
Stochastic Simulation: Lecture 11

Christoph Reisinger

Oxford University Mathematical Institute

Modified from earlier slides by Prof. Mike Giles.

Continuous-time Markov Processes

In this two lecture we will consider the approximation of
Continuous-time Markov Processes.

Probably the most important class of applications for these is in
the stochastic modelling of chemical reactions in solution, so this
is the context we will start with.

Chemical reaction:
A + B −→ C

Classical deterministic modelling in a “well-stirred” vessel gives
a set of ODEs for the concentrations cA, cB , cC :

ċA = −κ cA cB

ċB = −κ cA cB

ċC = +κ cA cB

Continuous-time Markov Processes

This works well when there are lots of molecules of A and B in the
solution, but there are applications (particularly in bio-chemistry)
when there are very few, and then things become stochastic.

Let XA,XB ,XC be number of molecules of A, B, C in some
well-mixed container. Reactions require a molecule of A to
“bump into” a molecule of B and react, so

P(reaction in time interval dt) = κ XA XB dt

and when a reaction happens

XA → XA − 1

XB → XB − 1

XC → XC + 1

Unit rate Poisson Process

A unit rate Poisson process Y (τ) is a continuous-time random
counting process in which

I there is a set of increasing jump times 0 < τ1 < τ2 < τ3 < . . .

I setting τ0 = 0, then Y (τ) = j , for τ ∈ [τj , τj+1), j = 0, 1, . . .

I the jump intervals τj+1 − τj are i.i.d. exponential random
variables, so for t > 0

P(τj+1−τj > τ) = exp(−τ)

and
P(τj+1 < τ+dt | τj+1 > τ > τj) = dt

Note: for any time τ >0, Y (τ) is a Poisson random variable with
mean τ .

Continuous-time Markov Processes

Using a unit rate Poisson process to represent the number of
reactions which have taken place we have

X (t) = X (0) + R(t)

 −1
−1
+1

where

R(t) = Y

(∫ t

0
κXA(s)XB(s) ds

)
so the probability of a reaction in time interval (t, t+dt) is
κXA(t)XB(t) dt.

Continuous-time Markov Processes
Generalising this, suppose we have d species, and multiple
reactions, with the k-th reaction having an intensity function λk(t)
and with each such reaction changing the count of Xi by ζki .

Then with independent unit rate processes for each reaction we
have

Xi (t) = Xi (0) +
∑
k

Rk(t) ζki

where we have the time-change representation

Rk(t) = Yk

(∫ t

0
λk(s) ds

)
and for the most common law of mass action kinetics

λk(t) = κk

d∏
i=1

Xi !

(Xi − νki)!
1{Xi≥νki}

when there are νki inputs of species i in reaction k.

Continuous-time Markov Processes

Example from a paper by Anderson and Higham (2012)

S1

κ1−→←−
κ2

S2, 2S2
κ3−→ S3,

then

ζ1 =

 −1
1
0

 , ζ2 =

 1
−1
0

 , ζ3 =

 0
−2
1

 ,

and
λ1 = κ1 X1, λ2 = κ2 X2, λ3 = κ3 X2 (X2−1).

Stochastic Simulation Algorithm (SSA)

SSA is an exact simulation algorithm originally due to Gillespie
(1976, 1977). There have been a number of variants published
since – here I first describe his original “Direct Method”.

Key idea: if we define λ =
∑

k λk , then

P(reaction k occurs in next dt) = λk dt

P(some reaction occurs in next dt) = λ dt

P(next reaction is reaction k) = λk/λ

Stochastic Simulation Algorithm (SSA)

Input: initial X , final time T
t := 0

while t < T do
compute λk and λ :=

∑
k λk

generate two uniform r.v.’s U1,U2

next reaction time t := t − log(U1)/λ
if t < T then

identify reaction k ′ s.t.∑
k<k ′

λk
λ
< U2 ≤

∑
k≤k ′

λk
λ

X := X + ζk ′

end if
end while

Stochastic Simulation Algorithm (SSA)

Major issue: the cost is proportional to the total number of
reactions that take place – could be millions.

This will be addressed by tau-leaping approximation, and MLMC.

Minor issues:

I for each reaction, the Direct Method requires 2 random
numbers

I 2 key steps have costs proportional to the number of possible
reactions.

The first of these is addressed by Gillespie’s Next Reaction
Method, and the second was addressed by Gibson & Bruck (2000).

Stochastic Simulation Algorithm (SSA)

Reaction k has the unit rate Poisson process

Yk

(∫ t

0
λk(s)ds

)
with real jump times t1, t2, . . . and pseudo-times τ1, τ2, . . . where∫ tn

0
λk(s)ds = τn =⇒

∫ tn+1

tn

λk(s) ds = τn+1 − τn

and τn+1 − τn = − logU where U is an (0, 1) uniform r.v.

Putting

Tk(t) = τn+1 − τn −
∫ t

tn

λk(s) ds

means that reaction k occurs when Tk reaches 0.

Stochastic Simulation Algorithm (SSA)

Input: initial X , timers Tk = − log(Uk), final time T
t := 0

loop
compute λk
set ∆t = mink(Tk/λk), k ′ = argmink (Tk/λk),
t := t + ∆t
if t > T , stop
X := X + ζk ′

Tk ′ = − logU
for all k 6= k ′ do
Tk := Tk − λk ∆t

end for
end loop

Tau-leaping method

SSA is used extensively but it can be very costly – some
simulations may involve millions of individual reactions, and
may need to perform up to a million such calculations.

The tau-leaping method is an approximate simulation method.

The Euler–Maruyama SDE approximation treats the drift and
diffusion values as constant within a timestep, and only updates
them at the end of the timestep.

Tau-leaping adopts the same idea, updating the λk only at the
beginning/end of each timestep.

Within a timestep of size h, λk is fixed so the number of reactions
of type k is P(λkh) where P(µ) is a Poisson r.v. with mean µ.

Tau-leaping algorithm

Input: timestep h, initial state X̂ , final time T = N h

for n = 1,N do

∆X̂ := 0

for each k do
compute λk(X̂)
generate Poisson r.v.’s Rk = Poiss(λkh)
∆X̂ := ∆X̂ + Rkζk

end for

X̂ := X̂ + ∆X̂
end for

Output: f (X̂)

Tau-leaping method

The cost is O(T/h), but there is now a discretisation error so that
for h� 1/λ

E[f (XT)− f (X̂T)] = O(h).

In next lecture will use MLMC to eliminate this error and also
reduce the total cost.

Also, Poisson r.v.’s have an unbounded size, so there is a small but
finite probability of ending up with negative population counts.

Set reaction rate to zero if negative count of one of the inputs.

Tau-leaping method

For large mean µ, the Poisson distribution is close to the Normal
with mean µ and variance µ, rounded to the nearest integer.

This means that we approximately have

X̂n+1 = X̂n +
∑
k

(
λk(X̂n)h +

√
λk(X̂n)

√
h Zkn

)
ζk

where Zkn are i.i.d. unit Normals random variables.

This corresponds to the Euler–Maruyama discretisation of the
chemical Langevin SDE approximation

dX =
∑
k

(
λk(X) dt +

√
λk(X) dWk

)
ζk

The fact that MLMC would be very effective for this SDE suggests
it might also be useful for tau-leaping.

Approximation hierarchy

Thus chemical kinetics can be modelled at 4 different levels:

I SSA – exact simulation of each and every reaction

I tau-leaping – regular updating of the propensity functions

I Langevin SDE – replacing Poisson distribution by Normal
approximation

I ODEs – ignoring stochastic effects entirely

These involve a balance between cost and accuracy, but ideally we
would like to achieve both low cost and high accuracy.

Towards multilevel simulation

Recall:

The SSA algorithm (and other equivalent methods) computes each
reaction one by one – exact but very costly

“Tau-leaping” is equivalent to the Euler–Maruyama method for
SDEs – the rates λk are frozen at the start of the timestep,
so for each timestep of size h just need a sample from a Poisson
distribution Poiss(λk h) to obtain the number of reactions in that
timestep.

i.e. for piecewise constant λ(s),

Y

(∫ (n+1) h

0
λ(s) ds

)
− Y

(∫ n h

0
λ(s) ds

)
∼ Poiss(λ h)

Multilevel simulation

Anderson & Higham (2012) developed (and analysed) a very
elegant and efficient multilevel version of this algorithm – big
savings because finest level usually has 1000’s of timesteps.

Key challenge: how to couple coarse and fine path simulations?

Crucial observation: for t1, t2 ≥ 0

Poiss(t1) + Poiss(t2)
d
= Poiss(t1+t2)

Multilevel coupling

Solution (for uniform timesteps with refinement factor of 2)

I simulate the Poisson variable on the coarse timestep as the
sum of two fine timestep Poisson variables

I couple the fine path and coarse path Poisson variables by
using common variable based on smaller of two rates

tn tn+1 tn+2

λcn h λcn h

λfn h λfn+1 h

If λfn < λcn, use Poiss(λcn h) ∼ Poiss(λfn h) + Poiss((λcn−λfn) h)
If λcn < λfn, use Poiss(λfn h) ∼ Poiss(λcn h) + Poiss((λfn−λcn) h)

Tau-leaping MLMC algorithm

Input: fine timestep h, final time T = N h, refinement factor M,
initial states X̂ f = X̂ c =X

for n = 1,N do
for each k do

compute λfk , and also λck if mod(n−1,M) = 0
R1,k := Poiss(min(λfk , λ

c
k)h)

R2,k := Poiss(|λfk−λck |h)

X̂ f := X̂ f + (R1,k + 1λfk>λck
R2,k) ζK

X̂ c := X̂ c + (R1,k + 1λck>λfk
R2,k) ζK

end for
end for

Numerical analysis

Anderson & Higham also analysed the variance and proved that

E[‖X̂ f − X̂ c‖2] = O(h).

Since the cost is O(h−1) this is very similar to the
Euler–Maruyama method applied to SDEs, and the overall
complexity is O(ε−2| log ε|2) for ε RMS error (independent of the
total number of reactions performed).

Extra bits

Once the timestep is reduced down to a size for which there are
very few reactions per timestep, it makes sense to switch to SSA.

Anderson & Higham (2012) came up with a very nice way to
couple the finest tau-leaping level to an SSA treatment, so the
final algorithm is unbiased.

The key idea is the “coarse” path uses tau-leaping, and the
“fine” path uses the exact updating of the rates λ, and each
reaction k can be split into two reactions:

I one with rate min(λf , λc)

I one with rate |λf −λc |
then use either Direct Method or Next Reaction Method for
coupled simulation.

This leads to an O(ε−2) complexity overall, with only a
(logN)2 dependence on the number of reactions per path.

Extra bits

Model reduction: some biochemical reaction networks are very
complex – can use a simpler approximate model (e.g. based on
some forward-backward reactions being in equilibrium) as an
additional “level”

Anderson & Higham (2012) also give an example of this.

Extra bits – adaptation

Adaptive time-stepping:

I Can be helpful to improve accuracy, especially when there is a
fast initial transient.

I MLMC treatment essentially the same as for SDEs.

Adaptive treatment of reactions:

I some handled by SSA, some by tau-leaping, perhaps even
some as Langevin SDEs

I This has been explored by Moraes et al (2016)

Extra bits – level 0 c.v.

Moraes et al (2016) also introduced an interesting control variate
for the very coarsest tau-leaping level.

Start from

X (t) = X (0) +
∑
k

Yk

(∫ t

0
λk(X (s))ds

)
ζk ,

replace Yk by identity, since E[Yk(s)]=s, to get

Z (t) = X (0) +
∑
k

(∫ t

0
λk(Z (s))ds

)
ζk , =⇒ Ż =

∑
k

λk ζk

and then we have the approximation

X̃ (t) = X (0) +
∑
k

Yk

(∫ t

0
λk(Z (s))ds

)
ζk .

Extra bits – level 0 c.v.

Defining

K =

∫ T

0
λk(Z (s))ds

then
E[X̃ (T)] = X (0) +

∑
k

K ζk

and for any polynomial f (X) can compute E[f (X̃ (T))].

X̃ (T) can then be simulated using the same Yk as the coarsest
level tau-leaping X̂ simulation.

Key References
D.T. Gillespie, “A general method for numerically simulating the
stochastic time evolution of coupled chemical reactions”,
J. Comp. Phys., 22(4):403-434, 1976.

D.T. Gillespie, “Exact stochastic simulation of coupled chemical
reactions”, J. Phys. Chem. 81(25):2340-2361, 1977.

M.A. Gibson, J. Bruck “Efficient Exact Stochastic Simulation of
Chemical Systems with Many Species and Many Channels”,
J. Phys. Chem., 104(9):1876-1889, 2000.

D.T. Gillespie, A. Ganguly, T.G. Kurtz, “Error analysis of
tau-leaping simulation methods”, Annals of Applied Probability,
21(6):2226-2262, 2011.

D.T. Gillespie, A. Hellander, L.R. Petzold, “Perspective:
Stochastic algorithms for chemical kinetics”, J. Chem. Phys.,
138(17):170901, 2013.

Key references – multilevel

D.F. Anderson, D.J. Higham. “Multi-level Monte Carlo for
continuous time Markov chains, with applications in biochemical
kinetics”. SIAM Multiscale Modelling and Simulation,
10(1):146-179, 2012.

D.F. Anderson, D.J. Higham, Y. Sun. “Complexity of multilevel
Monte Carlo tau-leaping”. SIAM Journal on Numerical Analysis,
52(6):3106-3127, 2014.

A. Moraes, R. Tempone, P. Vilanova. “A multilevel adaptive
reaction-splitting simulation method for stochastic reaction
networks”. SIAM Journal on Scientific Computing,
38(4):A2091-A2117, 2016.

