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In previous lectures

@ Sobolev spaces and their properties
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This lecture

Linear elliptic equations of second order.
Classical and weak solutions.

°
°

@ Energy estimates.

@ First existence theorem: Riesz representation theorem.
°

First existence theorem: Direct method of the calculus of
variation.

Second existence theorem: Fredholm alternative.
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The equation of interest

@ We will consider the equation

Lu = —0;(a;0;u) + biOju + cu = f + 0,g; in Q (*)
where

* £ is a domain in R”, which frequently has Lipschitz regularity
or better,
* u:Q — Ris the unknown,
% ajj, bi,c : 2 — R are given coefficients,
* f,gi: Q2 — R are given sources.
e Equation (*) is said to be in divergence form. It can be written
in more compact form:

Lu= —div(aVu) + b-Vu+ cu = f + divg
where

* a=(aj) is an n x n matrix,
* b= (b;) and g = (g;) are (column) vectors.
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Divergence vs non-divergence form

@ To dispel confusion, we note that we will not consider the
equation

—a,-ja,-@ju + bioju+cu="f+ aigi in Q7 (**)

which is also of importance. The equation (**) is said to be in
non-divergence form.

To treat (**), we will need some preparation different from what
we have had so far.
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Structural assumptions

We make the following assumptions:
@ The coefficients a;, b;, ¢ : 2 — R belong to L>(2).
@ The coefficients aj; is symmetric, i.e. aj = aji.

@ The coefficients aj;; is uniformly elliptic — this will be defined on
the next slide.
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Ellipticity

Let a = (a;) : @ — R"*" be symmetric and have measurable entries.

e ais elliptic if
a;i(x)& & > 0 forall £ € R" and a.e. x € Q.

(In other words, a is non-negative definite a.e. in €Q.)
@ ais strictly elliptic if there exists A > 0 such that

a;j(x)& & > A€ for all £ € R” and a.e. x € Q.

@ ais uniformly elliptic if there exist 0 < A < A < oo such that

MEP < aj(x)& & < NJEJ? for all € € R” and ae. x € Q.

v
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Two simplistic but important examples:

@ a; = 0j in all of Q.
o a;j = k(x)djj where k = kyxa + koxa\a for some subset A of Q
and some constants ki, ko > 0.
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The Dirichlet boundary value problem

We will write L = —0;(a;;0;) + b;O0; + ¢ to mean that

Lu = —0,(a;0;u) + bjo;u+ cu.
The Dirichlet boundary value problem for L asks to find a function u
satisfying

{ Lu = f+0g inQ, (BVP)

u = u on 0.
where
* f and g are given sources,

* Ug is given boundary data.
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Classical solutions

L= —8,-(a,-j8j) + b,-(‘?,- + c.

Lu = f—l—@,g, in Q,
{ u = u on 0f2. (BVP)

Definition

Suppose a € C'(Q), b, c € C(RQ). For a given f € C(Q), g € CY(Q)
and up € C(09Q), a function u € C3(Q) N C(Q) is called a classical
solution to the Dirichlet boundary value problem (BVP) if it satisfies
(BVP) in the usual sense.

@ We saw in the first lecture that the notion of classical solutions
is insufficient for our need.
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An observation

@ Suppose a € CY(Q),b,c € C(Q), f € C(Q) and g € C(Q).
Suppose u € C?() satisfies

Lu = —0;(a;0;u) + bijOju+ cu = f + 0;g; in 2. *)
o If p € C°(RQ) is a test function, then

/(Lu) pdx = / [a,-jajuﬁ,-go + b;Ojup + cugo] dx
Q Q

and
/[f + Oigi] p dx = /[fSD — gi0iyp] dx.
Q Q
@ Therefore, for all ¢ € C(Q),

/ [a,-jajué),-go + bidug + cuso] dx = /[fg@ — gidipldx. (Q)
Q Q
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An observation

o Conversely, if u is such that (<) holds for all ¢ € C°(2), then
by reversing the argument, we have

/(Lu)godx - /[f+0;g,-]gadx for all p € C2(Q).
Q Q

This implies Lu = f + 0;g; in Q, i.e. u satisfies (*).
@ We conclude that u € C?(Q) satisfies

Lu—= —8,-(3,-J-8ju) + b,-a,-u + cu = f + 8,-g,- in Q (*)
if and only if u satisfies
/ [a,-jajua,-gp + b;Ojup + cugo] dx = /[f(p — gioipldx ()
Q Q

for all ¢ € C2°(9).
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An observation

@ We conclude that u € C?(Q) satisfies
Lu= —8;(a;j8ju) + b,-(‘?;u + cu = f + 8,'g,' in Q (*)

if and only if u satisfies
/ [a,-jajua,-go + b;Ojup + cugo] dx = /[fgo — g0l dx ()
Q Q

for all ¢ € C2°(Q).

e Key: While the formulation (*) requires u to be twice
differentiable, the formulation (<{}) requires u to be only once
differentiable.

Luc Nguyen (University of Oxford) C4.3 — Lectures 11-12 MT 2022 13 /44



Weak solutions

Let a, b, c € L*(Q) and L = —0;(a;0;) + b;0; + c.
@ Suppose f € L?(Q), g € L3().
We say that u € H*(Q) is a weak solution (or generalized
solution) to the equation

Lu=f == 8,-g,- in Q (*)

/ [aijajuamﬁ + biOiup + CUSO] dx = /[f@ —g0ipldx ()
Q Q

holds for all ¢ € H3(Q).
When this holds, we also say that u satisfies (*) in the weak
sense.
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Weak solutions

Let a, b,c € L*(Q) and L = —0;(a;0;) + b;0; + c.
@ Suppose that f € L%(Q), g € L?(Q2) and up € H}(Q). We say
that u € H*(Q) is a weak solution (or generalized solution) to
the Dirichlet boundary value problem

{Lu = f4+0g inf,

u = up on 0. (BVP)

if Lu=f + 0;g; in Q in the weak sense and if u — uy € H3 ().

v
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Weak solutions

@ It is convenient to introduce the bilinear form B(-, -):
B(u,v) = /[a,-ji?ju&-v + bjOjuv + cuv] dx u,v € HY(Q).
Q

B is called the bilinear form associated with the operator L.
@ Then u € HY(Q) satisfies (*) in the weak sense if

B(u, ) = (f, ) — (g, Oip) for all p € H}(Q),

where (-, -) denotes the inner product of L3(Q).
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Energy estimate

Theorem (Energy estimates)

Suppose that a, b, c € L>(Q), a is uniformly elliptic,
L = —0;(a;;0;) + bj0; + ¢ and B is its associated bilinear form.
Then there exists some large constant C > 0 such that

|B(u, v)| < Cllull e lIvIlH @)

A
S lullis@) < Blu, ul + Cllulzzq)-

Here \ is the constant appearing in the definition of ellipticity of a.

o’
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Energy estimate

Proof

@ The first estimate is clear from the definition of B and
Cauchy-Schwarz's inequality:

\B(u,V)IS/Q[IayllajUH@iW+|bi||<9iUI|V\+|C|IUI|V| dx

< Jlall =Vl 29 viliz + 1] [Vl vl
el 21V ]2
< Clluflm vl
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Energy estimate

Proof

@ For the second estimate, we start by estimating the lower order
term in the same fashion while leaving the highest order term
untouched:

B(u,u)Z/ |505udhu — |bi|Ojullu] — |clul?] dx
Q

Z a,-jajua,-u dx
Q
—[1blle [ Vullzllullez = [lelle ullf.

@ The leading term is treated using the ellipticity condition:

a;0judiu > A\|Vul®.
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Energy estimate

Proof
@ We thus have

B(u, u) 2 MVullz = bl I Vullzllull 2 = el [lull 2.

o Using the inequality xy < 3x* + 2L-y?, we can absorb the
quantity |[Vul||;2 in the second term on the right hand side to
the first term:

1

A
B(u,u) 2 A|Vulf — S Vul. — o

[bl[7eo lullZe = llelleellullZ2

A
= SIVullzz = Cllullz.
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L as an operator on H'(Q)

Corollary

Suppose that a, b, c € L*°(2), a is uniformly elliptic,
L= —8,-(a,-j(‘9j) —+ b,'(?,' + c.
For every u € H*(Q), define a map Lu : H}(Q) — R by

(Lu)(¢) = B(u, @) for all o € Hy ().
Then Lu : H}(Q) — R is bounded linear, i.e.

Lu € (HX(Q))* =: HY(Q).
Furthermore, L is a bounded linear map from H'(Q) into H=1(Q).
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L as an operator on H}(Q)

Proof

@ Linearity if clear. By the energy estimate,
|(Lu)(@)| < Cllul|g1]|¢]| 42 and so Lu belongs to H1(R).

@ Furthermore, we have

ILullir@y = sup  [Lu(@)] < Cllullp-
WGH&(Q),H(P”ngl

This means L € Z(HY(Q), H(Q)).
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Weak sense vs H~! sense

u is a weak solution to (*) if and only if Lu = f + 0,g; as elements of
H1(Q).

Here f + 0,g; is viewed as an element of H71(2) by letting

(F + 0ig) () = / [Fo — gidre] dx.
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WP solutions

One can similarly define a notion of WY solutions to (*) and (BVP)
using p # 2. The treatment for these type of solutions is beyond the
scope of this course.
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An existence theorem

Theorem

Suppose that a,c € L>(Q2), a is uniformly elliptic, ¢ > 0 a.e. in £,
and L = —0;(a;;0;) + ¢ (i.e. b=0). Then for every f € [*(Q),

g € L%(Q) and uy € H*(Q), the Dirichlet boundary value problem

{LU = f—l—&g, inQ,

u = U on 0N BYF)

has a unique weak solution u € H*(Q).
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An existence theorem

The above theorem is a consequence of the following statement:

Suppose that a,c € L>°(Q2), a is uniformly elliptic, ¢ > 0 a.e. in £,
and L = —0;(a;0;) + c (i.e. b=0). Then L|pq) is a bijection from
H(Q2) into H7X(Q).

Indeed, if we let L' : H™1(Q) — H3(Q) be the inverse of L|.u(q),
then the unique solution to (BVP) is given by

u= ug+ L_l(—LUO + f + 8,g,)
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An existence theorem

First proof: Riesz representation theorem.
@ Observe that the bilinear form associated with L is positive in
HL(Q):

B(u,u) = / [aijﬁju&-u + CUZ} dx
Q
1
> \|Vul|7. > E||u||f41 for all u € H3 ().

Hence B(-,-) defines an inner product on H3(f2), which is
equivalent to the standard inner product of H3(f2).

@ Thus, by the Riesz representation theorem, for every
T € H71(Q) there exists a unique u € Hj(f2) such that

B(u,v) = Tv for all v € H}(R).

But this means precisely that Lu = T. We conclude that L|H5(Q)
is a bijection from H3(Q) into H7(Q).
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An existence theorem

Theorem

Suppose that a, ¢ € L*°(Q), a is uniformly elliptic, ¢ > 0 a.e. in £,
and L = —0;(a;;0;) + ¢ (i.e. b=0). Then for every f € [?(Q),

g € L%(Q) and uy € H*(Q), the Dirichlet boundary value problem

{Lu = f+0,g inf, (BVP)

u = U on 0N

has a unique weak solution u € H*(SQ).

I

Suppose that a, c € L*°(Q), a is uniformly elliptic, ¢ > 0 a.e. in £,
and L = —0;(a;0;) + c (i.e. b=0). Then L|pq) is a bijection from
H(Q) into H7X(Q).

Luc Nguyen (University of Oxford) C4.3 — Lectures 11-12 MT 2022 28 /44




An existence theorem

First proof: Riesz representation theorem.
@ The equation Lu= T with T € H}(Q) is equivalent to

B(u,v) = Tv for all v € Hy(Q).

@ The bilinear form B(-,-) defines an inner product on H}(),
which is equivalent to the standard inner product of H}(2). The
conclusion is reached using the Riesz representation theorem.

Second proof: Direct method of the calculus of variation.

We'll use the fact that H(S2) is weakly closed in H*(Q2). This is a
consequence of the following general theorem:

Theorem (Mazur)

Let K be a closed convex subset of a normed vector space X, (x,) be
a sequence of points in K converging weakly to x. Then x € K.
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An existence theorem

Second proof
e Fix T € H1(Q) and define the ‘variational energy':

I[v] = %B(v7 v) — Tv for v € X := Hy(Q).

The key point of the proof is the fact that: v € X solves Lu =T
if u is a minimizer or | on X i.e. I[u] < I[v] for all v € X.
@ Step 1: Boundedness of minimizing sequence.
Let « = infx /| € RU{—o00}. Note that /[0] =0 and so o < 0.
Pick un € X such that /[u,] — «. We show that the sequence
(un) is bounded in H1().
* By the ellipticity and the non-negativity of ¢, we have

B(um, um) = /Q[a,-jajum&-um + cu%,] dx > /\/Q |Vum]2 dx.
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An existence theorem

Second proof
@ Step 1: Boundedness of minimizing sequence (up,).

* Hence, by Friedrichs’ inequality, B(um, um) > </ tum||%-
* It follows that

1
Num] = 5 B(Um; um) — Tum > 2CHume Tl x
> RHume - C|ITI.

* On the other hand, as /[um] — o <0, we have (/[upm]) is
bounded from above. Therefore (up,) is bounded in X.
@ Step 2: The weak convergence of (u,,) along a subsequence to a
minimizer of /.
x Since HY(Q) is reflexive, the bounded sequence (uy,) has a
weakly convergent subsequence.
* We still denote this subsequence (up) so that up, — uin H1(Q).
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An existence theorem

Second proof

@ Step 2: The weak convergence of (up,) along a subsequence to a
minimizer of /.

* Upm— uin HL.
* As X is weakly closed in H* and (u,,) € X, we have that u € X.
* By definition of weak convergence, we have Tu,, — Tu. We

claim that
liminf B(um, um) > B(u, u). (™

m—-00

Once this is shown, we have that /[u] < liminf /{u,] = « and
so I[u] = a.
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An existence theorem

Second proof
@ Step 2: The convergence of (u,,) along a subsequence to a
minimizer of /.
* We now prove (*), i.e. lLT—onf B(um, um) > B(u,u).

* To illustrate the idea, let us consider for now the case ¢ =0
and aj; = d;;. Then

B(um, um) — B(u, u) = /[|Vum|2 — |Vu|?] dx

/!V(um— ]2dx+2/V(um—u)-Vudx.

The first term is non-negative. The second term converges to 0
as V(um — u) — 0in L2. Hence

liminf[B(um, um) — B(u, u)] = lim mf/ |V (tm — u)|? dx > 0.

m—o0 m—00
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An existence theorem

Second proof

@ Step 2: The convergence of (u,,) along a subsequence to a
minimizer of /.

* The proof in the general case is similar. We compute
B, tm) — B(u, u) = /Q[a,-ja,-(um — )0t — 1) + (tm — u)?]
+ /Q [a,-j&-(um — u)Oju + a;;0;ud;i(um — u)
+2¢c(um — v)u| dx.
Again, the first integral is non-negative while the second and

third terms tend to zero. The claim (*) follows, and we
conclude Step 2.
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An existence theorem

Second proof
@ Step 3: We show that u solves Lu = T, i.e. B(u,¢) = T for
all ¢ € X.
* For t € R, let H(t) = I[u+ ty].
* As shown in Step 2, I[u] < I[u+ typ] for all t. Hence H has a
global minimum at t = 0.
* Now note that H(t) is a quadratic polynomial in t:

1
H(t) = EB(U + tp,u+to) — T(u+ tp)

= I[u] + %t(B(u, ©)+ B(p,u) —2Tp) + %t2B(cp, ®).

* We deduce that

0= H(0) = 5(B(u ) + Blg,u) —2T).

x Since B is symmetric, we deduce that B(u, ¢) = T¢ as wanted.
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An existence theorem

Second proof

@ Step 4: We prove the uniqueness: If & also solves Li = T, then
u=u.
* It suffices to show that if Lu = 0, then u = 0.
* Lu =0 means B(u, ) =0 for all ¢ € X. In particular

B(u,u) =0.
* But we showed in Step 1 that B(u,u) > L|/ul|%. Therefore
u=0.
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An example of non-existence and non-uniqueness

We now consider a motivating example for our next discussion:

lu = —u" —u=f,
{ u(0) = u(r)=0. (©)
@ This problem has no uniqueness, as the function vp(x) = sin x
satisfies Lvo = 0 and v(0) = vp(7) = 0.

e Furthermore, if (V) is solvable, then upon multiplying with v
and integrating we get

/ fvp dx = / [—u"vo — uv] dx= / [v'vg — uw] dx
0 0 0

= / [—uvy — uvg] dx= 0.
0

Hence, when / fvo dx # 0, the problem () is not solvable.
0
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An example of non-existence and non-uniqueness

@ No uniqueness. Solvable only if/ fvo dx = 0.
0

@ Conversely, suppose / fiodx = 0. If f € L?(0,7), we can write
0

f= Z f,sin nx with (f,) € (2. Formally expanding

n=2
o0
u= E U, sin nx gives
n=1
uy is arbitrary and u, = —— . for n > 2.
n —
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An example of non-existence and non-uniqueness

o0

o
@ Let us check that u, := Z

: 1
2 71 sin nx belongs to Hy (0, )

and satisfies Lu, = f in the weak sense.
* The function sin nx € H}(0,7) and has norm

i 2
1
|| sin nx||7, = / [n? cos? nx + sin® nx] dx = M
0

* The system {sin nx} is orthogonal in H(0, ).
* It follows that

fn . 2 2 (nP+1)r
| 3 = X g

n? —1)2 2
my<n<my my<n<my
5t m1,my—00
<= E £2 I,
18
my<n<my
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An example of non-existence and non-uniqueness

o0

@ We are checking that u, := Z

f'
e sin nx € Hy(0, ) and

n=2

Lu, = f.
. n . . 1
+ Therefore, the series Z ——— sin nx converges in H* to
nc—1

u. € H}(0, ).

* To show that Lu, = f, we consider the truncated series
N N

f'
Uy = 1 sinnx and fy Z fnsin nx. These are

n=2 n=2
smooth functions and satisfy Lu(,\,) = f(n)- The convergence of

u(ny to uy in H! and of fivy to £ in L2 thus implies that
Lu, = f (check this!).
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An example of non-existence and non-uniqueness

lu = —u" —u=f,
{ u(0) = u(r)=0. ©)
@ We conclude that, for given f € L?(0,7), (V) is solvable if and
only if fvo dx = 0. Furthermore, when that is the case, all

0
solutions are of the form u(x) = u,(x) + C sin x for some
particular solution w,.

@ Exercise: Check that u, € H?(0, 7).
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An obstruction for existence and uniqueness

We now return to the general setting: L = —0;(a;;0;) + bi0; + c is a
bounded linear operator from H*(Q) into H~1(Q).

@ Uniqueness holds if and only if L|H3(Q) is injective.
@ Existence holds if and only if L|Hé(9) is surjective.
o If u € H3(Q) satisfies Lu = T, then for all ¢ € H3(R), we have

Ty = B(u,p) = / [a,-j(‘?ju&-gp + b;jOjup + cuap} dx.
Q
If we can integrate by parts once more, we then have
T(p = / U[ — @(a,;@,-go) + 8,-(b,-<p) —+ C(,O] dx.
Q

Hence, if Vo is such that —81'(3,'](9,'%)) + a;(b,'Vo) + cvg = 0in Q,
then we must necessarily have Tvy = 0.
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The formal adjoint operator

Let Lu = —0;(a;0ju) + biOju + cu. The formal adjoint L* of L is
defined as the operator L* : H}(Q) — H~1(Q) defined by

L*v = —8,-(a,-j8jv) — 8;(b,~v) + cv,
Lv(1)= / [a,,-ajw,v + bV + CM dx for ¢ € HL(Q).
Q

@ The formal adjoint satisfies

Lu(v) = B(u,v) = L*v(u) for all u,v € Hy().

e Forv e HY(Q)and T € H}(Q), we have L*v = T if and only if
B(t, v) = T for all ¥ € H().
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The Fredholm alternative

Theorem (Fredholm alternative)

Suppose that 2 is a bounded Lipschitz domain. Suppose that

a, b, c € L*(Q), a is uniformly elliptic, and L = —0;(a;;0;) + b;j0; + c.

@ The boundary value problem

Lu = f+a,g, in Q,
u = up on 02

is uniquely solvable for each f € L?(Q), g € L*(Q) and
up € HY(Q) if and only if L|H3(Q) is injective.

@ The kernels N of L|pyq) and N* of L*| 1 (q) are finite
dimensional, and their dimensions are equal.

@ If N is non-trivial, (BVP) has a solution if and only if
B(up, v) = (f,v) — (g, 0;v) for all v € N*.

(BVP)
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