SCHOEN’S PROOF OF THE BALOG-SZEMEREDI-GOWERS THEOREM

1. INTRODUCTION

Let G be an abelian group. Writing 1x to be the indicator function of the set X, we
define, for every finite, non-empty X,Y C G, the convolution function 1y o1y : G — R as

Ixyoly(n)= Z Ix(n+a)ly(a) forall neG.

aeG

We now define the additive energy FE(A) of a finite, non-empty subset A of G to be

E(A)=> 14014(n)*

neG

In particular, E(A) counts the number of solutions to the equation a; — as = az — ay, with
ai,...,aq € A. We also define the difference set A — A = {a; — as | a1, as € A}. Since the

function 14 o 1,4 is supported on A — A, we may apply Cauchy-Schwarz inequality on the
definition of F(A) to deduce that

E(A)A= Al > () 1ao1a(n))’ = A"

Thus, whenever |A — A| < K|A|, for some K > 1, then E(A) > |A?/K. Tt is natural to
ask whether a converse holds true, that is, if F(A) > |A]3/K, then is |[A — A| < KC|A|, for
some absolute constant C' > 0. This is false, since the set Ay = {1,...,N}U{2,4,...,2V}
satisfies F(Ay) > N3 > |Ay|?® as well as |[Ay — Ay| > N? > |Ay|?

The Balog-Szemerédi-Gowers theorem essentially tells us that these are the only coun-
terexamples to the aforementioned heuristic.

Theorem 1.1. Let A C G be a finite set having E(A) = |A]?/K, for some K > 1. Then
there exists A1 C A such that

|AL| > |A|/K and |A; — A < K?|A] < KA.
This is the version of Balog-Szemerédi-Gowers theorem which was proven by Schoen [1]
and we present his proof in this note. We remark that one may similarly prove that
A+ AJE(A) > |A[%,

whence, whenever |A + A| < K|A|, then E(A) > |A]*/K. In fact, applying the Pliinnecke—
Ruzsa theorem to the conclusion of Theorem 1.1, one can show that whenever E(A) >
|A|?/ K, then there exists A; C A such that |A;| > |A|/K and |A; + A;| < K3|A4].

Furthermore, asymmetric versions of Theorem 1.1 are also known to hold. In particular,
if we have two finite subsets A, B of some abelian group such that |A| = |B| = n and

’{(Gl,bl,ag,bQ) €EAxBxAxB : aq —|—b1 = Q9 —|—b2}‘ > nS/K,
then there exist A; C A and By C B such that |A,], |B;| > n/K® and
|A1+Bl| <<KCTL,
1
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for some absolute constant C' > 0. We do not pursue this here, but a proof of such a result
is present in Chapter 6 of the lecture notes.

2. PROOF OF THEOREM 1.1

The proof follows through three steps, we first reduce the main theorem to a lemma about
showing that a significant part of A has most of its differences being “popular differences”.
In order to prove this lemma, we begin with a combinatorial set up and we then finish
with some probabilistic ideas. We now present the first part, and thus, we record some
preliminary definitions. For every 7 > 1, let

P.={zxeG|1lg0la(x)>7} and Q, ={z € G |7 <14014(z) <27}
Our goal in the first part is to prove Theorem 1.1 conditionally on the following lemma.
Lemma 2.1. Let ¢ > 0, let A C G be a finite set with E(A) = |A|*/K Then there exists
A" C A with
|A'| > |A|/6K and > 1<16c]A.

a,beA’,
a—b¢Pea|/ K

Proof of Theorem 1.1. We apply Theorem 2.1 with ¢ = 1/128 to obtain A’ C A such that
|A’| > |A|/6K and such that the set

SI{(G,b) e A x A ‘ a—bEPC|A|/K}

satisfies |S| > 7|A’|?/8. We now set A; to be all the elements a € A’ such that there are at
least 3|A’|/4 choices of b with (a,b) € S. In particular, this means that

TAP/S<IS1= ) > Mapes+ Y, D Lanes < A4+ (4] = |4i)(3]4/4).

a€A; beA a€A\A; beA

Simplifying this gives us |A;| > |A'|/2 > |A]/12K.

It now suffices to show that |A; — A;| < K?|AJ. In order to show this, we first note that
for any a,b € Ay, there exist at least |A’|/2 choices of y € A’ such that (a,y), (b,y) € S. In
order to see this, note that there are at most |A’|/4 “bad” choices of y for a and at most
|A'|/4 “bad” choices of y for b, whence there are at most |A’|/2 choices of y which are “bad”
for either of a or b. With this in hand, we see that for any a —b € A; — Ay, there are at least
|A'| /2 ways to write a — b = (a —y) — (b —y). Moreover, since (a,y) € S, there are at least
c|A]/K many ways to write a — y as a; — ag with a1, as € A. Noting a similar phenomenon
for b — y, we see that

> Klar,. .o as) € A | w= a1 — ay — ag + as}| > |A — Ay|(|A]/2)(c|Al/K)?.

rx€A1—Aq
On the other hand, the left hand side here is bounded above by |A[*, whereupon, we have
|A; — Ay < 2c2K?|AP /A < 12¢72KP|A| < K* A4,
which is the desired bound. 0
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Our aim for the rest of this section is to prove Lemma 2.1. We begin by performing some
combinatorial pruning, and so, we note that

D (laola)(@)® < (JA]/2K) Y (1aola)(z) < |A]P/2K,

¢ P42 @
whence,
Y (lacla)(@)?=EA)— > (Laoly)(z)* > |AP)2K.
TEP 4| )2k ¢ P 4|2k
Writing J = {j € N : |A]/4K < 27 < |A|}, we see that
S Q27 > > (Laola)(x)® > |A]P/2K. (2.1)
JjET TEP 4| /2K

Furthermore, we have that

Yoo D He=AHnb-AnQul< D la—A)n (- A)

jeTJ a,beA, a,beA,
a—bEPeal K a—b@ Peja)/ K

= ) (laola)(a—b)

a,beA,
a—bgPea|/ K

< JAP/K <) 8cQy |27,
JjeET
where the last inequality follows fom (2.1). This means that there exists j € J such that
Y Ha=A)N(b—A)NQu| < 8cQu[2%. (2:2)

a,beEA,
a—b¢ P, a1 K

We are now finished with our combinatorial set-up, and so, we proceed to the final part of
the proof, where we employ the probabilistic method.

We fix some j € J satisfying (2.2) and write @ := Q9. We pick s € @ uniformly at
random. In particular, this means that for any X C G, we have

P(s € X) =[XNQ[/|Q.
Writing A" = AN (A+s), we see that a € A" if and only if a € A and a € A + s, where the
latter condition is equivalent to s € a — A. Thus, we have
Pla € A') =14(a) QN (a = A)l/|Q],
and so,
E[A=1QI" Y QN (a—A)|=1Q" Y (lacla)(q) > 2. (2.3)
acA q€Q
Similarly,

Pla,b € A') = 1a(a)1a(b) |Q N (a = A) N (b= A)|/|QI,
whence, writing B = {(a,b) € A’ x A" | a — b & Pya/x}, we have
EBl=1Q™" Y. |@n(a-A)n(b—A)|<82%,

a,beEA,
a—b¢ Py a1/ Kk
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where the last inequality follows from (2.2). Combining this with (2.3) and the fact that
EJA? > (E|A])?, we get |
E(|A'|? — |B|/16¢) > 2% /2.
This means that there exists some s € () such that
|A'|? — |B|/16¢ > 2% /2,
which, in turn, gives us
IB] < 16c|A'|? and |A'| > 27/2Y2 > |A|/(2°*K) > |A|/6K.
This finishes the proof of Lemma 2.1.
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