C4.3 Functional Analytic Methods for PDEs Lectures 11-12

Luc Nguyen
luc.nguyen@maths

University of Oxford

MT 2022

In previous lectures

- Sobolev spaces and their properties

This lecture

- Linear elliptic equations of second order.
- Classical and weak solutions.
- Energy estimates.
- First existence theorem: Riesz representation theorem.
- First existence theorem: Direct method of the calculus of variation.
- Second existence theorem: Fredholm alternative.

The equation of interest

- We will consider the equation

$$
\begin{equation*}
L u:=-\partial_{i}\left(a_{i j} \partial_{j} u\right)+b_{i} \partial_{i} u+c u=f+\partial_{i} g_{i} \text { in } \Omega \tag{}
\end{equation*}
$$

where
$\star \Omega$ is a domain in \mathbb{R}^{n}, which frequently has Lipschitz regularity or better,
$\star u: \Omega \rightarrow \mathbb{R}$ is the unknown,
$\star a_{i j}, b_{i}, c: \Omega \rightarrow \mathbb{R}$ are given coefficients,
$\star f, g_{i}: \Omega \rightarrow \mathbb{R}$ are given sources.

- Equation $\left(^{*}\right)$ is said to be in divergence form. It can be written in more compact form:

$$
L u=-\operatorname{div}(a \nabla u)+b \cdot \nabla u+c u=f+\operatorname{div} g
$$

where

$$
\begin{aligned}
& \star a=\left(a_{i j}\right) \text { is an } n \times n \text { matrix, } \\
& \star b=\left(b_{i}\right) \text { and } g=\left(g_{i}\right) \text { are (column) vectors. }
\end{aligned}
$$

Divergence vs non-divergence form

- To dispel confusion, we note that we will not consider the equation

$$
\begin{equation*}
-a_{i j} \partial_{i} \partial_{j} u+b_{i} \partial_{i} u+c u=f+\partial_{i} g_{i} \text { in } \Omega, \tag{**}
\end{equation*}
$$

which is also of importance. The equation $\left({ }^{* *}\right)$ is said to be in non-divergence form.
To treat $\left({ }^{* *}\right)$, we will need some preparation different from what we have had so far.

Structural assumptions

We make the following assumptions:

- The coefficients $a_{i j}, b_{i}, c: \Omega \rightarrow \mathbb{R}$ belong to $L^{\infty}(\Omega)$.
- The coefficients $a_{i j}$ is symmetric, i.e. $a_{i j}=a_{j i}$.
- The coefficients $a_{i j}$ is uniformly elliptic - this will be defined on the next slide.

Ellipticity

Definition

Let $a=\left(a_{i j}\right): \Omega \rightarrow \mathbb{R}^{n \times n}$ be symmetric and have measurable entries.

- a is elliptic if

$$
a_{i j}(x) \xi_{i} \xi_{j} \geq 0 \text { for all } \xi \in \mathbb{R}^{n} \text { and a.e. } x \in \Omega
$$

(In other words, a is non-negative definite a.e. in Ω.)

- a is strictly elliptic if there exists $\lambda>0$ such that

$$
a_{i j}(x) \xi_{i} \xi_{j} \geq \lambda|\xi|^{2} \text { for all } \xi \in \mathbb{R}^{n} \text { and a.e. } x \in \Omega
$$

- a is uniformly elliptic if there exist $0<\lambda \leq \Lambda<\infty$ such that

$$
\lambda|\xi|^{2} \leq a_{i j}(x) \xi_{i} \xi_{j} \leq \Lambda|\xi|^{2} \text { for all } \xi \in \mathbb{R}^{n} \text { and a.e. } x \in \Omega
$$

Examples

Two simplistic but important examples:

- $a_{i j}=\delta_{i j}$ in all of Ω.
- $a_{i j}=k(x) \delta_{i j}$ where $k=k_{1} \chi_{A}+k_{2} \chi_{\Omega \backslash A}$ for some subset A of Ω and some constants $k_{1}, k_{2}>0$.

The Dirichlet boundary value problem

We will write $L=-\partial_{i}\left(a_{i j} \partial_{j}\right)+b_{i} \partial_{i}+c$ to mean that

$$
L u=-\partial_{i}\left(a_{i j} \partial_{j} u\right)+b_{i} \partial_{i} u+c u .
$$

The Dirichlet boundary value problem for L asks to find a function u satisfying

$$
\left\{\begin{align*}
L u & =f+\partial_{i} g_{i} & & \text { in } \Omega, \tag{BVP}\\
u & =u_{0} & & \text { on } \partial \Omega .
\end{align*}\right.
$$

where
$\star f$ and g are given sources,
$\star u_{0}$ is given boundary data.

Classical solutions

$$
\begin{gathered}
L=-\partial_{i}\left(a_{i j} \partial_{j}\right)+b_{i} \partial_{i}+c \\
\left\{\begin{aligned}
L u=f & =f+\partial_{i} g_{i} \\
u=u_{0} & \text { in } \Omega \\
u & \text { on } \partial \Omega
\end{aligned}\right.
\end{gathered}
$$

Definition

Suppose $a \in C^{1}(\Omega), b, c \in C(\Omega)$. For a given $f \in C(\Omega), g \in C^{1}(\Omega)$ and $u_{0} \in C(\partial \Omega)$, a function $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ is called a classical solution to the Dirichlet boundary value problem (BVP) if it satisfies (BVP) in the usual sense.

- We saw in the first lecture that the notion of classical solutions is insufficient for our need.

An observation

- Suppose $a \in C^{1}(\Omega), b, c \in C(\Omega), f \in C(\Omega)$ and $g \in C^{1}(\Omega)$. Suppose $u \in C^{2}(\Omega)$ satisfies

$$
\begin{equation*}
L u=-\partial_{i}\left(a_{i j} \partial_{j} u\right)+b_{i} \partial_{i} u+c u=f+\partial_{i} g_{i} \text { in } \Omega . \tag{*}
\end{equation*}
$$

- If $\varphi \in C_{c}^{\infty}(\Omega)$ is a test function, then

$$
\int_{\Omega}(L u) \varphi d x=\int_{\Omega}\left[a_{i j} \partial_{j} u \partial_{i} \varphi+b_{i} \partial_{i} u \varphi+c u \varphi\right] d x
$$

and

$$
\int_{\Omega}\left[f+\partial_{i} g_{i}\right] \varphi d x=\int_{\Omega}\left[f \varphi-g_{i} \partial_{i} \varphi\right] d x
$$

- Therefore, for all $\varphi \in C_{c}^{\infty}(\Omega)$,

$$
\int_{\Omega}\left[a_{i j} \partial_{j} u \partial_{i} \varphi+b_{i} \partial_{i} u \varphi+c u \varphi\right] d x=\int_{\Omega}\left[f \varphi-g_{i} \partial_{i} \varphi\right] d x
$$

An observation

- Conversely, if u is such that (\diamond) holds for all $\varphi \in C_{c}^{\infty}(\Omega)$, then by reversing the argument, we have

$$
\int_{\Omega}(L u) \varphi d x=\int_{\Omega}\left[f+\partial_{i} g_{i}\right] \varphi d x \text { for all } \varphi \in C_{c}^{\infty}(\Omega)
$$

This implies $L u=f+\partial_{i} g_{i}$ in Ω, i.e. u satisfies ($\left.{ }^{*}\right)$.

- We conclude that $u \in C^{2}(\Omega)$ satisfies

$$
\begin{equation*}
L u=-\partial_{i}\left(a_{i j} \partial_{j} u\right)+b_{i} \partial_{i} u+c u=f+\partial_{i} g_{i} \text { in } \Omega \tag{*}
\end{equation*}
$$

if and only if u satisfies

$$
\int_{\Omega}\left[a_{i j} \partial_{j} u \partial_{i} \varphi+b_{i} \partial_{i} u \varphi+c u \varphi\right] d x=\int_{\Omega}\left[f \varphi-g_{i} \partial_{i} \varphi\right] d x
$$

for all $\varphi \in C_{c}^{\infty}(\Omega)$.

An observation

- We conclude that $u \in C^{2}(\Omega)$ satisfies

$$
\begin{equation*}
L u=-\partial_{i}\left(a_{i j} \partial_{j} u\right)+b_{i} \partial_{i} u+c u=f+\partial_{i} g_{i} \text { in } \Omega \tag{*}
\end{equation*}
$$

if and only if u satisfies

$$
\int_{\Omega}\left[a_{i j} \partial_{j} u \partial_{i} \varphi+b_{i} \partial_{i} u \varphi+c u \varphi\right] d x=\int_{\Omega}\left[f \varphi-g_{i} \partial_{i} \varphi\right] d x
$$

for all $\varphi \in C_{c}^{\infty}(\Omega)$.

- Key: While the formulation $\left(^{*}\right)$ requires u to be twice differentiable, the formulation (\diamond) requires u to be only once differentiable.

Weak solutions

Definition

Let $a, b, c \in L^{\infty}(\Omega)$ and $L=-\partial_{i}\left(a_{i j} \partial_{j}\right)+b_{i} \partial_{i}+c$.

- Suppose $f \in L^{2}(\Omega), g \in L^{2}(\Omega)$.

We say that $u \in H^{1}(\Omega)$ is a weak solution (or generalized solution) to the equation

$$
\begin{equation*}
L u=f+\partial_{i} g_{i} \text { in } \Omega \tag{}
\end{equation*}
$$

if

$$
\int_{\Omega}\left[a_{i j} \partial_{j} u \partial_{i} \varphi+b_{i} \partial_{i} u \varphi+c u \varphi\right] d x=\int_{\Omega}\left[f \varphi-g_{i} \partial_{i} \varphi\right] d x
$$

holds for all $\varphi \in H_{0}^{1}(\Omega)$.
When this holds, we also say that u satisfies $\left({ }^{*}\right)$ in the weak sense.

Weak solutions

Definition

Let $a, b, c \in L^{\infty}(\Omega)$ and $L=-\partial_{i}\left(a_{i j} \partial_{j}\right)+b_{i} \partial_{i}+c$.

- Suppose that $f \in L^{2}(\Omega), g \in L^{2}(\Omega)$ and $u_{0} \in H^{1}(\Omega)$. We say that $u \in H^{1}(\Omega)$ is a weak solution (or generalized solution) to the Dirichlet boundary value problem

$$
\left\{\begin{aligned}
L u & =f+\partial_{i} g_{i} & & \text { in } \Omega \\
u & =u_{0} & & \text { on } \partial \Omega
\end{aligned}\right.
$$

if $L u=f+\partial_{i} g_{i}$ in Ω in the weak sense and if $u-u_{0} \in H_{0}^{1}(\Omega)$.

Weak solutions

- It is convenient to introduce the bilinear form $B(\cdot, \cdot)$:

$$
B(u, v)=\int_{\Omega}\left[a_{i j} \partial_{j} u \partial_{i} v+b_{i} \partial_{i} u v+c u v\right] d x \quad u, v \in H^{1}(\Omega)
$$

B is called the bilinear form associated with the operator L.

- Then $u \in H^{1}(\Omega)$ satisfies $\left(^{*}\right)$ in the weak sense if

$$
B(u, \varphi)=\langle f, \varphi\rangle-\left\langle g_{i}, \partial_{i} \varphi\right\rangle \text { for all } \varphi \in H_{0}^{1}(\Omega)
$$

where $\langle\cdot, \cdot\rangle$ denotes the inner product of $L^{2}(\Omega)$.

Energy estimate

Theorem (Energy estimates)

Suppose that $a, b, c \in L^{\infty}(\Omega)$, a is uniformly elliptic, $L=-\partial_{i}\left(a_{i j} \partial_{j}\right)+b_{i} \partial_{i}+c$ and B is its associated bilinear form. Then there exists some large constant $C>0$ such that

$$
\begin{aligned}
|B(u, v)| & \leq C\|u\|_{H^{1}(\Omega)}\|v\|_{H^{1}(\Omega)} \\
\frac{\lambda}{2}\|u\|_{H_{1}(\Omega)}^{2} & \leq B[u, u]+C\|u\|_{L^{2}(\Omega)}^{2}
\end{aligned}
$$

Here λ is the constant appearing in the definition of ellipticity of a.

Energy estimate

Proof

- The first estimate is clear from the definition of B and Cauchy-Schwarz's inequality:

$$
\begin{aligned}
&|B(u, v)| \leq \int_{\Omega}\left[\left|a_{i j}\right|\left|\partial_{j} u\left\|\partial_{i} v\left|+\left|b_{i}\right|\right| \partial_{i} u\right\| v\right|+|c\|u\| v|\right] d x \\
& \leq\|a\|_{L^{\infty}}\|\nabla u\|_{L^{2}}\|\nabla v\|_{L^{2}}+\|b\|_{L^{\infty}}\|\nabla u\|_{L^{2}}\|v\|_{L^{2}} \\
& \quad+\|c\|_{L^{\infty}}\|u\|_{L^{2}}\|v\|_{L^{2}} \\
& \leq C\|u\|_{H^{1}}\|v\|_{H^{1}}
\end{aligned}
$$

Energy estimate

Proof

- For the second estimate, we start by estimating the lower order term in the same fashion while leaving the highest order term untouched:

$$
\begin{aligned}
& B(u, u) \geq \int_{\Omega}\left[a_{i j} \partial_{j} u \partial_{i} u-\left|b_{i}\left\|\partial_{i} u\right\| u\right|-|c \| u|^{2}\right] d x \\
& \geq \int_{\Omega} a_{i j} \partial_{j} u \partial_{i} u d x \\
& \quad \quad-\|b\|_{L^{\infty}}\|\nabla u\|_{L^{2}}\|u\|_{L^{2}}-\|c\|_{L^{\infty}}\|u\|_{L^{2}}^{2} .
\end{aligned}
$$

- The leading term is treated using the ellipticity condition:

$$
a_{i j} \partial_{j} u \partial_{i} u \geq \lambda|\nabla u|^{2}
$$

Energy estimate

Proof

- We thus have

$$
B(u, u) \geq \lambda\|\nabla u\|_{L^{2}}^{2}-\|b\|_{L^{\infty}}\|\nabla u\|_{L^{2}}\|u\|_{L^{2}}-\|c\|_{L^{\infty}}\|u\|_{L^{2}}^{2} .
$$

- Using the inequality $x y \leq \frac{\lambda}{2} x^{2}+\frac{1}{2 \lambda} y^{2}$, we can absorb the quantity $\|\nabla u\|_{L^{2}}$ in the second term on the right hand side to the first term:

$$
\begin{aligned}
B(u, u) & \geq \lambda\|\nabla u\|_{L^{2}}^{2}-\frac{\lambda}{2}\|\nabla u\|_{L^{2}}^{2}-\frac{1}{2 \lambda}\|b\|_{L^{\infty}}^{2}\|u\|_{L^{2}}^{2}-\|c\|_{L^{\infty}}\|u\|_{L^{2}}^{2} \\
& =\frac{\lambda}{2}\|\nabla u\|_{L^{2}}^{2}-C\|u\|_{L^{2}}^{2} .
\end{aligned}
$$

L as an operator on $H^{1}(\Omega)$

Corollary

Suppose that $a, b, c \in L^{\infty}(\Omega)$, a is uniformly elliptic, $L=-\partial_{i}\left(a_{i j} \partial_{j}\right)+b_{i} \partial_{i}+c$.
For every $u \in H^{1}(\Omega)$, define a map $L u: H_{0}^{1}(\Omega) \rightarrow \mathbb{R}$ by

$$
(L u)(\varphi)=B(u, \varphi) \text { for all } \varphi \in H_{0}^{1}(\Omega)
$$

Then $L u: H_{0}^{1}(\Omega) \rightarrow \mathbb{R}$ is bounded linear, i.e.
$L u \in\left(H_{0}^{1}(\Omega)\right)^{*}=: H^{-1}(\Omega)$.
Furthermore, L is a bounded linear map from $H^{1}(\Omega)$ into $H^{-1}(\Omega)$.

L as an operator on $H^{1}(\Omega)$

Proof

- Linearity if clear. By the energy estimate, $|(L u)(\varphi)| \leq C\|u\|_{H^{1}}\|\varphi\|_{H^{1}}$ and so $L u$ belongs to $H^{-1}(\Omega)$.
- Furthermore, we have

$$
\|L u\|_{H^{-1}(\Omega)}=\sup _{\varphi \in H_{0}^{1}(\Omega),\|\varphi\|_{H^{1}} \leq 1}|L u(\varphi)| \leq C\|u\|_{H^{1}}
$$

This means $L \in \mathscr{L}\left(H^{1}(\Omega), H^{-1}(\Omega)\right)$.

Weak sense vs H^{-1} sense

Corollary

u is a weak solution to $\left(^{*}\right)$ if and only if $L u=f+\partial_{i} g_{i}$ as elements of $H^{-1}(\Omega)$.

Here $f+\partial_{i} g_{i}$ is viewed as an element of $H^{-1}(\Omega)$ by letting

$$
\left(f+\partial_{i} g_{i}\right)(\varphi)=\int_{\Omega}\left[f \varphi-g_{i} \partial_{i} \varphi\right] d x
$$

$W^{1, p}$ solutions

Remark

One can similarly define a notion of $W^{1, p}$ solutions to $\left(^{*}\right)$ and (BVP) using $p \neq 2$. The treatment for these type of solutions is beyond the scope of this course.

An existence theorem

Theorem

Suppose that a, $c \in L^{\infty}(\Omega)$, a is uniformly elliptic, $c \geq 0$ a.e. in Ω, and $L=-\partial_{i}\left(a_{i j} \partial_{j}\right)+c$ (i.e. $b \equiv 0$). Then for every $f \in L^{2}(\Omega)$, $g \in L^{2}(\Omega)$ and $u_{0} \in H^{1}(\Omega)$, the Dirichlet boundary value problem

$$
\left\{\begin{aligned}
L u & =f+\partial_{i} g_{i} & & \text { in } \Omega, \\
u & =u_{0} & & \text { on } \partial \Omega .
\end{aligned}\right.
$$

has a unique weak solution $u \in H^{1}(\Omega)$.

An existence theorem

The above theorem is a consequence of the following statement:

Theorem

Suppose that a, $c \in L^{\infty}(\Omega)$, a is uniformly elliptic, $c \geq 0$ a.e. in Ω, and $L=-\partial_{i}\left(a_{i j} \partial_{j}\right)+c$ (i.e. $b \equiv 0$). Then $\left.L\right|_{H_{0}^{1}(\Omega)}$ is a bijection from $H_{0}^{1}(\Omega)$ into $H^{-1}(\Omega)$.

Indeed, if we let $L^{-1}: H^{-1}(\Omega) \rightarrow H_{0}^{1}(\Omega)$ be the inverse of $\left.L\right|_{H_{0}^{1}(\Omega)}$, then the unique solution to (BVP) is given by

$$
u=u_{0}+L^{-1}\left(-L u_{0}+f+\partial_{i} g_{i}\right)
$$

An existence theorem

First proof: Riesz representation theorem.

- Observe that the bilinear form associated with L is positive in $H_{0}^{1}(\Omega)$:

$$
\begin{aligned}
B(u, u) & =\int_{\Omega}\left[a_{i j} \partial_{j} u \partial_{i} u+c u^{2}\right] d x \\
& \geq \lambda\|\nabla u\|_{L^{2}}^{2} \geq \frac{1}{C}\|u\|_{H^{1}}^{2} \text { for all } u \in H_{0}^{1}(\Omega)
\end{aligned}
$$

Hence $B(\cdot, \cdot)$ defines an inner product on $H_{0}^{1}(\Omega)$, which is equivalent to the standard inner product of $H_{0}^{1}(\Omega)$.

- Thus, by the Riesz representation theorem, for every $T \in H^{-1}(\Omega)$ there exists a unique $u \in H_{0}^{1}(\Omega)$ such that

$$
B(u, v)=T v \text { for all } v \in H_{0}^{1}(\Omega)
$$

But this means precisely that $L u=T$. We conclude that $\left.L\right|_{H_{0}^{1}(\Omega)}$ is a bijection from $H_{0}^{1}(\Omega)$ into $H^{-1}(\Omega)$.

An existence theorem

Theorem

Suppose that a, $c \in L^{\infty}(\Omega)$, a is uniformly elliptic, $c \geq 0$ a.e. in Ω, and $L=-\partial_{i}\left(a_{i j} \partial_{j}\right)+c$ (i.e. $b \equiv 0$). Then for every $f \in L^{2}(\Omega)$, $g \in L^{2}(\Omega)$ and $u_{0} \in H^{1}(\Omega)$, the Dirichlet boundary value problem

$$
\left\{\begin{aligned}
L u & =f+\partial_{i} g_{i} & & \text { in } \Omega, \\
u & =u_{0} & & \text { on } \partial \Omega
\end{aligned}\right.
$$

has a unique weak solution $u \in H^{1}(\Omega)$.

\|

Theorem

Suppose that a, $c \in L^{\infty}(\Omega)$, a is uniformly elliptic, $c \geq 0$ a.e. in Ω, and $L=-\partial_{i}\left(a_{i j} \partial_{j}\right)+c$ (i.e. $b \equiv 0$). Then $L_{H_{0}^{1}(\Omega)}$ is a bijection from $H_{0}^{1}(\Omega)$ into $H^{-1}(\Omega)$.

An existence theorem

First proof: Riesz representation theorem.

- The equation $L u=T$ with $T \in H^{-1}(\Omega)$ is equivalent to

$$
B(u, v)=T v \text { for all } v \in H_{0}^{1}(\Omega)
$$

- The bilinear form $B(\cdot, \cdot)$ defines an inner product on $H_{0}^{1}(\Omega)$, which is equivalent to the standard inner product of $H_{0}^{1}(\Omega)$. The conclusion is reached using the Riesz representation theorem.
Second proof: Direct method of the calculus of variation.
We'll use the fact that $H_{0}^{1}(\Omega)$ is weakly closed in $H^{1}(\Omega)$. This is a consequence of the following general theorem:

Theorem (Mazur)

Let K be a closed convex subset of a normed vector space $X,\left(x_{n}\right)$ be a sequence of points in K converging weakly to x. Then $x \in K$.

An existence theorem

Second proof

- Fix $T \in H^{-1}(\Omega)$ and define the 'variational energy':

$$
I[v]=\frac{1}{2} B(v, v)-T_{v} \text { for } v \in X:=H_{0}^{1}(\Omega) \text {. }
$$

The key point of the proof is the fact that: $u \in X$ solves $L u=T$ if u is a minimizer or I on X i.e. $I[u] \leq I[v]$ for all $v \in X$.

- Step 1: Boundedness of minimizing sequence.

Let $\alpha=\inf _{X} I \in \mathbb{R} \cup\{-\infty\}$. Note that $I[0]=0$ and so $\alpha \leq 0$. Pick $u_{m} \in X$ such that $l\left[u_{m}\right] \rightarrow \alpha$. We show that the sequence $\left(u_{m}\right)$ is bounded in $H^{1}(\Omega)$.

* By the ellipticity and the non-negativity of c, we have

$$
B\left(u_{m}, u_{m}\right)=\int_{\Omega}\left[a_{i j} \partial_{j} u_{m} \partial_{i} u_{m}+c u_{m}^{2}\right] d x \geq \lambda \int_{\Omega}\left|\nabla u_{m}\right|^{2} d x .
$$

An existence theorem

Second proof

- Step 1: Boundedness of minimizing sequence $\left(u_{m}\right)$.
\star Hence, by Friedrichs' inequality, $B\left(u_{m}, u_{m}\right) \geq \frac{1}{C}\left\|u_{m}\right\|_{X}^{2}$.
\star It follows that

$$
\begin{aligned}
I\left[u_{m}\right] & =\frac{1}{2} B\left(u_{m}, u_{m}\right)-T u_{m} \geq \frac{1}{2 C}\left\|u_{m}\right\|_{X}^{2}-\|T\|\left\|u_{m}\right\|_{X} \\
& \geq \frac{1}{4 C}\left\|u_{m}\right\|_{X}^{2}-C\|T\|^{2}
\end{aligned}
$$

* On the other hand, as $I\left[u_{m}\right] \rightarrow \alpha \leq 0$, we have $\left(I\left[u_{m}\right]\right)$ is bounded from above. Therefore $\left(u_{m}\right)$ is bounded in X.
- Step 2: The weak convergence of $\left(u_{m}\right)$ along a subsequence to a minimizer of I.
* Since $H^{1}(\Omega)$ is reflexive, the bounded sequence $\left(u_{m}\right)$ has a weakly convergent subsequence.
\star We still denote this subsequence $\left(u_{m}\right)$ so that $u_{m} \rightharpoonup u$ in $H^{1}(\Omega)$.

An existence theorem

Second proof

- Step 2: The weak convergence of $\left(u_{m}\right)$ along a subsequence to a minimizer of I.
$\star u_{m} \rightharpoonup u$ in H^{1}.
\star As X is weakly closed in H^{1} and $\left(u_{m}\right) \in X$, we have that $u \in X$.
\star By definition of weak convergence, we have $T u_{m} \rightarrow T u$. We claim that

$$
\begin{equation*}
\liminf _{m \rightarrow \infty} B\left(u_{m}, u_{m}\right) \geq B(u, u) \tag{*}
\end{equation*}
$$

Once this is shown, we have that $I[u] \leq \liminf I\left[u_{m}\right]=\alpha$ and so $I[u]=\alpha$.

An existence theorem

Second proof

- Step 2: The convergence of $\left(u_{m}\right)$ along a subsequence to a minimizer of I.
\star We now prove $\left(^{*}\right)$, i.e. $\liminf _{m \rightarrow \infty} B\left(u_{m}, u_{m}\right) \geq B(u, u)$.
\star To illustrate the idea, let us consider for now the case $c=0$ and $a_{i j}=\delta_{i j}$. Then

$$
\begin{aligned}
B\left(u_{m}, u_{m}\right)-B(u, u) & =\int_{\Omega}\left[\left|\nabla u_{m}\right|^{2}-|\nabla u|^{2}\right] d x \\
& =\int_{\Omega}\left|\nabla\left(u_{m}-u\right)\right|^{2} d x+2 \int_{\Omega} \nabla\left(u_{m}-u\right) \cdot \nabla u d x
\end{aligned}
$$

The first term is non-negative. The second term converges to 0 as $\nabla\left(u_{m}-u\right) \rightharpoonup 0$ in L^{2}. Hence
$\liminf _{m \rightarrow \infty}\left[B\left(u_{m}, u_{m}\right)-B(u, u)\right]=\liminf _{m \rightarrow \infty} \int_{\Omega}\left|\nabla\left(u_{m}-u\right)\right|^{2} d x \geq 0$.

An existence theorem

Second proof

- Step 2: The convergence of $\left(u_{m}\right)$ along a subsequence to a minimizer of I.
\star The proof in the general case is similar. We compute

$$
\begin{gathered}
B\left(u_{m}, u_{m}\right)-B(u, u)=\int_{\Omega}\left[a_{i j} \partial_{i}\left(u_{m}-u\right) \partial_{j}\left(u_{m}-u\right)+c\left(u_{m}-u\right)^{2}\right] \\
+\int_{\Omega}\left[a_{i j} \partial_{i}\left(u_{m}-u\right) \partial_{j} u+a_{i j} \partial_{i} u \partial_{j}\left(u_{m}-u\right)\right. \\
\left.+2 c\left(u_{m}-u\right) u\right] d x .
\end{gathered}
$$

Again, the first integral is non-negative while the second and third terms tend to zero. The claim (*) follows, and we conclude Step 2.

An existence theorem

Second proof

- Step 3: We show that u solves $L u=T$, i.e. $B(u, \varphi)=T \varphi$ for all $\varphi \in X$.
\star For $t \in \mathbb{R}$, let $H(t)=I[u+t \varphi]$.
* As shown in Step 2, $I[u] \leq I[u+t \varphi]$ for all t. Hence H has a global minimum at $t=0$.
* Now note that $H(t)$ is a quadratic polynomial in t :

$$
\begin{aligned}
H(t) & =\frac{1}{2} B(u+t \varphi, u+t \varphi)-T(u+t \varphi) \\
& =I[u]+\frac{1}{2} t(B(u, \varphi)+B(\varphi, u)-2 T \varphi)+\frac{1}{2} t^{2} B(\varphi, \varphi) .
\end{aligned}
$$

* We deduce that

$$
0=H^{\prime}(0)=\frac{1}{2}(B(u, \varphi)+B(\varphi, u)-2 T \varphi) .
$$

* Since B is symmetric, we deduce that $B(u, \varphi)=T \varphi$ as wanted.

An existence theorem

Second proof

- Step 4: We prove the uniqueness: If \bar{u} also solves $L \bar{u}=T$, then $\bar{u}=u$.
\star It suffices to show that if $L u=0$, then $u=0$.
$\star L u=0$ means $B(u, \varphi)=0$ for all $\varphi \in X$. In particular $B(u, u)=0$.
* But we showed in Step 1 that $B(u, u) \geq \frac{1}{C}\|u\|_{X}^{2}$. Therefore $u=0$.

An example of non-existence and non-uniqueness

We now consider a motivating example for our next discussion:

$$
\left\{\begin{align*}
L u & =-u^{\prime \prime}-u=f \\
u(0) & =u(\pi)=0
\end{align*}\right.
$$

- This problem has no uniqueness, as the function $v_{0}(x)=\sin x$ satisfies $L v_{0}=0$ and $v_{0}(0)=v_{0}(\pi)=0$.
- Furthermore, if (Ω) is solvable, then upon multiplying with v_{0} and integrating we get

$$
\begin{aligned}
\int_{0}^{\pi} f v_{0} d x & =\int_{0}^{\pi}\left[-u^{\prime \prime} v_{0}-u v_{0}\right] d x=\int_{0}^{\pi}\left[u^{\prime} v_{0}^{\prime}-u v_{0}\right] d x \\
& =\int_{0}^{\pi}\left[-u v_{0}^{\prime \prime}-u v_{0}\right] d x=0
\end{aligned}
$$

Hence, when $\int_{0}^{\pi} f v_{0} d x \neq 0$, the problem (Ω) is not solvable.

An example of non-existence and non-uniqueness

- No uniqueness. Solvable only if $\int_{0}^{\pi} f v_{0} d x=0$.
- Conversely, suppose $\int_{0}^{\pi} f v_{0} d x=0$. If $f \in L^{2}(0, \pi)$, we can write
$f=\sum_{n=2}^{\infty} f_{n} \sin n x$ with $\left(f_{n}\right) \in \ell^{2}$. Formally expanding
$u=\sum_{n=1}^{\infty} u_{n} \sin n x$ gives
u_{1} is arbitrary and $u_{n}=\frac{f_{n}}{n^{2}-1}$ for $n \geq 2$.

An example of non-existence and non-uniqueness

- Let us check that $u_{*}:=\sum_{n=2}^{\infty} \frac{f_{n}}{n^{2}-1} \sin n x$ belongs to $H_{0}^{1}(0, \pi)$ and satisfies $L u_{*}=f$ in the weak sense.
* The function $\sin n x \in H_{0}^{1}(0, \pi)$ and has norm

$$
\|\sin n x\|_{H^{1}}^{2}=\int_{0}^{\pi}\left[n^{2} \cos ^{2} n x+\sin ^{2} n x\right] d x=\frac{\left(n^{2}+1\right) \pi}{2} .
$$

* The system $\{\sin n x\}$ is orthogonal in $H^{1}(0, \pi)$.
* It follows that

$$
\begin{aligned}
\left\|\sum_{m_{1} \leq n \leq m_{2}} \frac{f_{n}}{n^{2}-1} \sin n x\right\|_{H^{1}}^{2} & =\sum_{m_{1} \leq n \leq m_{2}} \frac{f_{n}^{2}}{\left(n^{2}-1\right)^{2}} \frac{\left(n^{2}+1\right) \pi}{2} \\
& \leq \frac{5 \pi}{18} \sum_{m_{1} \leq n \leq m_{2}} f_{n}^{2} \xrightarrow{m_{1}, m_{2} \rightarrow \infty} 0 .
\end{aligned}
$$

An example of non-existence and non-uniqueness

- We are checking that $u_{*}:=\sum_{n=2}^{\infty} \frac{f_{n}}{n^{2}-1} \sin n x \in H_{0}^{1}(0, \pi)$ and $L u_{*}=f$.
* Therefore, the series $\sum_{n=2}^{\infty} \frac{f_{n}}{n^{2}-1} \sin n x$ converges in H^{1} to $u_{*} \in H_{0}^{1}(0, \pi)$.
\star To show that $L u_{*}=f$, we consider the truncated series $u_{(N)}=\sum_{n=2}^{N} \frac{f_{n}}{n^{2}-1} \sin n x$ and $f_{(N)}=\sum_{n=2}^{N} f_{n} \sin n x$. These are smooth functions and satisfy $L u_{(N)}=f_{(N)}$. The convergence of $u_{(N)}$ to u_{*} in H^{1} and of $f_{(N)}$ to f in L^{2} thus implies that $L u_{*}=f$ (check this!).

An example of non-existence and non-uniqueness

$$
\left\{\begin{align*}
L u & =-u^{\prime \prime}-u=f, \tag{ৎ}\\
u(0) & =u(\pi)=0 .
\end{align*}\right.
$$

- We conclude that, for given $f \in L^{2}(0, \pi)$, (() is solvable if and only if $\int_{0}^{\pi} f v_{0} d x=0$. Furthermore, when that is the case, all solutions are of the form $u(x)=u_{*}(x)+C \sin x$ for some particular solution u_{*}.
- Exercise: Check that $u_{*} \in H^{2}(0, \pi)$.

An obstruction for existence and uniqueness

We now return to the general setting: $L=-\partial_{i}\left(a_{i j} \partial_{j}\right)+b_{i} \partial_{i}+c$ is a bounded linear operator from $H^{1}(\Omega)$ into $H^{-1}(\Omega)$.

- Uniqueness holds if and only if $\left.L\right|_{H_{0}^{1}(\Omega)}$ is injective.
- Existence holds if and only if $\left.L\right|_{H_{0}^{1}(\Omega)}$ is surjective.
- If $u \in H_{0}^{1}(\Omega)$ satisfies $L u=T$, then for all $\varphi \in H_{0}^{1}(\Omega)$, we have

$$
T \varphi=B(u, \varphi)=\int_{\Omega}\left[a_{i j} \partial_{j} u \partial_{i} \varphi+b_{i} \partial_{i} u \varphi+c u \varphi\right] d x
$$

If we can integrate by parts once more, we then have

$$
T \varphi=\int_{\Omega} u\left[-\partial_{j}\left(a_{i j} \partial_{i} \varphi\right)+\partial_{i}\left(b_{i} \varphi\right)+c \varphi\right] d x
$$

Hence, if v_{0} is such that $-\partial_{j}\left(a_{i j} \partial_{i} v_{0}\right)+\partial_{i}\left(b_{i} v_{0}\right)+c v_{0}=0$ in Ω, then we must necessarily have $T v_{0}=0$.

The formal adjoint operator

Definition

Let $L u=-\partial_{i}\left(a_{i j} \partial_{j} u\right)+b_{i} \partial_{i} u+c u$. The formal adjoint L^{*} of L is defined as the operator $L^{*}: H^{1}(\Omega) \rightarrow H^{-1}(\Omega)$ defined by

$$
\begin{aligned}
L^{*} v & =-\partial_{i}\left(a_{i j} \partial_{j} v\right)-\partial_{i}\left(b_{i} v\right)+c v, \\
L^{*} v(\psi) & =\int_{\Omega}\left[a_{i j} \partial_{j} \psi \partial_{i} v+b_{i} \partial_{i} \psi v+c \psi v\right] d x \text { for } \psi \in H_{0}^{1}(\Omega) .
\end{aligned}
$$

- The formal adjoint satisfies

$$
L u(v)=B(u, v)=L^{*} v(u) \text { for all } u, v \in H_{0}^{1}(\Omega)
$$

- For $v \in H^{1}(\Omega)$ and $T \in H^{-1}(\Omega)$, we have $L^{*} v=T$ if and only if

$$
B(\psi, v)=T \psi \text { for all } \psi \in H_{0}^{1}(\Omega)
$$

The Fredholm alternative

Theorem (Fredholm alternative)

Suppose that Ω is a bounded Lipschitz domain. Suppose that $a, b, c \in L^{\infty}(\Omega)$, a is uniformly elliptic, and $L=-\partial_{i}\left(a_{i j} \partial_{j}\right)+b_{i} \partial_{i}+c$.
(1) The boundary value problem

$$
\left\{\begin{aligned}
L u & =f+\partial_{i} g_{i} & & \text { in } \Omega, \\
u & =u_{0} & & \text { on } \partial \Omega
\end{aligned}\right.
$$

is uniquely solvable for each $f \in L^{2}(\Omega), g \in L^{2}(\Omega)$ and $u_{0} \in H^{1}(\Omega)$ if and only if $\left.L\right|_{H_{0}^{1}(\Omega)}$ is injective.
(1) The kernels N of $\left.\right|_{H_{0}^{1}(\Omega)}$ and N^{*} of $\left.L^{*}\right|_{H_{0}^{1}(\Omega)}$ are finite dimensional, and their dimensions are equal.
(1) If N is non-trivial, (BVP) has a solution if and only if $B\left(u_{0}, v\right)=\langle f, v\rangle-\left\langle g_{i}, \partial_{i} v\right\rangle$ for all $v \in N^{*}$.

