
SCHOEN’S PROOF OF THE BALOG-SZEMERÉDI-GOWERS THEOREM

1. Introduction

Let G be an abelian group. Writing 1X to be the indicator function of the set X, we
define, for every finite, non-empty X, Y ⊆ G, the convolution function 1X ◦ 1Y : G→ R as

1X ◦ 1Y (n) =
∑
a∈G

1X(n+ a)1Y (a) for all n ∈ G.

We now define the additive energy E(A) of a finite, non-empty subset A of G to be

E(A) =
∑
n∈G

1A ◦ 1A(n)2.

In particular, E(A) counts the number of solutions to the equation a1 − a2 = a3 − a4, with
a1, . . . , a4 ∈ A. We also define the difference set A− A = {a1 − a2 | a1, a2 ∈ A}. Since the
function 1A ◦ 1A is supported on A − A, we may apply Cauchy-Schwarz inequality on the
definition of E(A) to deduce that

E(A)|A− A| ≥ (
∑
n

1A ◦ 1A(n))2 = |A|4.

Thus, whenever |A − A| ≤ K|A|, for some K ≥ 1, then E(A) ≥ |A|3/K. It is natural to
ask whether a converse holds true, that is, if E(A) ≥ |A|3/K, then is |A−A| ≤ KC |A|, for
some absolute constant C > 0. This is false, since the set AN = {1, . . . , N} ∪ {2, 4, . . . , 2N}
satisfies E(AN)� N3 � |AN |3 as well as |AN − AN | � N2 � |AN |2.

The Balog-Szemerédi-Gowers theorem essentially tells us that these are the only coun-
terexamples to the aforementioned heuristic.

Theorem 1.1. Let A ⊆ G be a finite set having E(A) = |A|3/K, for some K ≥ 1. Then
there exists A1 ⊆ A such that

|A1| � |A|/K and |A1 − A1| � K3|A| � K4|A1|.

This is the version of Balog-Szemerédi-Gowers theorem which was proven by Schoen [1]
and we present his proof in this note. We remark that one may similarly prove that

|A+ A|E(A) ≥ |A|4,
whence, whenever |A+A| ≤ K|A|, then E(A) ≥ |A|3/K. In fact, applying the Plünnecke–
Ruzsa theorem to the conclusion of Theorem 1.1, one can show that whenever E(A) ≥
|A|3/K, then there exists A1 ⊆ A such that |A1| � |A|/K and |A1 + A1| � K8|A1|.

Furthermore, asymmetric versions of Theorem 1.1 are also known to hold. In particular,
if we have two finite subsets A,B of some abelian group such that |A| = |B| = n and

|{(a1, b1, a2, b2) ∈ A×B × A×B : a1 + b1 = a2 + b2}| ≥ n3/K,

then there exist A1 ⊆ A and B1 ⊆ B such that |A1|, |B1| � n/KC and

|A1 +B1| � KCn,
1
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for some absolute constant C > 0. We do not pursue this here, but a proof of such a result
is present in Chapter 6 of the lecture notes.

2. Proof of Theorem 1.1

The proof follows through three steps, we first reduce the main theorem to a lemma about
showing that a significant part of A has most of its differences being “popular differences”.
In order to prove this lemma, we begin with a combinatorial set up and we then finish
with some probabilistic ideas. We now present the first part, and thus, we record some
preliminary definitions. For every τ ≥ 1, let

Pτ = {x ∈ G | 1A ◦ 1A(x) ≥ τ} and Qτ = {x ∈ G | τ ≤ 1A ◦ 1A(x) < 2τ}.

Our goal in the first part is to prove Theorem 1.1 conditionally on the following lemma.

Lemma 2.1. Let c > 0, let A ⊆ G be a finite set with E(A) = |A|3/K Then there exists
A′ ⊆ A with

|A′| ≥ |A|/6K and
∑
a,b∈A′,

a−b/∈Pc|A|/K

1 ≤ 16c|A′|2.

Proof of Theorem 1.1. We apply Theorem 2.1 with c = 1/128 to obtain A′ ⊆ A such that
|A′| ≥ |A|/6K and such that the set

S = {(a, b) ∈ A′ × A′ | a− b ∈ Pc|A|/K}

satisfies |S| ≥ 7|A′|2/8. We now set A1 to be all the elements a ∈ A′ such that there are at
least 3|A′|/4 choices of b with (a, b) ∈ S. In particular, this means that

7|A′|2/8 ≤ |S| =
∑
a∈A1

∑
b∈A

1(a,b)∈S +
∑

a∈A′\A1

∑
b∈A

1(a,b)∈S ≤ |A1||A′|+ (|A′| − |A1|)(3|A′|/4).

Simplifying this gives us |A1| ≥ |A′|/2 ≥ |A|/12K.
It now suffices to show that |A1 −A1| � K3|A|. In order to show this, we first note that

for any a, b ∈ A1, there exist at least |A′|/2 choices of y ∈ A′ such that (a, y), (b, y) ∈ S. In
order to see this, note that there are at most |A′|/4 “bad” choices of y for a and at most
|A′|/4 “bad” choices of y for b, whence there are at most |A′|/2 choices of y which are “bad”
for either of a or b. With this in hand, we see that for any a− b ∈ A1−A1, there are at least
|A′|/2 ways to write a− b = (a− y)− (b− y). Moreover, since (a, y) ∈ S, there are at least
c|A|/K many ways to write a− y as a1 − a2 with a1, a2 ∈ A. Noting a similar phenomenon
for b− y, we see that∑

x∈A1−A1

|{(a1, . . . , a4) ∈ A4 | x = a1 − a2 − a3 + a4}| ≥ |A1 − A1|(|A′|/2)(c|A|/K)2.

On the other hand, the left hand side here is bounded above by |A|4, whereupon, we have

|A1 − A1| ≤ 2c−2K2|A|2/|A′| ≤ 12c−2K3|A| � K4|A1|,

which is the desired bound. �
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Our aim for the rest of this section is to prove Lemma 2.1. We begin by performing some
combinatorial pruning, and so, we note that∑

x/∈P|A|/2K

(1A ◦ 1A)(x)2 < (|A|/2K)
∑
x

(1A ◦ 1A)(x) ≤ |A|3/2K,

whence, ∑
x∈P|A|/2K

(1A ◦ 1A)(x)2 = E(A)−
∑

x/∈P|A|/2K

(1A ◦ 1A)(x)2 > |A|3/2K.

Writing J = {j ∈ N : |A|/4K ≤ 2j ≤ |A|}, we see that∑
j∈J

|Q2j |22j+2 ≥
∑

x∈P|A|/2K

(1A ◦ 1A)(x)2 > |A|3/2K. (2.1)

Furthermore, we have that∑
j∈J

∑
a,b∈A,

a−b/∈Pc|A|/K

|(a− A) ∩ (b− A) ∩Q2j | ≤
∑
a,b∈A,

a−b/∈Pc|A|/K

|(a− A) ∩ (b− A)|

=
∑
a,b∈A,

a−b/∈Pc|A|/K

(1A ◦ 1A)(a− b)

≤ c|A|3/K ≤
∑
j∈J

8c|Q2j |22j,

where the last inequality follows fom (2.1). This means that there exists j ∈ J such that∑
a,b∈A,

a−b/∈Pc|A|/K

|(a− A) ∩ (b− A) ∩Q2j | ≤ 8c|Q2j |22j. (2.2)

We are now finished with our combinatorial set-up, and so, we proceed to the final part of
the proof, where we employ the probabilistic method.

We fix some j ∈ J satisfying (2.2) and write Q := Q2j . We pick s ∈ Q uniformly at
random. In particular, this means that for any X ⊆ G, we have

P(s ∈ X) = |X ∩Q|/|Q|.
Writing A′ = A ∩ (A+ s), we see that a ∈ A′ if and only if a ∈ A and a ∈ A+ s, where the
latter condition is equivalent to s ∈ a− A. Thus, we have

P(a ∈ A′) = 1A(a) |Q ∩ (a− A)|/|Q|,
and so,

E|A′| = |Q|−1
∑
a∈A

|Q ∩ (a− A)| = |Q|−1
∑
q∈Q

(1A ◦ 1A)(q) ≥ 2j. (2.3)

Similarly,
P(a, b ∈ A′) = 1A(a)1A(b) |Q ∩ (a− A) ∩ (b− A)|/|Q|,

whence, writing B = {(a, b) ∈ A′ × A′ | a− b /∈ Pc|A|/K}, we have

E|B| = |Q|−1
∑
a,b∈A,

a−b/∈Pc|A|/K

|Q ∩ (a− A) ∩ (b− A)| ≤ 8c22j,
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where the last inequality follows from (2.2). Combining this with (2.3) and the fact that
E|A′|2 ≥ (E|A′|)2, we get

E(|A′|2 − |B|/16c) ≥ 22j/2.

This means that there exists some s ∈ Q such that

|A′|2 − |B|/16c ≥ 22j/2,

which, in turn, gives us

|B| ≤ 16c|A′|2 and |A′| ≥ 2j/21/2 ≥ |A|/(25/2K) ≥ |A|/6K.
This finishes the proof of Lemma 2.1.
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