
Stochastic Simulation: Lecture 12

Christoph Reisinger

Oxford University Mathematical Institute

Modified from earlier slides by Prof. Mike Giles.



PDEs with Uncertainty

Looking at the history of numerical methods for PDEs, the first
steps were about improving the modelling:

I 1D → 2D → 3D

I steady → unsteady

I laminar flow → turbulence modelling → large eddy simulation
→ direct Navier-Stokes

I simple geometries (e.g. a wing) → complex geometries (e.g.
an aircraft in landing configuration)

I adding new features such as combustion, coupling to
structural / thermal analyses, etc.

. . . and then engineering switched from analysis to design.



PDEs with Uncertainty

The big move now is towards handling uncertainty:

I uncertainty in modelling parameters

I uncertainty in geometry

I uncertainty in initial conditions

I uncertainty in spatially-varying material properties

I inclusion of stochastic source terms

Engineering wants to move to “robust design” taking into account
the effects of uncertainty.

Other areas want to move into Bayesian inference, starting with
an a priori distribution for the uncertainty, and then using data
to derive an improved a posteriori distribution.



PDEs with Uncertainty

Examples:

I Long-term climate modelling:

Lots of sources of uncertainty including the effects of aerosols,
clouds, carbon cycle, ocean circulation
(http://climate.nasa.gov/uncertainties)

I Short-range weather prediction

Considerable uncertainty in the initial data due to limited
measurements



PDEs with Uncertainty

I Engineering analysis

Perhaps the biggest uncertainty is geometric due to
manufacturing tolerances

I Nuclear waste repository and oil reservoir modelling

Considerable uncertainty about porosity of rock

I Finance

Stochastic forcing due to market behaviour



PDEs with Uncertainty

Motivated by the modelling of oil reservoirs and groundwater
contamination, there has been a lot of MLMC/MLQMC research
on an elliptic SPDE coming from Darcy’s law:

∇·
(
κ(x)∇p

)
= 0

where the permeability κ(x) is uncertain due to lack of knowledge.

A log-Normal model uses

log κ(x) = u0(x) + u(x)

where u0(x) is the mean, and u(x) is Normally distributed
pointwise, with zero mean and spatial covariance

E[u(x1) u(x2)] = K (x1, x2).



Karhunen-Loève expansion
Under “suitable” conditions, the linear operator

u(x) −→
∫
D
K (x , y) u(y) dy

has a complete set of orthonormal eigenfunctions ej(x), and
associated eigenvalues λj > 0 such that∫

D
K (x , y) ej(y) dy = λj ej(x)

Hence, u(x) can be expressed as

u(x) =
∑
j

Zj ej(x)

where

Zj =

∫
D
ej(x) u(x) dx



Karhunen-Loève expansion

It follows that Zj is Normally distributed with zero mean, and

E[Zj Zk ] =

∫
D

∫
D
ej(x) E[u(x) u(y)] ek(y) dx dy

=

∫
D

∫
D
ej(x) K (x , y) ek(y) dx dy

= λk

∫
D
ej(x) ek(x) dx

= λkδj ,k

Thus the Zj are independent, and have variance λj .

Re-scaling, we can make the Zj have unit variance and define u(x)
as

u(x) =
∑
j

√
λj Zj ej(x)

which is the Karhunen-Loève expansion.



Karhunen-Loève expansion

Note that this is simply the continuous generalisation of the PCA
factorisation in which we ended up with

u = U Λ1/2 Z ≡
∑
j

√
λj Zj Uj

which Uj , λj being the eigenvectors and eigenvalues of the
covariance matrix Σ.

They both have a very similar computational drawback: if there
are M grid points in the domain D, then PCA has M eigenmodes
so the cost per sample is O(M2), in addition to an O(M3) setup
cost and an O(M2) memory requirement.

The K-L expansion is even worse as there are an infinite number of
eigenmodes, but in both cases the cost can be reduced by
truncating the expansion – keeping only the leading terms. Even
so, it can still be the dominant cost in a calculation, much more
than the solution of the elliptic PDE!



Elliptic SPDE

Often the covariance function is assumed to be stationary – i.e. a
function of the separation x1 − x2.

“Exponential” covariance:

cov(log κ(x1), log κ(x2)) = σ2 exp(−‖x1−x2‖/λ)

“Gaussian” covariance:

cov(log κ(x1), log κ(x2)) = σ2 exp(−‖x1−x2‖2/2λ2)

Typically in real applications σ is large, and λ is small – both of
these mean that PDE methods such as stochastic collocation are
very expensive



Elliptic SPDE

A typical realisation of κ for exponential covariance with
λ = 0.01, σ = 1.



Elliptic SPDE

Decay of 1D eigenvalues

When λ = 1, can use a low-dimensional approximation, but it’s
impractical for smaller λ.



SPDEs with multilevel

The approach is very simple, in principle:

I use a sequence of grids of increasing resolution in space
(and time)

I as with SDEs, determine the optimal allocation of
computational effort on the different levels

I the savings can be much greater because the cost goes up
more rapidly with level



MLMC Theorem

If there exist independent estimators Ŷ` based on N` Monte Carlo
samples, each costing C`, and positive constants α, β, γ, c1, c2, c3

such that α≥ 1
2 min(β, γ) and

i)
∣∣∣E[P̂`−P]

∣∣∣ ≤ c1 2−α `

ii) E[Ŷ`] =

 E[P̂0], ` = 0

E[P̂`−P̂`−1], ` > 0

iii) V[Ŷ`] ≤ c2 N
−1
` 2−β `

iv) E[C`] ≤ c3 2γ `



MLMC Theorem

then there exists a positive constant c4 such that for any ε<1
there exist L and N` for which the multilevel estimator

Ŷ =
L∑
`=0

Ŷ`,

has a mean-square-error with bound E
[(

Ŷ − E[P]
)2
]
< ε2

with a computational cost C with bound

C ≤


c4 ε

−2, β > γ,

c4 ε
−2(log ε)2, β = γ,

c4 ε
−2−(γ−β)/α, 0 < β < γ.



Engineering Uncertainty Quantification

I consider 3D elliptic PDE, with uncertain boundary data

I use grid spacing proportional to 2−` on level `

I cost is O(2+3`), if using an efficient multigrid solver

I 2nd order accuracy means that

P̂`(ω)− P(ω) ≈ c(ω) 2−2`

=⇒ P̂`−1(ω)− P̂`(ω) ≈ 3 c(ω) 2−2`

I hence, α=2, β=4, γ=3

I cost is O(ε−2) to obtain ε RMS accuracy

I in comparison, cost is O(ε−3/2) for a single calculation
with ε accuracy



Elliptic SPDE

Some early 2D experiments performed by Cliffe, Giles, Scheichl and
Teckentrup (2013):

I cell-centred finite volume discretisation on a uniform grid – for
rough coefficients we need to make grid spacing very small on
finest grid

I each level of refinement has twice as many grid points in each
direction

I these experiments used a direct solver for simplicity, but later
work used an efficient AMG multigrid solver with a cost
roughly proportional to the total number of grid points



2D Results

Boundary conditions for unit square [0, 1]2:
– fixed pressure: p(0, x2)=1, p(1, x2)=0
– Neumann b.c.: ∂p/∂x2(x1, 0)=∂p/∂x2(x1, 1)=0

Output quantity – mass flux:

[
−
∫

k
∂p

∂x1
dx2

]
x1=1

Correlation length: λ = 0.2

Coarsest grid: h = 1/8 (comparable to λ)

Finest grid: h = 1/128

Karhunen-Loève truncation: used the leading 4000 modes

Cost taken to be proportional to number of nodes



2D Results

V[P̂`−P̂`−1] ∼ h2
` E[P̂`−P̂`−1] ∼ h2

`



2D Results



Complexity analysis

Relating things back to the MLMC theorem:

E[P̂`−P] ∼ 2−2` =⇒ α = 2

V` ∼ 2−2` =⇒ β = 2

C` ∼ 2d` =⇒ γ = d (dimension of PDE)

To achieve r.m.s. accuracy ε requires finest level grid spacing
h ∼ ε1/2 and hence we get the following complexity:

dim MC MLMC

1 ε−2.5 ε−2

2 ε−3 ε−2(log ε)2

3 ε−3.5 ε−2.5



SPDEs

I great MLMC application – better cost savings than SDEs
due to higher dimensionality

I range of applications

I Graubner & Ritter (Darmstadt) – parabolic

I Giles, Reisinger (Oxford) – parabolic

I Cliffe, G, Scheichl, Teckentrup (Bath/Nottingham) – elliptic

I Barth, Jenny, Lang, Meyer, Mishra, Müller, Schwab, Sukys,
Zollinger (ETHZ) – elliptic, parabolic, hyperbolic

I Harbrecht, Peters (Basel) – elliptic

I Efendiev (Texas A&M) – numerical homogenization

I Vidal-Codina, G, Peraire (MIT) – reduced basis approximation



Parabolic SPDE

Parabolic SPDE arises in [filtering and] credit modelling
(Giles & Reisinger, 2012)

dp = −µ ∂p
∂x

dt +
1

2

∂2p

∂x2
dt +

√
ρ
∂p

∂x
dW

with absorbing boundary p(0, t) = 0

I derived in limit as number of firms −→∞
I x is distance to default

I p(x , t) is probability density function

I dW term corresponds to systemic risk

I ∂2p/∂x2 comes from idiosyncratic risk



Parabolic SPDE

I numerical discretisation combines Milstein time-marching with
central difference approximations

I coarsest level of approximation uses 1 timestep per quarter,
and 10 spatial points

I each finer level uses four times as many timesteps,
and twice as many spatial points – ratio is due to numerical
stability constraints

I mean-square stability theory, with and without absorbing
boundary

I computational cost C` ∝ 8`

I numerical results suggest variance V` ∝ 8−`

I can prove V` ∝ 16−` when no absorbing boundary



Parabolic SPDE

Fractional loss on equity tranche of a 5-year CDO:



Parabolic SPDE

Fractional loss on equity tranche of a 5-year CDO:



Parabolic SPDE

Milstein and central difference discretisation leads to

vn+1
j = vnj −

µ k +
√
ρ k Zn

2h

(
vnj+1 − vnj−1

)
+

(1−ρ) k + ρ k Z 2
n

2h2

(
vnj+1 − 2vnj + vnj−1

)
where Zn ∼ N(0, 1).

Considering a Fourier mode

vnj = gn exp(ijθ), |θ| ≤ π

leads to . . .



Parabolic SPDE

gn+1 =
(
a(θ) + b(θ)Zn + c(θ)Z 2

n

)
gn,

where

a(θ) = 1− i µ k

h
sin θ − 2 (1−ρ) k

h2
sin2 θ

2 ,

b(θ) = − i
√
ρ k

h
sin θ,

c(θ) = − 2 ρ k

h2
sin2 θ

2 .



Parabolic SPDE

Following the approach of mean-square stability analysis (e.g. see
Higham)

E[ |gn+1|2] = E
[
(a + b Zn + c Z 2

n )(a∗ + b∗Zn + c∗Z 2
n ) |gn|2

]
=

(
|a+c |2 + |b|2 + 2|c|2

)
E
[
|gn|2

]
so stability requires |a+c |2 + |b|2 + 2|c |2 ≤ 1 for all θ,
which leads to a timestep stability limit:

µ2k ≤ 1− ρ,
k

h2
≤ (1 + 2ρ2)−1.

Additional analysis extends this to include the effect of boundary
conditions.



Parabolic SPDE

This can be extended to finite domains using matrix stability
analysis, writing the discrete equations as

Vn+1 = (A + B Zn + C Z 2
n ) Vn, where

A = I − µ k

2h
D1 +

(1−ρ) k

2h2
D2, B = −

√
ρ k

2h
D1, C =

ρ k

2h2
D2,

and D1 and D2 look like

D1 =


0 1
−1 0 1

−1 0 1
−1 0

 , D2 =


−2 1

1 −2 1
1 −2 1

1 −2

 .



Parabolic SPDE

E[V T
n+1Vn+1] = E

[
V T
n (AT +BTZn+CTZ 2

n )(A+B Zn+C Z 2
n ) Vn

]
= E

[
V T
n

(
(A+C )T (A+C ) + BTB + 2CTC

)
Vn

]
D1 is anti-symmetric and D2 is symmetric, and

D1D2 − D2D1 = E1 − E2, D2
1 = D3 + E1 + E2

where D3 looks like

D3 =


−3 0 1

0 −2 0 1
1 0 −2 0

1 0 −3

 ,



Parabolic SPDE

and E1 and E2 are zero apart from one corner element,

E1 =

 2
 , E2 =


2


This leads to

E
[
V T
n

(
(A+C )T (A+C ) + BTB + 2CTC

)
Vn

]
= E

[
V T
n MVn

]
− (e1 + e2)E[(vn1 )2]− (e1 − e2)E[(vnJ−1)2],

where e1 and e2 are scalars and

M = I − k

h2
D2 +

k2

4 h4
D2

2 −
(
ρk

4 h2
+
µ2k2

4 h2

)
D3.



Parabolic SPDE

It can be verified that the mth eigenvector of M is a Fourier mode
and the associated eigenvalue is

|a(θm)+c(θm)|2 + |b(θm)|2 + 2|c(θm)|2

where a(θ), b(θ), c(θ) are the same functions as before.

In the limit h, k/h→ 0, e1±e2 > 0, and therefore the Fourier
stability condition

sup
θ

{
|a(θ)+c(θ)|2 + |b(θ)|2 + 2|c(θ)|2

}
≤ 1

is also a sufficient condition for mean-square matrix stability.
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Appendix: Alternative ways to generate Gaussian fields

a) Cholesky factorisation of covariance matrix

Same bad points as PCA factorisation: O(M3) setup cost, O(M2)
memory requirement, O(M2) cost per sample

b) use of H-matrices (H stands for Hierarchical)

Promising new research direction:

https://en.wikipedia.org/wiki/Hierarchical matrix

J. Dölz, H. Harbrecht, and C. Schwab, Covariance regularity and
H-matrix approximation for rough random fields, Numerische
Mathematik, 135:1045-1071, 2017.



Alternative ways to generate Gaussian fields

c) circulant embedding

In 1D, for a uniform grid and a stationary covariance function, the
covariance matrix looks like:

a0 a1 a2 a3 a4 a5

a1 a0 a1 a2 a3 a4

a2 a1 a0 a1 a2 a3

a3 a2 a1 a0 a1 a2

a4 a3 a2 a1 a0 a1

a5 a4 a3 a2 a1 a0


which can be inserted into a larger circulant matrix . . .



Alternative ways to generate Gaussian fields

A =



a0 a1 a2 a3 a4 a5 a4 a3 a2 a1

a1 a0 a1 a2 a3 a4 a5 a4 a3 a2

a2 a1 a0 a1 a2 a3 a4 a5 a4 a3

a3 a2 a1 a0 a1 a2 a3 a4 a5 a4

a4 a3 a2 a1 a0 a1 a2 a3 a4 a5

a5 a4 a3 a2 a1 a0 a1 a2 a3 a4

a4 a5 a4 a3 a2 a1 a0 a1 a2 a3

a3 a4 a5 a4 a3 a2 a1 a0 a1 a2

a2 a3 a4 a5 a4 a3 a2 a1 a0 a1

a1 a2 a3 a4 a5 a4 a3 a2 a1 a0


in which each row (and column) is the same as the previous, but
rotated by 1 position

Hence the eigenvectors are Fourier modes, and the corresponding
eigenvalues come from a Fourier transform of the first row.



Alternative ways to generate Gaussian fields

This give
A = F ΛFT = L LT

where
L = F Λ1/2

and therefore
LZ =

∑
j

√
λj Zj Fj

which can be computed in O(M logM) cost.

There are some minor technical difficulties (making sure the
embedded matrix has positive eigenvalues), but it extends to 2D
and 3D and works well when doing MLMC on regular grids.



Alternative ways to generate Gaussian fields

d) spatial white noise

If Ẇ is spatial white noise. then the solution of

(I − κ−2∇2)ku = Ẇ

is a Matérn field with covariance of the form

K (x , y) =
σ2

2ν−1Γ(ν)
(κr)νKν(κr), r = ‖x − y‖2,

where ν = 2k − d/2, and Kν is a Bessel function of the second
kind – the Matérn class includes the exponential and Gaussian
cases mentioned previously.



Alternative ways to generate Gaussian fields

What is white noise Ẇ ?

It is a generalised stochastic field defined by its effect on
L2-integrable test functions φj so that

〈Ẇ , φj〉 ∼ N

(
0,

∫
D
φ2
j dx

)
and

E
[
〈Ẇ , φj〉 〈Ẇ , φk〉

]
=

∫
D
φj φk dx

If a domain D is split up into a number of disjoint pieces D1, D2,
D3, . . . , then Ẇ can be decomposed into the sum of its restrictions
onto each of those pieces, and the effects of each are independent.

Hence, can independently simulate the effect of each, and then
sum them up.



Alternative ways to generate Gaussian fields

In a MLMC setting, working with coarse and fine grids composed
of triangles (2D) or tetrahedra (3D), can create a finer supermesh
of triangles/tetrahedra such that each new cell has a non-zero
intersection with one and only one coarse and fine cell.

If Ẇ
∣∣∣
∆

is the restriction of Ẇ to this cell, then we can create a

small covariance matrix for the test functions which are non-zero
on this cell:

A∆ ≡ E
[
〈Ẇ

∣∣∣
∆
φj〉 〈Ẇ

∣∣∣
∆
φk〉
]

=

∫
∆
φj φk dx

A∆ is small, so can use Cholesky factorisation to generate required

samples of 〈Ẇ
∣∣∣
∆
φj〉 on both grids.



Alternative ways to generate Gaussian fields

Additional complication: for some values of the Matérn parameter
ν, need to solve

(I − κ−2∇2)ku = Ẇ

for non-integer values of k.

How do we do that? What does it even mean?

We rely on a complex contour integral representation of
generalised matrix functions:

f (A) =
1

2πi

∫
Γ
f (z) (zI − A)−1 dz

and approximate the integral.



Final comments

I PDEs with random inputs / boundary data have been well
explored

I PDEs with random coefficients have also been well explored
– growing body of literature on numerical analysis too

I Stochastic PDEs with white noise or Brownian noise inputs
have received much less attention, so still more to be done?

I’m not even sure how much is proven concerning
wellposedness and numerical analysis


