PS $2 \mathbb{Q} 1$ use IBPs fer the second integral

$$
\int_{0}^{\pi / 2} e^{-x \sin ^{2} t} d t \text { - Laplace's mehrod }
$$

$$
\int_{0}^{1} e^{1 x e^{-1 / t}} d t \text { - mehoractsteepest descents min } s=e^{-1 / t}
$$

As $x \rightarrow \mathrm{O}^{+}$
$\int_{0}^{10} \frac{e^{-x t}}{1+t} d t$ - Taylor exp ana the integrand and integrate term -by -rem

$$
\begin{aligned}
& \int_{0}^{\pi / 2} \frac{1}{\sqrt{\cos ^{2} t+x \sin ^{2} t}} d t \text {-unte as } \int_{0}^{\pi / 2-\delta}+\int_{\pi / L-\delta}^{\pi / 2} \text { where } x \ll \delta \ll 1 \\
& \int_{0}^{1} \frac{\sin (x t)}{t} d t \text { - Taylor expand and integrate term-by-term. }
\end{aligned}
$$

$\int_{x}^{\infty} t^{a-1} e^{-t} d t-$ unte $\int_{0}^{\infty}-\int_{0}^{x}$ and Men Taylor expand and ingrate term-by-term fer the second integral when $\operatorname{Re}(a)>0$. (NB v.trichy o|w!)

$$
\int_{0}^{1} \frac{\ln t}{x+t} d t \text { - unite as } \int_{0}^{\delta}+\int_{\delta}^{1} \text { where } x \ll \delta \ll l
$$

$$
\begin{aligned}
& \text { As } x \rightarrow \infty \\
& \int_{0}^{\pi / 2} e^{i x \cos t} d t \text { - method of otationany phase fer firstterm } \\
& \text { (then merrou ct deepest descents fer more..) } \\
& \int_{0}^{1} \ln t e^{i x t} d t \text { - pernod d steepest descents } \\
& \text { note that using ImPs and the methodet } \\
& \text { stahonany phase does nut aam...) } \\
& \int_{0}^{x} t^{-\frac{1}{2}} e^{-t} d t \text { - unite as } \int_{0}^{\infty} t^{-\frac{1}{2}} e^{-t} d t-\int_{x}^{\infty} t^{-\frac{1}{2}} e^{-t} d t \text { and men }
\end{aligned}
$$

PS Q $2 \quad(\operatorname{as~} x \rightarrow \infty)$

$$
I_{1}(x)=\int_{-1}^{1} e^{-x \operatorname{cosht}} d t=\underbrace{\int_{-1}^{-\varepsilon} e^{-x \cos h t}}_{I_{11}} d t+\underbrace{\int_{-\Sigma}^{\varepsilon} e^{-x \cos h t}}_{I_{12}} d t+\underbrace{\int_{\varepsilon}^{1} e^{-x \operatorname{cosht}} d t}_{\substack{I_{13}=I_{1} \\ \text { (by symmetry) }}}
$$

- spit integral this way because cosht has a maximum at $t=0$.

$$
\begin{aligned}
& I_{11}(x)=\int_{\Sigma}^{1} e^{-x \cosh t} d t=O\left(e^{-x \cosh \varepsilon}\right)=O\left(e^{-x} e^{-x \varepsilon^{2} / 2}\right) \\
& I_{12}(x)=\int_{-\varepsilon}^{+\varepsilon} e^{-x \cosh t} d t=\int_{-\varepsilon}^{+\varepsilon} e^{-x\left(1+\frac{1}{2} t^{2}+o\left(t^{4}\right)\right)} d t \\
& =e^{-x} \int_{-\varepsilon}^{+\varepsilon} e^{-\frac{1}{2} x t^{2}} e^{0\left(x t^{4}\right)} d t \\
& =e^{-x} \int_{-\varepsilon}^{+\varepsilon} e^{-\frac{1}{2} x t^{2}}\left[1+0\left(x t^{4}\right)\right] d t \quad \underline{x t^{4} \ll 1} \\
& =e^{-x} \int_{-\varepsilon \sqrt{\frac{x}{2}}}^{+\sum \sqrt{\frac{x}{2}}} e^{-s^{2}}\left[1+0\left(s^{4} / x\right)\right] \cdot \sqrt{\frac{2}{x}} d s \\
& =e^{-x} \sqrt{\frac{2}{x}}\left\{\int_{-\sqrt[5]{x / 2}}^{+2 \sqrt{x / 2}} e^{-s^{2}} d s+0\left(\frac{1}{x}\right)\right\} \\
& =e^{-x} \sqrt{\frac{2}{x}}\left\{\int_{-\infty}^{\infty} e^{-s^{2}} d s+0\left(\frac{1}{x}\right)\right\} \\
& =e^{-x} \sqrt{\frac{2}{x}}\left\{\sqrt{\pi}+0\left(\frac{1}{x}\right)\right\} \text { as } x \rightarrow \infty
\end{aligned}
$$

Then fer $\varepsilon \sqrt{x} \gg 1$ we have $I_{11}(x) \ll I_{12}(x)$ as $x \rightarrow \infty$.

$$
\therefore \quad I_{1}(x) \sim \sqrt{\frac{2 \pi}{x}} e^{-x} \text { as } x \rightarrow \infty
$$

NB we need to select ε s.t. $\quad x^{-\frac{1}{2}} \ll \varepsilon \ll x^{-\frac{1}{4}}$

$$
I_{2}(x)=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} e^{-x\left(t^{2}-\sin ^{2} t\right)} d t
$$

Let $\varphi(t)=\sin ^{2} t-t^{2}$. Then $\varphi(0)=0$ and $\varphi(t)<0$ fer $t \neq 0$. Hence $\varphi(t)$ has an intenor maximum $e t=0$. Note that $\varphi^{\prime}(t)=2 \sin +\cos t-2 t$ and so $\varphi^{\prime}(0)=0 \Rightarrow$ degenerate case.

$$
\varphi(t)=\left(t-\frac{1}{3} t^{3}+o\left(t^{5}\right)\right)^{2}-t^{2}=-\frac{1}{3} t^{4}+o\left(t^{6}\right) \text { as } t \rightarrow 0
$$

spit the integral as

$$
\begin{aligned}
& I_{21}(x)=\int_{+\varepsilon}^{\frac{\pi}{2}} e^{x \varphi(t)} d t=O\left(e^{x \varphi(\varepsilon)}\right)=O\left(e^{-x \Sigma^{4}}\right) \\
& I_{22}(x)=\int_{-\varepsilon}^{+\varepsilon} e^{-x\left(\frac{1}{3} t^{4}+o\left(t^{6}\right)\right)} d t \\
& =\int_{-\varepsilon}^{+\varepsilon} e^{-\frac{1}{3} x t^{4}}\left(1+O\left(x t^{6}\right)\right) d t \\
& =\int_{-\left(\frac{x}{3}\right)^{1 / 4} \varepsilon}^{+\left(\frac{x}{3}\right)^{\frac{1}{4} \varepsilon}} e^{-s^{4}}\left(1+o\left(x^{-\frac{1}{2}} s^{6}\right)\right) \cdot\left(\frac{3}{x}\right)^{\frac{1}{4}} d s \\
& =\left(\frac{3}{x}\right)^{\frac{1}{4}}\left\{\int_{-\infty}^{+\infty} e^{-s^{4}} d s+O\left(x^{-\frac{1}{2}}\right)\right] \\
& \left.=\left\lvert\, \frac{3}{x}\right.\right)^{\frac{1}{4}}\left\{\frac{2 \Gamma(1 / 4)}{4}+0\left(x^{-\frac{1}{2}}\right)\right\}
\end{aligned}
$$

For $x^{\frac{1}{4}} \Sigma \gg 1$ then we have $I_{21}(x) \ll I_{22}(x)$ as $x \rightarrow \infty$

$$
\therefore \quad I_{2}(x) \sim \frac{\Gamma(1 / 4)}{2} \cdot\left(\frac{3}{x}\right)^{\frac{1}{4}} \text { as } x \rightarrow \infty
$$

NB we need to select ε s.t. $x^{-\frac{1}{4}} \ll \varepsilon \ll x^{-\frac{1}{6}}$.

$$
\begin{aligned}
& I_{3}(x)=\int_{0}^{\infty} e^{-2 t-x / t^{2}} d t \\
& \frac{d}{d t}\left(2 t+\frac{x}{t^{2}}\right)=2-\frac{2 x}{t^{3}} \Rightarrow \text { the maximum moves as } x \text { is vaned. }
\end{aligned}
$$

\Rightarrow Make a changect vanables: let $y=x^{\frac{1}{3}}$ and $t=x^{\frac{1}{3}} u$ so that

$$
I_{3}(x)=\int_{0}^{\infty} e^{-y\left(2 u+\frac{1}{u^{2}}\right)} \underbrace{}_{\varphi(u)} y d u
$$

Then $\varphi(u)=-2 u+\frac{1}{u^{2}} \Rightarrow \varphi^{\prime}(u)=-2-\frac{2}{u^{3}}$ and $\varphi^{\prime}(u)=0$ fer $u=1$.

$$
\text { Expand } \varphi(u) \text { about } \begin{aligned}
u=1: \varphi(u) & =\varphi(1)+(u-1) \underbrace{\varphi^{\prime}(1)}_{=0}+\frac{1}{2}(u-1)^{2} \varphi^{\prime \prime}(1) \\
+ & +0((u- \\
& =-3-3(u-1)^{2}+0\left((u-1)^{3}\right)
\end{aligned}
$$

Sphit the range of integration:

$$
\begin{aligned}
I_{3}(y) & =\underbrace{\int_{0}^{1-\varepsilon} \sim d u}_{I_{31}}+\underbrace{\int_{1-\varepsilon}^{1+\varepsilon} \sim d u}_{I_{32}}+\underbrace{\int_{1+\varepsilon}^{\infty} \sim d u}_{I_{33}}(\varepsilon \ll 1) \\
I_{31}(y) & =\int_{0}^{1-\varepsilon} y e^{-y\left(2 u+1 / u^{2}\right)} d u=0\left(y e^{-y \varphi(1-\varepsilon)}\right)=0\left(y e^{-3 y} e^{-3 y \varepsilon^{2}}\right) \\
I_{33}(y) & =\int_{1+\varepsilon}^{\infty} y e^{-y\left(2 u+1 / u^{2}\right)} d u=0\left(y e^{-y \varphi(1+\varepsilon)}\right)=0\left(y e^{-3 y} e^{-3 y \varepsilon^{2}}\right) \\
I_{32}(y) & \left.=\int_{1-\varepsilon}^{1+\varepsilon} y e^{-y\left(3+3(u-1)^{2}+0\left((u-1)^{3}\right)\right)} d u \quad \text { con since } \varepsilon \ll 1\right) \\
& =y e^{-3 y} \int_{1-\varepsilon}^{1+\varepsilon} e^{-3 y(u-1)^{2}}\left(1+0\left(y(u-1)^{3}\right)\right) d u \downarrow \text { pronded } \\
& =y e^{-3 y} \int_{-\Sigma \sqrt{3 y}}^{+\Sigma \sqrt{3 y}} e^{-s^{2}}\left(1+0\left(y^{-\frac{1}{2}} s^{3}\right)\right) \frac{1}{\sqrt{3 y}} d s \quad \text { L } \sqrt{3 y}(u-1)=s \\
& =\sqrt{\frac{y}{3}} e^{-3 y}\left\{\int_{-\infty}^{\infty} e^{-s^{2}} d s+0\left(y^{-\frac{1}{2}}\right)\right\} \quad \text { Lpronded } \varepsilon \sqrt{3 y} \gg 1
\end{aligned}
$$

Then, fer $\varepsilon \sqrt{y} \gg 1$ we have $I_{31}(y), I_{33}(y) \ll I_{32}(y)$ as $y \rightarrow \infty$.
Hence $I_{3}(y) \sim \sqrt{\frac{y}{3}} e^{-3 y} . \sqrt{\pi}$

$$
=\sqrt{\frac{\pi}{3}} x^{1 / 6} e^{-3 \times 1 / 3} \quad \text { as } x \rightarrow \infty
$$

NB we need to select ε sit. $x^{-\frac{1}{6}} \ll \varepsilon \ll x^{-\frac{1}{9}}$.

PS 2 QU

$$
J_{1}(x)=\int_{0}^{1} e^{i x t^{2}} \cosh \left(t^{2}\right) d t \quad \text { as } x \rightarrow \infty
$$

Then $\psi(t)=t^{2}$ and $\psi^{\prime}(t)=2 t \Rightarrow \psi^{\prime}(t)=0$ fer $t=0$.
Hence split tine region of integration as

$$
\begin{align*}
J_{1}(x) & =\underbrace{\int_{0}^{\varepsilon} \sim d t}_{J_{11}}+\underbrace{\int_{\varepsilon}^{1} \sim d t}_{J_{12}} \quad \text { fer } \varepsilon \ll 1 . \\
J_{11}(x) & =\int_{0}^{\left.\int_{0}^{\varepsilon}\left(1+0\left(t^{4}\right)\right) e^{i x t^{2}} d t \quad \text { (o nsince } \varepsilon<c \mid\right)} \\
& =\int_{0}^{\varepsilon \sqrt{x}}\left(1+0\left(s^{4} / x^{2}\right)\right) e^{i s^{2} \cdot \frac{1}{\sqrt{x}} d s \quad \int \quad s=\sqrt{x} t} \\
& =\frac{1}{\sqrt{x}} \int_{0}^{\infty} e^{i s^{2}} d s+0\left(\frac{1}{\sqrt{x} \cdot \Sigma \sqrt{x}}\right) \quad \text { pronged } \varepsilon \sqrt{x} \gg 1
\end{align*}
$$

$N B$ ne can do $\int_{0}^{\varepsilon \sqrt{x}} \rightarrow \int_{0}^{\infty}$ because

$$
\begin{aligned}
\frac{1}{\sqrt{x}} \int_{\Sigma \sqrt{x}}^{\infty} e^{i s^{2}} d s & =\frac{1}{\sqrt{x}} \int_{\Sigma \sqrt{x}}^{\infty} \underbrace{\frac{1}{2 i s} e^{i s^{2}} d s}_{\frac{1}{2 i s}} \underbrace{2\left(\frac{1}{2}\right.}_{d v / d s} \\
& =\frac{\frac{1}{\sqrt{x}}\left\{\left[\frac{1}{2 i s} e^{i s^{2}}\right]_{\Sigma \sqrt{x}}^{\infty}-\int_{\Sigma \sqrt{x}}^{\infty}-\frac{1}{2 i s^{2}} e^{i s^{2}} d s\right\}}{0\left(\frac{1}{\Sigma x}\right)}-\frac{\frac{1}{2 i \Sigma x} e^{i \varepsilon^{2} x}-\frac{1}{2 i \sqrt{x}} \int_{\Sigma \sqrt{x}}^{\infty} \frac{1}{s^{2}} e^{i s^{2}} d s}{0\left(\frac{1}{\Sigma x}\right)}
\end{aligned}
$$

Furrier, * comes from

$$
\frac{1}{x^{5 / 2}} \int_{0}^{\varepsilon \sqrt{x}} s^{4} e^{i s^{2}} d s=0\left(\frac{(\Sigma \sqrt{x})^{3}}{x^{5 / 2}}\right)=0\left(\frac{\varepsilon^{3}}{x}\right) \ll 1 \text { pronged } \varepsilon^{3} \ll x
$$

$$
\begin{aligned}
J_{12}(x) & =\int_{\varepsilon}^{1} \frac{\frac{\cosh \left(t^{2}\right)}{2 i x t}}{u} \cdot \underbrace{2 i x t e^{i x t^{2}} d t}_{d v / d t} \\
& =\left[\frac{\cosh \left(t^{2}\right)}{2 i x t} e^{i x t^{2}}\right]_{\Sigma}^{1}-\underbrace{\int_{\varepsilon}^{1} \frac{\partial}{\partial t}\left(\frac{\cosh \left(t^{2}\right)}{2 i x t}\right) e^{i x t^{2}} d t}_{\left.=0 \left\lvert\, \frac{1}{x}\right.\right) \text { as } x \rightarrow \infty \text { by RLL }} \\
& =0\left(\frac{1}{\Sigma x}\right)
\end{aligned}
$$

Hence $J_{1}(x) \sim \frac{e^{i \pi / 4}}{2} \sqrt{\frac{\pi}{x}}$ as $x \rightarrow \infty$
NB we need to select $x^{-\frac{1}{2}} \ll \varepsilon \ll x^{-\frac{1}{3}} \quad\left(\Rightarrow x^{-\frac{1}{2}} \gg \frac{1}{\Sigma x}\right)$.

$$
J_{2}(x)=\operatorname{Re}\left[J_{4}(x)\right]=\operatorname{Re}\left[\int_{0}^{1} \tan t e^{i x t^{4}} d t\right] \text { as } x \rightarrow \infty
$$

Then $\psi(t)=t^{4}$ has $\psi^{\prime}(0)=0$, so we split the region of integration as:

$$
\begin{align*}
& J_{4}(x)=\underbrace{\int_{0}^{\Sigma} \sim d t}_{J_{41}}+\underbrace{\int_{\varepsilon}^{1} \sim d t}_{J_{42}} \\
& J_{41}(x)=\int_{0}^{\varepsilon}\left(t+0\left(t^{3}\right)\right) e^{i x t^{4}} d t \\
& \text { convince } \varepsilon \ll 1 \text {) } \\
& =\int_{0}^{x^{1 / 4} \varepsilon}\left(\frac{s}{x^{1 / 4}}+o\left(\frac{s^{3}}{x^{3 / 4}}\right)\right) e^{i s^{4}} \cdot x^{-\frac{1}{4}} d s \\
& =x^{-\frac{1}{2}} \int_{0}^{\infty} s e^{i s 4} d s+0\left(\frac{1}{\varepsilon^{2} x}\right)
\end{align*}
$$

NB the above hulas since

$$
\begin{aligned}
x^{-\frac{1}{2}} \int_{x^{1 / 4} \varepsilon}^{\infty} s e^{i s 4} d s & =x^{-\frac{1}{2}} \int_{x^{1 / 4 \varepsilon}}^{\infty} \underbrace{\frac{1}{4 i s^{2}}}_{n} \cdot \underbrace{4 i s^{3} e^{i s 4}}_{d v / d s} d s \\
& =x^{-\frac{1}{2}}\{\underbrace{\left[\frac{1}{4 i s^{2}} e^{i s 4}\right]_{x^{1 / 4 \varepsilon}}^{\infty}}_{=0\left(\frac{1}{x \frac{1}{2} \varepsilon^{2}}\right)}-\underbrace{\infty}_{x^{1 / 4 \varepsilon}} \frac{-2}{4 i s^{3}} e^{i s 4} d s\} \\
& =0\left(\frac{1}{x^{1 / 2} \varepsilon^{2}}\right)
\end{aligned}
$$

and also

$$
\begin{aligned}
& \frac{1}{x} \int_{0}^{x^{1 / 4 \varepsilon}} s^{3} e^{i s 4} d s=\frac{1}{4 i x}\left[e^{i s 4}\right]_{0}^{x^{1 / 4 \varepsilon}}=0\left(\frac{1}{x}\right) \\
& J_{42}(x)=\int_{\varepsilon}^{1} \frac{\tan t}{4 i x t^{3}} \cdot \underbrace{4 i x t^{3} e^{i x t^{4}}}_{u} d t
\end{aligned}
$$

$$
\begin{aligned}
J_{42}(x) & =\left[\frac{\tan t}{4 i x t^{3}} e^{i x t^{4}}\right]_{\varepsilon}^{1}-\int_{\varepsilon}^{1} \frac{\partial}{\partial t}\left(\frac{\tan t}{4 i x t^{3}}\right) e^{i x t^{4}} d t \\
& =0\left(\frac{1}{x \varepsilon^{2}}\right)
\end{aligned}
$$

Hence

$$
J_{4} \sim x^{-\frac{1}{2}} \int_{0}^{\infty} s e^{i s 4} d s=\frac{x^{-\frac{1}{2}} e^{i \pi / 4} \Gamma\left(\frac{1}{2}\right)}{4}
$$

$$
\therefore \quad J_{2}(x) \sim \frac{\cos \left(\frac{\pi}{4}\right) \Gamma\left(\frac{1}{2}\right)}{4} x^{-\frac{1}{2}} \quad \text { as } x \rightarrow \infty
$$

$$
J_{3}(x)=\int_{0}^{1} e^{i x(t-\sin t) d t}
$$

Let $\psi(t)=t-\sin t \Rightarrow \psi^{\prime}(t)=1-\cos t$ and hence $t=0$ is the only stationary point. We have $4(t)=t-\left[t-\frac{1}{3!} t^{3}+O\left(t^{5}\right)\right]$

$$
=\frac{1}{3!} t^{3}+O\left(t^{5}\right)
$$

Hence we split the region of integration:

$$
\begin{aligned}
& J_{3}(x)=\underbrace{\int_{0}^{\varepsilon} \sim d t+\underbrace{\int_{\varepsilon}^{1} \sim d t}_{J_{32}}}_{J_{31}} \\
& J_{31}(x)=\int_{0}^{\varepsilon} e^{i x\left[\frac{1}{6} t^{3}+0\left(t^{5}\right)\right]} d t \quad \text { (onsince } \varepsilon \ll 1 \text {) } \\
& \left.=\int_{0}^{\sum\left(\frac{x}{6}\right)^{1 / 3}} e^{i s^{3}}\left[1+0\left(x\left(\frac{s}{x^{1 / 3}}\right)^{5}\right)\right]\left(\frac{6}{x}\right)^{\frac{1}{3}} d s \quad\right) \quad S=\left(\frac{x}{6}\right)^{\frac{1}{3}} t \\
& \text { (pronged } x \varepsilon^{5} \ll 1 \text {) } \\
& =\left(\frac{6}{x}\right)^{\frac{1}{3}} \int_{0}^{\infty} e^{i s^{3}} d s+o\left(\frac{1}{\varepsilon^{2} x}\right) \\
& \text { (prodded } x^{\frac{1}{3}} \sum \gg 1 \text {) }
\end{aligned}
$$

NB the above holds since

$$
\begin{aligned}
x^{-\frac{1}{3}} \int_{\Sigma\left(\frac{x}{6}\right)^{1 / 3}}^{\infty} e^{i s^{3}} d s & =x^{-\frac{1}{3}} \int_{\varepsilon\left(\frac{x}{6}\right)^{1 / 3}}^{\infty} \frac{1}{3 i s^{2}} \cdot \underbrace{3 i s^{2} e^{1 s^{3}} d s}_{u} \\
& =x^{-\frac{1}{3}}\left\{\left[\frac{1}{3 i s^{2}} e^{i s^{3}}\right]_{\varepsilon\left(\frac{x}{6}\right)^{1 / 3}}^{\infty}-\int_{\Sigma\left(\frac{x}{6}\right)^{1 / 3}}^{\infty} \frac{\partial}{\partial s}\left(\frac{1}{3 i s^{2}}\right) e^{i s^{3}} d s\right. \\
& =O\left(\frac{1}{\varepsilon^{2} x}\right)
\end{aligned}
$$

and also

$$
\begin{aligned}
& \frac{1}{x} \int_{0}^{\sum\left(\frac{x}{6}\right)^{1 / 3}} s^{5} e^{i s^{3}} d s=\frac{1}{x} \int_{0}^{\varepsilon\left(\frac{x}{6}\right)^{1 / 3}} \frac{s^{3}}{3 i} \cdot \underbrace{3 i s^{2} e^{i s^{3}} d s}_{u} \\
& =\frac{1}{x}\left\{\left[\frac{s^{3}}{3 i} e^{i s^{3}}\right]_{0}^{\varepsilon\left(\frac{t}{6}\right)^{1 / 3}}-\int_{0}^{\varepsilon\left(\frac{x}{6}\right)^{1 / 3}} \frac{s^{2}}{i} e^{i s^{3}} d s\right. \\
& =O\left(\Sigma^{3}\right)+O\left(\frac{1}{x}\right)
\end{aligned}
$$

$$
\begin{aligned}
\therefore J_{3}(x) & \sim\left(\frac{6}{x}\right)^{1 / 3} \int_{0}^{\infty} e^{i s^{3}} d s \\
& =\left(\frac{6}{x}\right)^{1 / 3} \frac{e^{i \pi / 6} \Gamma\left(\frac{1}{3}\right)}{3} \\
& =\left(\frac{2}{9}\right)^{1 / 3} \Gamma\left(\frac{1}{3}\right) e^{i \pi / 6} x^{-\frac{1}{3}} \text { as } x \rightarrow \infty
\end{aligned}
$$

NB we need to select $x^{-\frac{1}{3}} \ll \varepsilon \ll x^{-\frac{1}{5}}$.

PS 2 Q4

$$
I(x)=\int_{-1}^{1}\left(1-t^{2}\right)^{N} e^{i x t} d t
$$

N-integer, ana contourctintegration is a lune segment from $-1 \rightarrow 1$.
(a) $\varphi(t)=i t=i(3+i \eta) \Rightarrow u(3, \eta)=-\eta, v(3, \eta)=3$

On a steepest descent contour: $V(\zeta, \eta)=3=$ constant $\nabla u=\binom{0}{-1}$ is tangent to the steepest descent contour, and $-\nabla u=\binom{0}{1}$ is a tangent in the direction m which u decreases most rapidly.

(b) Since the integrand is holomorphic in $t \in \mathbb{C}$, we can deters the contour to give

$$
I(x)=\left\{\int_{c_{1}}+\int_{c_{2}}+\int_{c_{3}}\right\} f(t) e^{x \varphi(t)} d t
$$

on $c_{2}(R):\left|f(t) e^{x \varphi(t)}\right|=|f(t)| e^{-x R} \rightarrow 0$ as $R \rightarrow \infty$.

$$
\begin{aligned}
\therefore \quad I(x) & =\int_{-1}^{-1+i \infty}\left(1-t^{2}\right)^{N} e^{i x t} d t+\int_{1}^{1+i \infty}\left(1-t^{2}\right)^{N} e^{i x t} d t \\
& =I_{-}(x)+I_{+}(x)
\end{aligned}
$$

(c)

$$
\begin{aligned}
I_{ \pm}(x) & =\int_{ \pm 1}^{ \pm 1+i \infty} f(\pm 1+i s) e^{i x(\pm 1+i s)} i d s \quad s>0, t= \pm 1+i s \\
& =i e^{ \pm i x} \int_{ \pm 1}^{ \pm 1+i \infty} f(\pm 1+i s) e^{-x s} d s
\end{aligned}
$$

$$
\text { where } f(\pm 1+i s)=\left(1-(\pm 1+i s)^{2}\right)^{N}=\left\{\begin{array}{l}
1-i s)^{N}(2+i s)^{N} \\
\left.(2+i s)^{N} \text { (is }\right)^{N}
\end{array}\right.
$$

Using Laplace's method: we unite

$$
I_{ \pm}(x)=i e^{ \pm i x}\left[\int_{0}^{\varepsilon}+\int_{\Sigma}^{\infty}\right\} f(\pm 1+i s) e^{-x s} d s \quad(\varepsilon \ll 1)
$$

Consider I_{+}first:

$$
\begin{aligned}
& \int_{0}^{\varepsilon} f(1+i s) e^{-x s} d s=\int_{0}^{\varepsilon}(-i s)^{N}(2+i s)^{N} e^{-x s} d s \\
&=(-2 i)^{N} \int_{0}^{\varepsilon}\left(s^{N}+0\left(s^{N+1}\right)\right) e^{-x s} d s \begin{array}{c}
\begin{array}{c}
\text { onsince } \\
\varepsilon<c 1
\end{array} \\
\\
\end{array}=\frac{(-2 i)^{N}}{x^{N+1}}\left\{\int_{0}^{\varepsilon x} u e^{-u} d u+0\left(\frac{1}{x}\right)\right\}\left\{\begin{array}{l}
\text { letting } \\
s=\frac{u}{x}
\end{array}\right. \\
&=\frac{(-2 i)^{N}}{x^{N+1}}\left\{\int_{0}^{\infty} u^{N} e^{-u} d u+0\left(\frac{1}{x}\right)\right\} \text { L } \begin{array}{c}
\text { pronded } \\
\varepsilon x>1
\end{array} \\
&=\frac{(-2 i)^{N} n^{N!}}{x^{N+1}}+0\left(\frac{1}{x^{N+2}}\right) \\
& \int_{\varepsilon}^{\infty} f(1+i s) e^{-x s} d s=0\left(e^{-\varepsilon x}\right) \\
& \therefore \quad I_{+}(x) \sim \frac{i e^{i x}(-2 i)^{N} N!}{x^{N+1}} \text { as } x \rightarrow \infty
\end{aligned}
$$

NB Need to select $x^{-1} \ll \varepsilon \ll 1$.
Similarly, $I_{-}(x) \sim \frac{i e^{-i x}(2 i)^{N} N!}{x^{N+1}}$ as $x \rightarrow \infty$
Hence

$$
I(x) \sim \frac{2^{N} i^{N+1} N!}{x^{N+1}}\left(e^{-i x}-(-1)^{N} e^{i x}\right) \quad \text { as } x \rightarrow \infty
$$

(NB-This is real - as required by symmetry!).

PS 2Q5

$$
\operatorname{erf}(z)=\frac{2}{\sqrt{\pi}} \int_{0}^{z} e^{-z^{2}} d z=\frac{2 r}{\sqrt{\pi}} \int_{0}^{e^{i \theta}} e^{-r^{2} t^{2}} d t \text { min } z=r e^{i \theta} \text { and } s=r t
$$

$$
\varphi(t)=-t^{2}=-(3+i \eta)^{2}=\frac{\eta^{2}-3^{2}}{u(3, \eta)}-\frac{23 \eta i}{v(3, \eta)}
$$

contour at steepest descent through $(0,0)$ is $\eta=0$.
contour of steepest descent through $t=e^{i \theta}$ is $23 \eta=2 \cos \theta \sin \theta=\sin 2 \theta$

$$
(\theta \in(0, \pi / 2) \Rightarrow 3, \eta>0)
$$

Then, by the defermation theorem, $\operatorname{erf}(z)=\left(\int_{\Gamma_{1}}-\int_{\Gamma_{2}}\right) \frac{2 r}{\sqrt{\pi}} e^{r_{1} \varphi(t)} d t$

$$
I_{1}(r)=\frac{2 r}{\sqrt{\pi}} \int_{0}^{\infty} e^{-r^{2} \xi^{2}} d \xi=\frac{2}{\sqrt{\pi}} \int_{0}^{\infty} e^{-u^{2}} d u=1
$$

mon $u=r 3$
Fer I_{2}, we have
whichgires

$$
\left.\Gamma_{2}=\frac{t}{\left\{3+i \frac{\sin 2 \theta}{23}\right.}, \quad,>\cos \theta\right\}
$$

and

$$
\begin{aligned}
I_{2}(r, \theta) & =\frac{2 r}{\sqrt{\pi}} \int_{\cos \theta}^{\infty} e^{r^{2}\left(\eta^{2}-3^{2}-i \sin i \theta\right)} \cdot\left(1+\eta^{\prime}(3) i\right) d y \\
& =\frac{2 r}{\sqrt{\pi}} e^{-r^{2} i \sin 2 \theta} \int_{\cos \theta}^{\infty} F(3) e^{r^{2} \Phi(3)} d z
\end{aligned}
$$

$$
F(\xi)=1-\frac{i \sin 2 \theta}{23^{2}}
$$

Since Γ_{2} is a contour a steepest descent then

$$
\Phi(3)=\frac{\sin ^{2} 2 \theta}{43^{2}}
$$ $\Phi(3)$ is a decreasing function of 3 on Γ_{2}

\Rightarrow Apply Laplace's memod to give

$$
\begin{aligned}
& I_{2}(r, \theta)=\frac{-2 r}{\sqrt{\pi}} e^{-r^{2} i \sin 2 \theta} \frac{F(\cos \theta) e^{r^{2} \Phi(\cos \theta)}}{r^{2} \Phi^{\prime}(\cos \theta)} \quad \text { as } r \rightarrow \infty . \\
& F(\cos \theta)=\frac{e^{-i \theta}}{\cos \theta}, \quad \Phi(\cos \theta)=-\cos 2 \theta, \quad \Phi^{\prime}(\cos \theta)=\frac{-2}{\cos \theta} \\
& \Rightarrow I_{2}(r, \theta) \sim \frac{1}{\sqrt{\pi} r e^{i \theta}} e^{-r^{2} e^{2 i \theta}} \quad \text { as } r \rightarrow \infty .
\end{aligned}
$$

Hence $I_{1}(r) \sim 1$ and $I_{2}(r, \theta) \sim \frac{1}{\sqrt{\pi} z} e^{-z^{2}}$ as $r=|z| \rightarrow \infty$
fer $0<\theta=\arg (z)<\frac{\pi}{2}$

$$
\begin{aligned}
& \left|I_{2}(r)\right| \sim \frac{1}{r} e^{-r^{2} \cos 2 \theta}=\left\{\begin{array}{ll}
\ll 1 & \operatorname{fer} 0<\theta \leqslant \frac{\pi}{4} \\
>1 & \operatorname{fer} \frac{\pi}{4}<\theta<\frac{\pi}{2}
\end{array} \text { as } z \rightarrow \infty\right. \\
& \therefore \operatorname{erf}(z)=\left\{\begin{array}{ll}
1 & \text { ter } 0<\theta \leq \frac{\pi}{4} \\
-\frac{1}{\sqrt{\pi z}} e^{-z^{2}} & \text { fer } \frac{\pi}{4}<\theta<\frac{\pi}{2}
\end{array} \quad \text { as }|z| \rightarrow \infty .\right.
\end{aligned}
$$

More generally:

- DtHerent asymprosic expansiars in dutterent regions \rightarrow Stohes
- whire $e^{-z^{2}}$ is achive, it has an essential singulantyat $\infty \uparrow$
- $\theta= \pm \frac{\pi}{2}$ - stohes' innes laciosswlich topology of SD contour changes)
$-|\theta|=\frac{\pi}{4}, \frac{s \pi}{4}-a n t i$ stohes' uries cacioss unich donimance of end pant and saddle pait changes).

PS2 Q6
$I(\varepsilon)=\int_{0}^{1} \frac{f(x)}{x+\varepsilon} d x$ as $\varepsilon \rightarrow 0^{+}$inith f smooth.

$$
\begin{aligned}
I_{1}(\varepsilon) & =\int_{0}^{\delta / \varepsilon} \frac{f(\varepsilon y)}{y+1} \cdot d y \quad(\text { Letting } x=\Sigma y) \\
& =\int_{0}^{\delta / \varepsilon} \frac{1}{y+1}\left[f(0)+\varepsilon y f^{\prime}(0)+0\left(\varepsilon^{2}\right)\right] d y \\
& =[f(0) \ln (y+1)]_{0}^{\delta / \varepsilon}+0(\delta)^{2} 0\left(\varepsilon \cdot \frac{\delta}{\varepsilon}\right) \\
& =f(0) \ln \left(1+\frac{\delta}{\varepsilon}\right)+0(\delta) \\
& =f(0) \ln \left(\frac{\delta}{\varepsilon}\right)+f(0) \ln \left(1+\frac{\varepsilon}{\delta}\right)+0(\delta) \\
& =-f(0) \ln \varepsilon+f(0) \ln \delta+0\left(\delta_{1} \frac{\varepsilon}{\delta}\right)
\end{aligned}
$$

$$
\begin{aligned}
I_{2}(\varepsilon) & =\int_{\delta}^{1} \frac{f(x)}{x+\varepsilon} d x \\
& =\int_{\delta}^{1} \frac{f(x)}{x(1+\Sigma / x)} d x \\
& =\int_{\delta}^{1} \frac{f(x)}{x}\left(1-\frac{\Sigma}{x}+0\left(\varepsilon^{2}\right)\right) d x \\
& =\int_{\delta}^{1} \frac{f(x)-f(0)}{x} d x+\int_{\delta}^{1} \frac{f(0)}{x} d x+\ldots \\
& =\int_{\delta}^{1} \frac{f(x)-f(0)}{x} d x-f(0) \ln \delta+\ldots
\end{aligned}
$$

$$
\begin{aligned}
\therefore I(\Sigma) & \sim-f(0) \ln \Sigma+f(0) \ln \delta+\int_{\delta}^{1} \frac{f(x)-f(0)}{x} d x-f(0) \ln \delta+\ldots \\
& \sim-f(0) \ln \Sigma+\int_{0}^{1} \frac{f(x)-f(0)}{x} d x+\ldots \text { as } \varepsilon \rightarrow 0^{+} .
\end{aligned}
$$

