z; € X such that for
every w € X the line segment [zy, w] joining zg and w lies in X.
We will say that X is star-like with respect to z; in this case.
Thus a convex subset is thus starlike with respect to every point
It contains.

Example. A disk (open or closed) is convex, as is a solid
triangle or rectangle. On the other hand the union of the
xy-axes is starlike with respect to 0 but not convex.

Theorem

(Cauchy's theorem for a star-like domain): Let U be a star-like
domain. Then iff: U — C is holomorphic and ~: [a,b] — U is a
closed path in U we have

/ f(z)dz = 0.
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Proof. It suffices to show that f has a primitive in U.
Let zg € U such that forevery z € U, v, = z + t(z — z9),
t € [0,1] is contained in U. We claim that

F(z) = / [(C)dc



Proof. It suffices to show that f has a primitive in U.
Let zg € U such that forevery z € U, v, = z + t(z — z9),
t € [0,1] is contained in U. We claim that

F(z) = / [(C)dc

is a primitive for fon U. Lete > 0s.t. B(z,¢) C U. If w € B(z,¢)
the triangle T with vertices zp, z, w lies entirely in U so by
Cauchy’s thm for triangles [+ f(¢)d¢ = 0.
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Proof. It suffices to show that f has a primitive in U.
Let zg € U such that forevery z € U, v, = z + t(z — z9),
t € [0,1] is contained in U. We claim that

F(z) = / [(C)dc

is a primitive for fon U. Lete > 0s.t. B(z,¢) C U. If w € B(z,¢)
the triangle T with vertices zp, z, w lies entirely in U so by
Cauchy’s thm for triangles [+ f(¢)d¢ = 0.
soifn(t)=w+tz—w), te]0,1] we have
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Proof. It suffices to show that f has a primitive in U.
Let zg € U such that for every z € U, v, = Zy + t(z — Zp),
t € [0,1] is contained in U. We claim that

F(z) = / [(C)dc

is a primitive for fon U. Lete > 0s.t. B(z,¢) C U. If w e B(z,¢)
the triangle T with vertices zp, z, w lies entirely in U so by
Cauchy’s thm for triangles [+ f(¢)d¢ = 0.
soifn(t)=w+tz—w), te]0,1] we have

Z— W Z— W

1 1
= ‘/o f(w+t(z—w))dt—f(z)| = ‘/o (f(w—+t(z—w))—f(z)dt
A3 == i



Proof. It suffices to show that f has a primitive in U.
Let zg € U such that for every z € U, v, = Zy + t(z — Zp),
t € [0,1] is contained in U. We claim that

F(z) = / [(C)dc

is a primitive for fon U. Lete > 0s.t. B(z,¢) C U. If w e B(z,¢)
the triangle T with vertices zp, z, w lies entirely in U so by
Cauchy’s thm for triangles [+ f(¢)d¢ = 0.
soifn(t)=w+tz—w), te]0,1] we have

Z— W Z— W

1 1
= ‘/o f(w+t(z—w))dt—f(z)| = ‘/o (f(w—+t(z—w))—f(z)dt

< sup |[f(w+tz—w))—1f(z))] > 0asw— z.
te[0,1]
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To prove Cauchy’s integral formula we will need to show that
Cauchy’s Theorem applies to slightly more general domains
than star-like.



Cauchy’s Integral formula
To prove Cauchy’s integral formula we will need to show that
Cauchy’s Theorem applies to slightly more general domains
than star-like.

Definition
We say that a domain D C C is primitive if any holomorphic
function f: D — C has a primitive in D.
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To prove Cauchy’s integral formula we will need to show that
Cauchy’s Theorem applies to slightly more general domains
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We say that a domain D C C is primitive if any holomorphic
function f: D — C has a primitive in D.

For example we have shown that all star-like domains are
primitive.
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Cauchy’s Integral formula
To prove Cauchy’s integral formula we will need to show that

Cauchy’s Theorem applies to slightly more general domains
than star-like.

Definition
We say that a domain D C C is primitive if any holomorphic
function f: D — C has a primitive in D.

For example we have shown that all star-like domains are
primitive.

Lemma
Suppose that Dy and D> are primitive domains and Dy N D> is
connected. Then Dy U D5 is primitive.

Example
The union of two open intersecting half-discs D¢, D> of a disc
B(0, r) is primitive.

Indeed each Dy, D> are convex, so they are primitive. D1 N D> is
connected so by the lemma Dy U D> is primitive.
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Proof.
Let f: Dy U D> — C be a holomorphic function.

Then fp,, fp, have primitives F+, F> say.

Since F; — F> has zero derivative on Dy N D>, and as Dy N D5 is
connected it follows F1 — F> = con Dy N D-.

If F: Dy UD, — Cis adefinedto be F{ on Dy and F> + ¢ on D>
then F is a primitive for f on Dy U Do. ]

We will need the following simple calculation: Let v = y(a, r) be
the path t — a+ re®™". We have then

1 1 1 | | |
/7 z-a" " /o exp(2mit) (27 exp(2rit))dt = 2l



Theorem

(Cauchy’s Integral Formula.) Suppose thatf: U — C is a

holomorphic function on an open set U which contains the disc
B(a,r). Then for all w € B(a, r) we have

f(w) = i/ "(2) 4

2] v Z—W

where ~ is the path t — a + re®*™ .
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Proof. The proof has two steps. In the first step we show that
we can replace the integral over v with an integral over an
arbitrarily small circle v(w, ¢) centered at w. In the second step
we show, using the estimation lemma that this integral is equal

to f(w).



Theorem

(Cauchy’s Integral Formula.) Suppose thatf: U — C is a
holomorphic function on an open set U which contains the disc
B(a, r). Then for all w € B(a, r) we have

f(w) = i/ "(2) 4

2] v Z—W

where ~ is the path t — a + re®*™ .

Proof. The proof has two steps. In the first step we show that
we can replace the integral over v with an integral over an
arbitrarily small circle v(w, ¢) centered at w. In the second step
we show, using the estimation lemma that this integral is equal
to f(w).

Consider a circle v(w, €) centered at w and contained in

B(a, r). Pick two anti-diametric points on v(w, ¢) and join them
by straight segments to points on ~.



We use the contours 'y and ', each consisting of 2 semicircles
and two segments and we note that the contributions of line
segments cancel out to give:



We use the contours 'y and ', each consisting of 2 semicircles
and two segments and we note that the contributions of line
segments cancel out to give:
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/
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each of 'y, I, lies in a primitive domain in which f(z)/(z — w) is
holomorphic
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each of I'1, 2 lies in a primitive domain in which 7(z)/(z — w) is
holomorphic

SO T / (2) az = L / f(_z) az.
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each of I'1, 2 lies in a primitive domain in which 7(z)/(z — w) is
holomorphic

SO T / (2) az = L / f(_z) az.
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/ (2) az+ / (2) az = / (2) az— / (2) az.
- W p<— W v(ar) 4= W y(we) £ — W

each of I'1, 2 lies in a primitive domain in which 7(z)/(z — w) is
holomorphic

SO T / (2) az = L / f(_z) az.

271 Jyary Z— W 27l

1 / f(z) dz:i./ f(z)—f(w)dZer/ dz

2ni (we) Z— W 211 Jy(we) Z— W 211 Jywe) Z— W
_ 1 "(2) = W) 4+ few)
2Tl zZ—Ww



Since f is complex differentiable at z = w, the term
(f(z) — f(w))/(z — w) is bounded as ¢ — 0, so that by the
estimation lemma its integral over ~(w, ¢) tends to zero.
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Since f is complex differentiable at z = w, the term
(f(z) — f(w))/(z — w) is bounded as ¢ — 0, so that by the
estimation lemma its integral over ~(w, ¢) tends to zero.

However ﬂo
+f(w):i/ "(2) 4,

271 v(a,r) Z — W

which does not depend on e.

It follows that

1 f(z)—f
211 Jy(wey Z— W

and

f(w) = L / (2) dz.

2—7'('i v(a,r) Z — W



Definition

If f: U — Cis a function on an open subset U of C, then we say
that f is analytic on U if for every z; € C there is an r > 0 with
B(zy, r) C U such that there is a power series Y32, ax(z — zp)¥
with radius of convergence at least r and

f(z) = > %2 ak(z — zo)¥. An analytic function is holomorphic,
as any power series is (infinitely) complex differentiable.
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may assume z; = 0.



Definition

If f: U — Cis a function on an open subset U of C, then we say
that f is analytic on U if for every z; € C there is an r > 0 with
B(zy, r) C U such that there is a power series Y32, ax(z — zp)¥
with radius of convergence at least r and

f(z) = > %2 ak(z — zo)¥. An analytic function is holomorphic,
as any power series is (infinitely) complex differentiable.

Theorem
Suppose that f: U — C is a holomorphic function defined on an
open set U. Then f is analytic.

Proof. We will show that for each zy € U we can find a disk
B(zy, €) within which f(w) is given by a power series in
(w — zp). Replacing f(w) by g(w) = f(w + z) if necessary we

may assume z; = 0. X
We will use the integral expression f(w) = 5= Jyzon) 12) gz,




1
Z—W

The idea is that we can expand = 1(1 —w/z)~" as power

series when |w/z| < 1, so



1 1 -
=11 -w/z)"" as power

series when |w/z| < 1, so

DTz nz;)f(z)<w/z>” nZOf(QJV :




1 _ 1 —1
. — = (1 —w/z)~" as power
series when |w/z| < 1, so

f(2)
zZ—w

f(z)(1—W/Z) 1 Zf(z)(w/z)n Zf(Z)Wn

Zn-|—1
n=0 n=0

Let r be such that B(0,r) c U. Let v = ~(0, r). We will show
that the function is analytic for w € B(0,r/2).
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series when |w/z| < 1, so

DTz nzof(z)<w/z>” HZO“QJV :

Let r be such that B(0,r) c U. Let v = ~(0, r). We will show
that the function is analytic for w € B(0,r/2).

We claim that the last series, seen as a function of z,

converges uniformly on ~*.
\696



1 _ 1 —1
. — = (1 —w/z)~" as power
series when |w/z| < 1, so

f(2) f(Z)
zZ—-w

1wz =3 "z

n=0

Let r be such that B(0,r) c U. Let v = ~(0, r). We will show
that the function is analytic for w € B(0,r/2).

We claim that the last series, seen as a function of z,
converges uniformly on ~*.
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1 1 -
=11 -w/z)"" as power

series when |w/z| < 1, so

f(Z) f(Z)(_I —W/Z) 1 Zf(z)(w/z)n Zf(Z)Wn

Z—W Zn+1
n=0 n=0

Let r be such that B(0,r) c U. Let v = ~(0, r). We will show
that the function is analytic for w € B(0,r/2).

We claim that the last series, seen as a function of z,
converges uniformly on ~*.

Since v* is compact, M = sup{|f(z)| : z € v*} is finite. We
apply Weilerstrass M-test:

f(z) - wh /2™ = |f(2)]|2| 7T |w/ 2" < g7 (1/2)", ¥z e,



Uniform convergence implies that for all w € B(0, r) we have

1 / f(2) dz ) wh — 1 f(z)dz — f(w)
nEZ:o 2ri /., Zn+1 2 L Z—W -

hence f(w) is given by a power series in B(O’Z)'



Uniform convergence implies that for all w € B(0, r) we have

TN A
=/ 1 f(2) d; i 1 [ f(2)dz _ f(w)
Z 2_7ri/z”4r1 27 ), z—w
n=0 v
hence f(w) is given by a power series in B(O,/Z).
{LCCLa
N
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Uniform convergence implies that for all w € B(0, r) we have
=/ 1 f(2) _ f(z)dz
Z(Zﬂ/zn+1dz>w 2ni ), z—w =1w)
n=0 v Y

hence f(w) is given by a power series in B(0, r).

Remark. If zg # 0 then the formula above applies to
g(w) = f(w + z5) and we obtain:

> 1 / f(z+ zp) .
— dz | w' = Ff(w+ Z

n=0

and setting u = w + zp and substituting v = z + z; in the
Integral we get

=~ (1 f .

n=0




Corollary

(Taylor Series Expansion) Iff: U — C is holomorphic on an
open set U, then for any zy € U, and for any open disc B(zy, r)
centred at zy and lying in U we have the Taylor series
expansion

f(2) = an(z - z))"
n=0



Corollary

(Taylor Series Expansion) Iff: U — C is holomorphic on an
open set U, then for any zy € U, and for any open disc B(zy, r)
centred at zy and lying in U we have the Taylor series
expansion

00 o)
f(2) =3 an(z — 2)" L
n=0

_ 1 f(z)
27l v(a,r) (Z — Z())'H_1

Moreover an dz

foranyac C, r € R.g with zy € B(a, r), and we obtain the
Cauchy Integral Formulas for the derivatives of f at zj:

(M (5 — M f(2)
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For the first part note that we have shown it for sufficiently small
r.
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z € v(Zp, r) which was all we needed in the previous proof in
order to get a power series expression of f(w).
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For the first part note that we have shown it for sufficiently small

r. However note that if B(zp, r) C U thenif w € B(zy, r) we
have that w € B(Zzy, r — ¢) for some ¢ > 0.

In particular there is m < 1 such that |w/z| < m < 1 for any
z € v(Zp, r) which was all we needed in the previous proof in
order to get a power series expression of f(w).

For the second part note that

1 f(z) 1 / f(z)
— dz = P dz
27l Jo(ar) (Z — Zg)"H 270 Jo(z0.my) (Z — Zg)

where r; < ris such that B(zy,r1) C B(a,r).
This follows exactly as in the proof of Cauchy’s integral formula.

For the last part note that (") (zy) = nla,. (]
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Winding numbers

Let v: [0,1] — C closed path which does not pass through 0.
We will give a rigorous definition of the number of times v “goes
around the origin”.
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Winding numbers

Let v: [0,1] — C closed path which does not pass through 0.
We will give a rigorous definition of the number of times v “goes
around the origin”.

The problem is arg z is not continuous on C*!

Recall: In any half plane we can define a holomorphic branch
of [Logz|, say L(z), so in any half plane we may define
arg z = 3(L(2)).

Proposition

Let~:[0,1] — C\{O} be a path. Then there is continuous
function a: [0, 1] — R such that

Y(t) = (1)

Moreover, if a and b are two such functions, then there exists
n € 7 such that a(t) = b(t) + n for all t € [0, 1].



Proof.
By replacing ~(t) with v(t)/|v(t)| we may assume that
v(f)] = 1 for all t.



Proof.
By replacing ~(t) with v(t)/|v(t)| we may assume that
v(f)] = 1 for all t.

~v is uniformly continuous, so 36 > 0 such that |v(s) — ~(t)| < 1
for any s, t with |s — t| < §.
(5
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Proof.
By replacing ~(t) with v(t)/|v(t)| we may assume that
v(t)] = 1 for all t.

~v is uniformly continuous, so 36 > 0 such that |v(s) — ~(t)| < 1
for any s, t with |s — t| < §.

Choose ne€ N,n > 1/4. Then on each subinterval
[i/n,(i+1)/n] we have |y(s) — ~(t)| < 1.

On any half-plane in C we may define a holomorphic branch of
[Log(z)] so may define a continuous arg z.

if |z1| =|z2| =1 and |z;y — 23| < 1, then the angle between z;
and z is less than 7 /2. It follows there exists continuous

aj: [j/n,(j+1)/n] — R such that v(t) = e?m13(1) \6@-\)
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Proof.
By replacing ~(t) with v(t)/|v(t)| we may assume that
v(f)] = 1 for all t.

~v is uniformly continuous, so 36 > 0 such that |v(s) — ~(t)| < 1
for any s, t with |s — t| < §.

Choose ne€ N,n > 1/4. Then on each subinterval
[i/n,(i+1)/n] we have |y(s) — ~(t)| < 1.

On any half-plane in C we may define a holomorphic branch of
[Log(z)] so may define a continuous arg z.

if |z1| =|z2| =1 and |z;y — 23| < 1, then the angle between z;
and z; is less than /2. It follows there exists continuous

a;: [j/n,(j+1)/n] — R such that ~(t) = ™0,

Since e2™&U/" = 281U/ g, 4(j/n) and &;(j/n) differ by an
integer. Thus we can successively adjust the g; for j > 1 by an

integer to obtain a continuous a: [0, 1] — C such that
7(1‘) _ eZwia(t)_



Proof.
By replacing ~(t) with v(t)/|v(t)| we may assume that
v(f)] = 1 for all t.

~v is uniformly continuous, so 36 > 0 such that |v(s) — ~(t)| < 1
for any s, t with |s — t| < §.

Choose ne€ N,n > 1/4. Then on each subinterval
[i/n,(i+1)/n] we have |y(s) — ~(t)| < 1.

On any half-plane in C we may define a holomorphic branch of
[Log(z)] so may define a continuous arg z.

if |z1| =|z2| =1 and |z;y — 23| < 1, then the angle between z;
and z is less than 7 /2. It follows there exists continuous

a;: [j/n,(j+1)/n] — R such that ~(t) = ™0,

Since e2™U/N) = g2mid-1U/n) g 4(j/n) and a;(j/n) differ by an
integer. Thus we can successively adjust the g; for j > 1 by an
integer to obtain a continuous a: [0, 1] — C such that

’Y(l‘) — g2mia(t)

Uniqueness: e2™(a(=b(t)) — {1 hence a(t) — b(t) € Z, but [0, 1]
is connected so a(t) — b(t) is constant. ]



Definition

If v: [0,1] — C\{0} is a closed path and ~(t) = |y(t)|e*™a") as
in the previous lemma, then a(1) — a(0) € Z. This integer is
called the winding number /(~, 0) of v around O.

It is uniquely determined by the path ~ because the function a
IS unique up to an integer.
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If v: [0,1] — C\{0} is a closed path and ~(t) = |y(t)|e*™a") as
in the previous lemma, then a(1) — a(0) € Z. This integer is
called the winding number /(~, 0) of v around O.

It is uniquely determined by the path ~ because the function a
IS unique up to an integer.

If Zo Is not in the image of v, we may define the winding number
I(~y, zg) of v about zy similarly:

Let {: C — C be given by {(z) = z — zy, we define

I(v,z0) = I(to~,0).

t :
Ytk

2o



Definition

If v: [0,1] — C\{0} is a closed path and ~(t) = |(t)|€*™a) as
in the previous lemma, then a(1) — a(0) € Z. This integer is
called the winding number /(~, 0) of v around O.

It is uniquely determined by the path ~ because the function a
IS unique up to an integer.

If Zo Is not in the image of v, we may define the winding number
I(~y, zg) of v about zy similarly:

Let {: C — C be given by {(z) = z — zy, we define

I(v,z0) = I(to~,0).

1. The definition of the winding number only requires
the closed path ~ to be continuous, not piecewise C.



Definition

If v: [0,1] — C\{0} is a closed path and ~(t) = |(t)|€*™a) as
in the previous lemma, then a(1) — a(0) € Z. This integer is
called the winding number /(~, 0) of v around O.

It is uniquely determined by the path ~ because the function a
IS unique up to an integer.

If Zo Is not in the image of v, we may define the winding number
I(~y, zg) of v about zy similarly:

Let {: C — C be given by {(z) = z — zy, we define

I(v,z0) = I(to~,0).

1. The definition of the winding number only requires
the closed path ~ to be continuous, not piecewise C.

2. if v: [0,1] — U where 0 ¢ U and there exists a holomorphic
branch L: U — C of [Log(z)] on U, then I(,0) = 0. Indeed in
this case we may define a(t) = 3(L(~(t))), and since

v(0) = ~(1) it follows a(1) — a(0) = 0.



The winding number for C' paths can be expressed using
Integrals:

Lemma

Let v be a piecewise C' closed path and z, € C a point not in
the image of . Then the winding number I(~, zy) of v around

Zy IS given by
1 az
/ = — :
(7, 20) 2mi L Z— 29
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The winding number for C' paths can be expressed using
Integrals:

Lemma

Let v be a piecewise C' closed path and z, € C a point not in
the image of . Then the winding number I(~, zy) of v around

Zy IS given by
1 az
I(vy, 20) = 27“'/7220.

Proof. |
If v: [0,1] — C we may write v(t) = zy + r(t)e®™a)_ Then

dz 1 1 | y
/ z—z9 /o ez (7 (D) +2rir(0)a(h) e*m ! df
Y

_ /01 r'(t)/r(t) + 2mid (t)dt = [log(r(t)) + 27ria(t)]8
= 2ri(a(1) — a(0)), since r(1) = r(0) = |y(0) — z|.



Corollary ( of +he PNJ'- Loaﬂwfﬂfc = awalypr ¢>

Let U be an open setin C and let~v: [0,1] — U be a close
path. If f(z) is a continuous function on ~* then the function

1 [ (2) =9
4
(v, w) = 2—7“/ az,

o

Proof. This follows by the same argument that we used to show
that holomorphic functions are analytic.

P&W"R
d Ci__ 6"’*\’

Is analytic in w.

In the proof we only used that f is continuous on ~*.

If wo is not on v* then for some ¢ > 0 we have that |%| < J for
all w € B(wy, €) and this suffices to show that /¢(~, w) is
analytic.



Proposition

Let U be an open set in C and let~v: [0,1] — U be a closed
piecewise C' path. Then the function w — I(~, w) is a
continuous function on C\~*, hence constant on the connected
components of C\~*.



Proposition

Let U be an open set in C and let~v: [0,1] — U be a closed
piecewise C' path. Then the function w — I(~, w) is a
continuous function on C\~*, hence constant on the connected
components of C\~*.

Proof.
We showed earlier that the function

I(~, W):/7 L dz

Z— W

IS analytic, so it is continuous.



If v is a closed path then ~* is compact and hence bounded.
Thus there is an R > 0 such that the connected set

(C\B(0, R)) n~* = (. It follows that C\~v* has exactly one
unbounded connected component.
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as z — o it follows that /(+, z) = 0 on the unbounded
component of C\~*.



If v is a closed path then ~* is compact and hence bounded.
Thus there is an R > 0 such that the connected set

(C\B(0, R)) Nn~* = (. It follows that C\v* has exactly one
unbounded connected component.

Since

d
[ Sl s 1/~ 2) >0
vG—2Z Q<o
as z — o it follows that /(+, z) = 0 on the unbounded
component of C\~*.

Definition

Let v: [0,1] — C be a closed path. We say that a point z is in
the inside of v if z ¢ ~* and I(~, z) # 0. The previous remark
shows that the inside of + is a union of bounded connected
components of C\~*. (We don’t, however, know that the inside
of v Is necessarily non-empty.)



Example

Suppose that v : [-7, 7] — C is given by vy = 1 + €' and

vo: [0,27] — Cis given by v»(t) = —1 + e~ L. Then if

v = 1 x Yo, v traverses a figure-of-eight and it is easy to check
that the inside of ~ is B(1,1) U B(—1,1) where I(v,z) = 1 for
z e B(1,1) while I(v,z) = —-1forze B(—1,1).

,\
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Example

Suppose that v : [-7, 7] — C is given by vy = 1 + €' and

vo: [0,27] — Cis given by v»(t) = —1 + e~ L. Then if

v = 1 x Yo, v traverses a figure-of-eight and it is easy to check
that the inside of ~ is B(1,1) U B(—1,1) where I(v,z) = 1 for
z e B(1,1) while I(v,z) = —-1forze B(—1,1).

It is a theorem, known as the Jordan Curve Theorem, that if

v: [0,1] — Cis a simple closed curve, so that v(f) = ~(s) if and
only if s=tor s, t € {0,1}, then C\~* is the union of precisely
one bounded and one unbounded component, and on the
bounded component /(~, z) is either 1 or —1. If [(v,z) =1 for z
on the inside of v we say ~ is positively oriented and we say it is
negatively oriented if /(v,z) = —1 for z on the inside.



