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Suppose that f: U — C is a meromorphic and has a zero of
order k or a pole of order k at zy € U. Then f'(z)/f(z) has a
simple pole at zy with residue k or —k respectively.
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The argument principle

Lemma

Suppose that f: U — C is a meromorphic and has a zero of
order k or a pole of order k at zy € U. Then f'(z)/f(z) has a
simple pole at zy with residue k or —k respectively.

Proof.
If f/(z) has a pole of order k we have f(z) = (z — zy)~
where g(z) is holomorphic near zy and g(zy) # 0.

It follows that

“9(2)

—k
Z — 2y

f(2)/f(z) = +9(2)/9(2),

Since g(z) # 0 near z, 9'(2)/9(z) is holomorphic near z; so
the result follows. The case where f has a zero at z; is
similar.
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Note that if U is an open set on which one can define a

holomorphic branch L of [Log(z)| then g(z) = L(f(z)) has
g'(z) = f(2)/1(2).
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change in argument around the origin of the path f(~(t)).
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holomorphic branch L of [Log(z)] then g(z) = L(f(z)) has
g'(z) = '(2)/1(2).

Thus integrating f'(z)/f(z) along a path ~ will measure the
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Remark
Note that if U is an open set on which one can define a

holomorphic branch L of [Log(z)| then g(z) = L(f(z)) has
g'(z) = f(2)/1(2).

Thus integrating f'(z)/f(z) along a path ~ will measure the
change in argument around the origin of the path f(~(t)).

We will show using the residue theorem how to relate this to the
number of zeros and poles of f inside ~:



Theorem

(Argument principle): Suppose that U is an open set and

f. U— C is a meromorphic function on U. If B(a,r) C U and N
Is the number of zeros (counted with multiplicity) and P is the
number of poles (again counted with multiplicity) of f inside
B(a,r) and f has neither on 0B(a, r) then

1 f'(z)
N—P_%Lf(z)dz,

where ~(t) = a+ re®™" is a path with image 0B(a, r).



Theorem

(Argument principle): Suppose that U is an open set and

f. U— C is a meromorphic function on U. If B(a,r) C U and N
Is the number of zeros (counted with multiplicity) and P is the
number of poles (again counted with multiplicity) of f inside
B(a,r) and f has neither on 0B(a, r) then

1 f'(z)
N—P_%Lf(z)dz,

where y(t) = a+ re®™" js a path with image 0B(a, r).
Moreover this is the winding number of the path ' = f o v about
the origin.
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Clearly I(v,z)is 1if |z — a] < r and is 0 otherwise.
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the zeros and poles of f with residues the corresponding
orders. So the result follows (take g(z) = f'(z)/f(Z2)).



Proof.
Clearly I(v,z)is 1if |z — a] < r and is 0 otherwise.
Recall that by the residue theorem

37 | 92102 = 3 Resz(9) 1. 20),
Zp€S
where the sum ranges over the poles z; of g inside ~.

By the previous lemma f'(z)/f(z) has simple poles exactly at
the zeros and poles of f with residues the corresponding
orders. So the result follows (take g(z) = f'(z)/f(Z2)).

For the last part, note that 27/ - /(f o v, 0) is just

o, / [ f(2)
Mdz/z_/o f(v(t))f(y(t))y(t)dt_/v o



Remark
The argument principle also holds, with the same proof, for any

closed path v on which f is continuous and non-vanishing,
provided it has winding number +1 around its inside.



Remark

The argument principle also holds, with the same proof, for any
closed path v on which f is continuous and non-vanishing,
provided it has winding number +1 around its inside.

Theorem

(Rouché’s theorem): Suppose that f and g are holomorphic
functions on an open set U in C and B(a,r) c U. If

1f(z)| > |g(z)| for all z € 0B(a, r) then f and f + g have the
same number of zeros in B(a, r) (counted with multiplicities).
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Proof.
Let v(t) = a + re®™" be a parametrization of the boundary circle
of B(a, r). Note that f(z) # 0 on ~ since |f(z)| > |g(2)|.
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h(z) = 1] = [g(2)/1(2)]| <1

for all z € ~*.
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Proof.
Let y(t) = a + re®™" be a parametrization of the boundary circle

of B(a, r). Note that f(z) # 0 on ~ since |f(z)| > |g(2)|.
Consider h= (f+ g)/f =1 + g/f. By hypothesis

h(z) — 1] =lg(2)/f(2)| <1
for all z € ~*.

So I'(t) = h(~(t)) is contained in the half-plane {z : ®(z) > 0}.
Picking a branch of Log defined on this half-plane:

dz

= = Log(h(x(1) ~ Log(h((0)) = 0



Proof.
Let y(t) = a+ re®™" be a parametrization of the boundary circle

of B(a, r). Note that 7(z) # 0 on v since |f(z)| > |g(z2)|.
Consider h= (f+ g)/f =1 + g/f. By hypothesis

h(z) = 1] = [g(2)/1(2)]| <1

for all z € ~*.
So I'(t) = h(~(t)) is contained in the half-plane {z : ®(z) > 0}.
Picking a branch of Log defined on this half-plane:

dz

= = Log(h(x(1) ~ Log(h((0)) = 0

By the argument principle h = (f + g)/f has the same number
of zeros as poles in B(a, r). As the number of poles is the
number of zeros of f and the number of zeros is the number of
zeros of f + g the theorem follows. []



Remark

Rouché’s theorem can be useful in counting the number of
zeros of a function f — one tries to find an approximation to f
whose zeros are easier to count and then by Roucheé’s theorem
obtain information about the zeros of f.

Just as for the argument principle above, Rouché’s theorem
also holds for closed paths which have winding number 1 about

their inside.
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Show that all the roots of P(z) = z* + 5z + 2 have modulus
less than 2.



Example

Show that all the roots of P(z) = z* + 5z + 2 have modulus
less than 2.

On the circle |z| =2, we have |z|* =16 >5-2 +2 > |5z + 2|,
so that if g(z) = 5z + 2 so by Rouche’s theorem P — g = z*
and P have the same number of roots in B(0, 2).
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Example

Show that all the roots of P(z) = z* + 5z + 2 have modulus
less than 2.

On the circle |z| =2, we have |z|* =16 >5-2 +2 > |5z + 2|,
so that if g(z) = 5z + 2 so by Rouche’s theorem P — g = z*
and P have the same number of roots in B(0, 2).

As 0 has multiplicity 4 for P — g, the four roots of P(z) all have
modulus less than 2.

We note further that if we take |z| = 1, then
5z+2|>5-2=3>|z* =1, hence P(z) and 5z + 2 have
the same number of roots in B(0, 1). It follows P(z) has one
root of modulus less than 1, and 3 of modulus between 1 and 2.
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Theorem

(Open mapping theorem): Suppose thatf: U — C is
holomorphic and non-constant on a domain U. Then for any
open set V C U the set f(V) is also open.
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Theorem

(Open mapping theorem): Suppose thatf: U — C is
holomorphic and non-constant on a domain U. Then for any
open set V C U the setf(V) is also open.

Proof. It is enough to show that for any wy € (V) there is a
6 > 0 such that B(wp, d) C f( V).
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Theorem
(Open mapping theorem): Suppose thatf: U — C is
holomorphic and non-constant on a domain U. Then for any

open set V C U the setf(V) is also open.

Proof. It is enough to show that for any wy € (V) there is a
6 > 0 such that B(wp, d) C f( V).

Suppose that wy € f(V), say f(z5) = wp. Then g(z) = f(z) — wy
has a zero at zy which, since f is nonconstant, is isolated.
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Theorem

(Open mapping theorem): Suppose thatf: U — C is
holomorphic and non-constant on a domain U. Then for any
open set V C U the set f(V) is also open.

Proof. It is enough to show that for any wy € (V) there is a
6 > 0 such that B(wg,d) C f( V).
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has a zero at zz which, since f Is nonconstant, is isolated.

Thus we may find an r > 0 such that g(z) # 0 on
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Open Mapping Theorem

Theorem

(Open mapping theorem): Suppose thatf: U — C is
holomorphic and non-constant on a domain U. Then for any
open set V C U the setf(V) is also open.

Proof. It is enough to show that for any wy € (V) there is a
6 > 0 such that B(wp, d) C f( V).

Suppose that wy € f(V), say f(z5) = wp. Then g(z) = f(z) — wy
has a zero at zy which, since f is nonconstant, is isolated.

Thus we may find an r > 0 such that g(z) # 0 on
B(z,r)\{zo} C U.

Since 0B(zy, r) is compact, we have |g(z)| > 6 > 0 on
35(20, r).



But then if |[w — wp| < ¢ it follows |w — wy| < |g(2)] on 0B(z, r).
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We apply now Rouche’s theorem to g(z) and the constant
function wy — w and we conclude that g(z) = f(z) — wp and
h(z) = g(z) + (wp — w) = f(z) — w have the same number of
zeros in B(zy, r).
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But then if |[w — wp| < ¢ it follows |w — wy| < |g(2)] on 0B(z, r).
We apply now Rouche’s theorem to g(z) and the constant
function wy — w and we conclude that g(z) = f(z) — wp and
h(z) = g(z) + (wp — w) = f(z) — w have the same number of
zeros in B(zy, r).

Since g(z) has a zero in B(zy, r) it follows h(z) = f(z) — w does
also, that is, f(z) takes the value w in B(zy, r).

Thus B(wp,d) C f(B(zy, r)) and hence f(U) is open. ]

Remark
If wg = f(zy) then the multiplicity d of the zero of the function
g9(z) =1f(z) — wy at zg is called the degree of f at z;.
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But then if |[w — wp| < ¢ it follows |w — wy| < |g(2)] on 0B(z, r).
We apply now Rouche’s theorem to g(z) and the constant
function wy — w and we conclude that g(z) = f(z) — wp and
h(z) = g(z) + (wp — w) = f(z) — w have the same number of
zeros in B(zy, r).

Since g(z) has a zero in B(zy, r) it follows h(z) = f(z) — w does
also, that is, f(z) takes the value w in B(zy, r).

Thus B(wp,d) C f(B(zy, r)) and hence f(U) is open. ]

Remark
If wg = f(zy) then the multiplicity d of the zero of the function
g9(z) =1f(z) — wy at zg is called the degree of f at z;.

We showed that f(z) — w has as many zeros as f(z) — wp SO f
Is locally d-to-1, counting multiplicities, that is, there are

r,0 € Ry such that for every w € B(wy, §) the equation

f(z) = w has d solutions counted with multiplicity in the disk
B(Zo, r )



Inverse function theorem

Theorem

(Inverse function theorem): Suppose that f: U — C is injective
and holomorphic and that f'(z) # 0 forall z € U. If

g: f(U) — U is the inverse of f, then g is holomorphic with

g'(w) =1/f(g(w)).



Inverse function theorem

Theorem

(Inverse function theorem): Suppose that f: U — C is injective
and holomorphic and that f'(z) # 0 forall z € U. If

g: f(U) — U is the inverse of f, then g is holomorphic with

g'(w) =1/ (g(w)).

Proof.
g is continuous: Let V C f(U) open. Then then g=1(V) = f(V)
IS open by the open mapping theorem.



Inverse function theorem

Theorem

(Inverse function theorem): Suppose that f: U — C is injective
and holomorphic and that f'(z) # 0 forall z € U. If

g: f(U) — U is the inverse of f, then g is holomorphic with

g'(w) =1/ (g(w)).

Proof.

g is continuous: Let V C f(U) open. Then then g~ (V) = f(V)
IS open by the open mapping theorem.

g is holomorphic: fix wy € f(U) and let zg = g(wp). Note that

since g and f are continuous, if w — wy then g(w) — Z,.
Writing w = f(z) we have

- g(W)_g(W)_ - Z— 2y . /
WII—>mW0 W — W = ZII—>n;0 f(Z) — f(Zo) N 1/f (ZO)




Remark
In fact the condition that f'(z) # 0 follows from the fact that f is
bijective:
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bijective:

if f/(zg) = 0 and f is nonconstant, then
f(2) — f(29) = (z — 29)*g(2) where g(zy) # 0 and k > 1



Remark
In fact the condition that f'(z) # 0 follows from the fact that f is

bijective:
if f/(zg) = 0 and f is nonconstant, then
f(2) — f(29) = (z — 29)*g(2) where g(zy) # 0 and k > 1

But then zy is a root of multiplicity k of f(z) — f(Zy) = 0 so f(z)
Is locally k-to-1 near z,.



Remark
In fact the condition that f'(z) # 0 follows from the fact that f is

bijective:
if f/(zg) = 0 and f is nonconstant, then
f(2) — f(29) = (z — 29)*g(2) where g(zy) # 0 and k > 1

But then zy is a root of multiplicity k of f(z) — f(Zy) = 0 so f(z)
Is locally k-to-1 near z,.

A bijective holomorphic function f : U — V with differentiable
iInverse is called a biholomorphism.
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integrals over closed paths to calculating the residues of power
series.
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is the principal part of f at a. P4(f) is holomorphic on C \ {a}



he Residue Theorem

The Residue Theorem reduces the problem of calculating path
integrals over closed paths to calculating the residues of power
series.

Recall that if a is an isolated singularity of f and

f(z)=) ca(z—a)", vzeB(ar)\{a}.

nez

then the residue Res,(f) of fat ais ¢ 1 and

— OO

Pa(f)= Y  ca(z—a)",

n=—1

is the principal part of f at a. P4(f) is holomorphic on C \ {a}

It turns out that it is possible to use this method and calculate
ordinary integrals of real functions. There are several tricks that
allow us to pass from an integral of a real function to a path
integral of a complex function.



he Residue Theorem

Theorem
(Residue theorem): Suppose that U is an open set in C and ~
Is a closed path whose inside is contained in U, so that for all

z ¢ Uwehave l(v,z) =0. Then if S C U is a finite set such
that SN ~* = () and f is a holomorphic function on U\ S we have

21” / f(z)dz =" I(v,a)Resx(f)

acS



Proof.
Foreach a e Slet Py(f)(z) = >_,2" 1 cn(a@)(z — a)" be the
principal part of f at a, a holomorphic function on C\{a}.
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Proof.
Foreach a e Slet Py(f)(z) = >_,2" 1 cn(a@)(z — a)" be the
principal part of f at a, a holomorphic function on C\{a}.

Then f — P4(f) is holomorphic at a € S, and thus
9(z) = f(z) — )_,c5 Pal(f) is holomorphic on all of U.

So by Cauchy’s Theorem f7 g(z)dz = 0, hence

/ f(2)dz =" [ Pa(f)(2)dz
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Proof.
Foreach a e Slet Py(f)(z) = >_,2" 1 cn(a@)(z — a)" be the
principal part of f at a, a holomorphic function on C\{a}.

Then f — P4(f) is holomorphic at a € S, and thus
9(z) = f(z) — )_,c5 Pal(f) is holomorphic on all of U.

So by Cauchy’s Theorem fv g(z)dz = 0, hence

/ f(2)dz =" [ Pa(f)(2)dz
v acS” "
But the series P4(f) converges uniformly on v* so that

/Pa(f)dz:/ _Z: cn(a)(Z—a)”:Z/ cz;nfa;?nz
8 8 n=1v"7

n=—1

— / c_1(a)0z = 2mi - (v, a)Resy(f),
y Z—a

since for n > 1 the function(z — a)~" has a primitive on C\{a}.



Remark

In applications the winding numbers I(~, a) will be simple to
compute in terms of the argument of (z — a) - in fact most often
they will be 0 or =1 as we will usually apply the theorem to
integrals around some standard contours that are simple

closed curves.
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We will turn this to an integral of a complex function.
If z= e then

Calculate the integral »/”027T

cos(t) = R(z) = %(Z—I— Z) = %(Z—I— 1/z), so

1 1
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Let v be the path t — €. Note then that
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dat
1+3cos?(t)

We will turn this to an integral of a complex function.
If z= e then

Calculate the integral »/”027T

cos(t) = R(z) = %(Z—I— Z) = %(Z—I— 1/z), so

1 1
1+ 3cos?(t)) 1+3/4(z41/2)2
] 472

1+%ZZ+%+%Z—2 1311022 + 324

Let v be the path t — €. Note then that

21 . .
/f(z) z:/ f(e")ie"dt so
0
~
/277 dt _/ —4iz_ N\
o 1+4+3cos?(t) 73+1OZZ+SZJ4\ '




Thus we have turned our real integral into a contour integral,
and to evaluate the contour integral we just need to calculate
the residues of the meromorphic function g(z) = 3+15242"1324 at
the poles it has inside the unit circle.




Thus we have turned our real integral into a contour integral,
and to evaluate the contour integral we just need to calculate
the residues of the meromorphic function g(z) = 3+15242"1324 at
the poles it has inside the unit circle.

The poles of g(z) are the zeros of p(z) = 3 + 1022 + 324,
which are at z2 € {—3, —1/3}. Thus the poles inside the unit
circle are at +i/+/3.



Thus we have turned our real integral into a contour integral,
and to evaluate the contour integral we just need to calculate
the residues of the meromorphic function g(z) = 3+15242"1324 at
the poles it has inside the unit circle.

The poles of g(z) are the zeros of p(z) = 3 + 1022 + 324,
which are at z2 € {—3, —1/3}. Thus the poles inside the unit
circle are at +i/+/3.

Since p has degree 4 and has four roots, they must all be
simple zeros, and so g has simple poles at these points.



The residue at a simple pole z; can be calculated as the limit
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The residue at a simple pole z; can be calculated as the limit

. —diz(z —+i/V/73)
Res,_ . = |
2=+i/v3(9(2)) Z_HIS}\/@ 3 +10z2 + 3z4

1

=4S e

1
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The residue at a simple pole z; can be calculated as the limit

 —4iz(z — £i/V/3)
R - = |
es,_..3(9(2)) Z—>:I|:ri7}\/§ 3+ 1022 + 324

1
=4S e
1

20(+i/v/3) + 12(%i/+/3)3

= (£4/V3) -

= 1/4i.

It now follows from the Residue theorem that

2T
/o 1+ 3(321;52(1‘) - 27”‘(ReSZZ"/\/é((g(Z)) ™ Resz:_i/\@(g(z))) = T.



Applications of The Residue Theorem

Theorem
(Residue theorem): Suppose that U is an open set in C and ~
Is a path whose inside is contained in U, so that for all z ¢ U

we have I(v,z) = 0. Then if S C U is a finite set such that
Sn~* =0 andf is a holomorphic function on U\S we have

5 / f(z)dz =" I(v,a)Resx(f)

acS
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closed or even finite, for example, we might wish to understand
the integral of a function on the positive real axis.



Remark

Often we are interested in integrating along a path which is not
closed or even finite, for example, we might wish to understand
the integral of a function on the positive real axis.

The residue theorem can still be a powerful tool in calculating
these integrals, provided we complete the path to a closed one
In such a way that we can to the
integral along the part of the path we add.



If we have a function f which we wish to integrate over the
whole real line (so we have to treat it as an improper Riemann
integral) then we may consider the contours I' g given as the
concatenation of the paths v¢: [-R,R] - Cand v»: [0,1] — C

where |
y(t)=-R+1t 7(t) = Re™.

(so that ' = o x4 traces out the boundary of a half-disk).
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If we have a function f which we wish to integrate over the
whole real line (so we have to treat it as an improper Riemann
integral) then we may consider the contours I' g given as the
concatenation of the paths v¢: [-R,R] - Cand v»: [0,1] — C

where |
1) =-R+1t; (t) = Re™.

(so that ' = o x4 traces out the boundary of a half-disk).

In many cases one can show that fw f(z)dz tends to 0 as
R — oo, and by calculating the residues inside the contours g
deduce the integral of f on (—o0, 00).
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the integrand is even, it is equal to
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the integrand is even, it is equal to
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If f(z) =1/(1 + z° + 2%), then [._f(z)dz is equal to 2 times
the sum of the residues inside the path [R.



Calculate the integral
/OO ax
o 1+x2+x4

This integral exists as an improper Riemann integral, and since
the integrand is even, it is equal to

1 lim /R ax ax
Py I L]
2 Rsoo ) g1+ x2+ x4

If f(z) =1/(1 + z° + 2%), then [._f(z)dz is equal to 2 times
the sum of the residues inside the path [R.

The function f(z) = 1/(1 + 2% + z*) has poles at z2 = +-€2™//3
and hence at {e™/3, 2™/3 g47i/3 g5™/31 They are all simple
poles and of these only {w,w?} are in the upper-half plane,
where w = e'™/3,



Thus by the residue theorem, for all R > 1 we have

f(z)dz = 2ri(Res,(f(2)) + Res 2 (f(2))),
MR




Thus by the residue theorem, for all R > 1 we have

f(z)dz = 2wi(Res,(f(2)) + Res 2 (f(2))),
MR

We calculate the residues:

e (z—w) 1 1
ReSW(f(Z))_zlﬂL1+22+z4 2w+ 4wd 2w—4

1 1

Res.(1(2)) = 202 + 4wb 4 + 202

Wa-:(



Thus by the residue theorem, for all R > 1 we have

f(z)dz = 2ri(Res,(f(2)) + Res 2 (f(2))),
MR

We calculate the residues:

e (z—w) 1 1
ReSW(f(Z))_zlﬂL1+22+z4 2w+ 4wd 2w—4

1 1

Res.2(1(2)) = 5 46 41 2.2
| K(f) =~
No+e ; (M °- ~ ("'\ L - ‘1"




Thus by the residue theorem, for all R > 1 we have

f(z)dz = 2wi(Res,(f(2)) + Res 2 (f(2))),
MR

We calculate the residues:

e (z—w) 1 1
ReSW(f(Z))_zlﬂL1+22+z4 2w+ 4wd 2w—4

1 1
202 + 4w 44 202

1 1 1 1

ReSwz(f(Z)) —

o .
/FR (2)dz =2ri(o —4 4oz a) =™ 2t 2o

)



Thus by the residue theorem, for all R > 1 we have

f(z)dz = 2wi(Res,(f(2)) + Res 2 (f(2))),
MR

We calculate the residues:

e (z—w) 1 1
ReSW(f(Z))_zlﬂL1+22+z4 2w+ 4wd 2w—4

1 1
202 + 4w 44 202

1 1 1 1
f — 27 = 7i
/FR (2)0z =2mi(G =3+ 52 a) =™ 5t 22
W2 + w
2(w—w?) -5

ReSwz(f(Z)) —

) = —V3r/(-3) = 1/V/3,

:7Ti(

(where we used the fact that w? + w = iv3 and w — w? = 1).
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On the other hand

R
at
f(z)dz = +/fzdz,
/rR() /_R1+t2—|—t4 ’72()

so we need to calculate the limit of [ f(z)dz as R — oo.




On the other hand

R
at
f(z)dz = f(z)dz
/rﬁ,() /_R1+t2+t4+[m() ’

so we need to calculate the limit of [ f(z)dz as R — oo.
By the estimation lemma we have

~
[ H2)d2) < sup H2)] - 12) < g 0
T " zey YTR-RE-1 T

N\ T~

as R — oo,



On the other hand

R
at
f(z)dz = f(z)dz
/rﬁ,() /_R1+t2+t4+[m() ’

so we need to calculate the limit of [ f(z)dz as R — oo.
By the estimation lemma we have

TR
f(z)dz| < sup |[f(2)] - (v0) < > 0,
| (202 < sup 112)]- o) < e

as R — oo,

hence
. oC dt
m/V3 = F?Il—r>noo/|-R (2)az = /OO 1+ 82+ 4




Applications of The Residue Theorem

Theorem
(Residue theorem): Suppose that U is an open set in C and ~
Is a path whose inside is contained in U, so that for all z ¢ U

we have I(v,z) = 0. Then if S C U is a finite set such that
Sn~* =0 andf is a holomorphic function on U\S we have

5 / f(z)dz =" I(v,a)Res(f)

acS
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Jordan's Lemma and applications

Lemma

2 sinf
For all ¢ € (0, 5] we have = < % <1
A
Proof. " NP
Since limg_sg LLAN. and v _ = for § = — it suffices to
_ 96’ 0 7 2
show that % is decreasing on (0, 37].
Since

(ﬂ)/ ~ fcos —sind
0 B 02

it is enough to show that 6 cos# — sin# < 0 on (0, 3.




Jordan's Lemma and applications

Lemma 5 -
For all ¢ € (0, 5] we have = < % <1.
70
Proof. . PR
Since |Img_>0 sin =1 and sinf_ — Z for 9 = = it suffices to
9(9 0 T 2
show that > T is decreasing on (0, 5.
Since

sinf., 6cosf —sinf
(T) — 02
it is enough to show that 6 cos# — sin# < 0 on (0, 3.

Its derivative is —0 sin § which is clearly negative on (0, 7r] SO

this function is decreasing. Since it is equal to 0 at 6 = O this

sinf .

function is negative on (0, 57, so 5 is decreasing.



Lemma
(Jordan’s Lemma): Let f: H — C,, be a meromorphic function
on the upper-half plane H = {z € C : &(z) > 0}. Suppose that
f(z) — 0 as z — oo inH. Then ifyg(t) = Re' for t € [0, 7] we
have
f(z)e'*?dz — 0
TR

as R — oo for all o € R+y.




Proof.
Suppose that € > 0 is given. Then by assumption we may find

an S such that for |z| > S we have |f(z)| <e Thusif R > S
and z = yp(t), it follows that

‘f(Z) eiaZ’ < Ee—ozR sin(l‘).
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Suppose that € > 0 is given. Then by assumption we may find

an S such that for |z| > S we have |f(z)| <e. Thusif R > S
and z = yp(t), it follows that

‘f(Z) eiaZ’ < Ee—ozR sin(t).

s LO(Z LO(R (Cos++ L'S"'W\
z=Re, ¢ =¢ -
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Suppose that € > 0 is given. Then by assumption we may find

an S such that for |z| > S we have |f(z)| <e Thusif R > S
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Proof.
Suppose that € > 0 is given. Then by assumption we may find

an S such that for |z| > S we have |f(z)| <e Thusif R > S
and z = yp(t), it follows that

‘f(Z) eiaZ’ < Ee—ozR sin(l‘).

By the previous lemma we have

| e 20RT  tc(0,7/2]
oz < €-€ ’ ,
f(z)e ™| < {6 @ 20R(m=0)/m t ¢ [x/2 7]

But then it follows that
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0
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Proof.
Suppose that € > 0 is given. Then by assumption we may find

an S such that for |z| > S we have |f(z)| <e Thusif R > S
and z = yp(t), it follows that

‘f(Z) eiaZ’ < Ee—ozR sin(l‘).

By the previous lemma we have

| e 20RT  tc(0,7/2]
oz < €-€ ’ ,
f(z)e ™| < {6 @ 20R(m=0)/m t ¢ [x/2 7]

But then it follows that

/2 50 R 1 — e—aR
’ 'O‘Zdz} < 2/ eR-e 2Rl gt = e <e-m/a,
0

84

But 7/« is constant, so [ f(z)e"*?dz — 0as R — ]



Remark
Ifng is an arc of a semicircle in the upper half plane, say
nr(t) = Re" for 0 < t < 2x/3, then the same proof shows that

f(z)e'“?dz -0 as R — oo.
"R

This is sometimes useful when integrating around the boundary
of a sector of disk.




Remark
If ng is an arc of a semicircle in the upper half plane, say

np(t) = Re' for0 < t < 27/3, then the same proof shows that

f(z)e'“?dz -0 as R — oo.
MR
This is sometimes useful when integrating around the boundary
of a sector of disk.

Note that if o < 0 then the integral of f(z)e'*? around a
semicircle in the lower half plane tends to zero as R — oo
provided |f(z)| — 0 as |z| — oo in the lower half plane. This

follows immediately from the above applied to f(—Zz).
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and only if the limit of [ g exists as R — oo.

To compute this consider the integral along the closed curve ng
given by the concatenation ng = vg * v, Where

vr: [-R, R] — R given by vg(t) = t and vg(t) = Re' (where

t € [0, x]).
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Calculate the integral [*°_ =09 gy

This is an improper integral of an even function, thus it exists if
and only if the limit of [ g exists as R — oo.

To compute this consider the integral along the closed curve ng
given by the concatenation ng = vg * v, Where

vr: [-R, R] — R given by vg(t) = t and vg(t) = Re' (where

t € [0, 7).

ap . iz _ 1
We will integrate over this f(z) = <.

Note that the singularity at z = 0 is removable as

e? =1+ iz + (iz)?/2+ ...s0 lim f(z) = i.

z—0



Calculate the integral [*°_ =09 gy

This is an improper integral of an even function, thus it exists if
and only if the limit of [ g exists as R — oo.

To compute this consider the integral along the closed curve ng
given by the concatenation ng = vg * v, Where

vr: [-R, R] — R given by vg(t) = t and vg(t) = Re' (where

t € [0, 7).

ez 1

We will integrate over this f(z) = =

Note that the singularity at z = 0 is removable as

e? =1+ iz + (iz)?/2+ ...s0 lim f(z) = i.

z—0

Thus we have |, _f(z)dz =0 forall R > 0.






O:/ f(Z)dZ—/_I:;f(t)dt+

Jordan’s lemma ensures that the second term on the right
tends to zero as R — oo and

dz ™ jRe't .
/ — = = dt = im
R Z 0 Re




R Iz
O:/ f(z)dz:/ f(t)dt+/ e—dz-/ %
R —R v £ v £

Jordan’s lemma ensures that the second term on the right
tends to zero as R — oo and

dz ™ jRe't .
/ — = = dt = im
R Z 0 Re

It follows that ffR f(t)dt tends to iT as R — oc.



R Iz
O:/ f(z)dz:/ f(t)dt+/ e—dz-/ %
R —R v £ v £

Jordan’s lemma ensures that the second term on the right
tends to zero as R — oo and

dz ™ jRe't .
/ — = = dt = im
R Z 0 Re

It follows that ffR f(t)dt tends to iT as R — oc.

(1) — cosH;isinl‘ .
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To deal with the previous integral it would be more natural to
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Avoiding singularities

To deal with the previous integral it would be more natural to
74

. . e“
consider the function — Instead.

The problem is that this function has a pole at 0 so our contour
can not include 0. The solution is to modify the contour slightly
and go around O.

pole Y,
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Avoiding singularities

To deal with the previous integral it would be more natural to
1Z

. . e“
consider the function — Instead.

The problem is that this function has a pole at 0 so our contour

can not include 0. The solution is to modify the contour slightly
and go around O.

Explicitly, we replace the vg with vz * 7. x v Where uf;(t) =t
and t € [-R, —¢] for vy, and t € [e, R] for v/, (and as above
ve(t) = ee'™ D for t € [0, 7]).




Avoiding singularities

To deal with the previous integral it would be more natural to
1Z

. . e“
consider the function — Instead.

The problem is that this function has a pole at 0 so our contour

can not include 0. The solution is to modify the contour slightly
and go around O.

Explicitly, we replace the vg with vz * 7. x v Where uf;(t) =t
and t € [-R, —¢] for vy, and t € [e, R] for v/, (and as above
ve(t) = ee'™ D for t € [0, 7]).

How can we calculate the value of the integral after this
change? We have a general lemma:



Lemma
Letf: U — C be a meromorphic function with a simple pole at
ac Uandlet~,.: [o, 8] — C be the path .(t) = a+ ee', then

jim / f(2)dz = Resa(f) - (5 — a)i.

ﬁi

a ¢

1 e




Lemma
Letf: U — C be a meromorphic function with a simple pole at

ac Uandlet~,.: [a, 8] — C be the path v.(t) = a + c€", then

lim / f(z)dz = Resy(f) - (8 — a)i.

e—0

Proof.
Since f has a simple pole at a, we may write

C

f(Z):Z—a

+ 9(2)

where g(z) is holomorphic near z and ¢ = Res,(f).



As g is holomorphic at a, it is continuous at a, and so bounded.
Let M, r > 0 be such that |g(z)| < M for all z € B(a, r). Then if
0 < e < rwe have

’/ 9(z)dz| < l(ve)M = (8 —a)e- M — 0

€
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As g is holomorphic at a, it is continuous at a, and so bounded.
Let M, r > 0 be such that |g(z)| < M for all z € B(a, r). Then if
0 < e < rwe have

’/ 9(z)dz| < l(ve)M = (8 —a)e- M — 0

€

Also

c B o . 8
/ dz = —jee’dt = / (ic)dt = ic(6 — «).
Ve Q

zZ—a , eel

Since [, f(z)dz= [, c¢/(z—a)dz + [, g(z)dz the result
follows. ]
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We return now to the calculation of the integral [*°_ =9 gy
iz

using the more ‘obvious’ function —

sin(x)

Since —~ — 1 as x — 0 for small enough ¢ we have
/ Sm(X)dxg/ 2adXx = 4e
—€ X —€
so the sum
e R . R
/ Sm(X)dX—I—/ Sm(X)dX%/ Sm(X)dX,
R X p X _R X

as e — 0.
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. eiz
Integrating then - over (e = vg %7 xVh * YR, We gét:

—€ AlX iz R Aix iz
O:/ f(z)dz:/ e—dx+/ e—dz+/ e—dx+/ © dz.
r R X ve Z e X 4

R _: iz 4
:21,/ sin(x) +/ e“ / e—dz
€ X Ve YR Z

—_— e—0

Use  lim / f(2)dz = Resa(f) - (8 — a)i.

\o_e\\fe peso =| p=o) =T
'(W ({_

Se = ~(T



. eiz
Integrating then - over (e = Vg *x Y xVp xR, We get:

—€ AlX iz R Aix iz
O:/ f(z)dz:/ e—dx+/ e—dz+/ e—dx+/ © dz.
r R X ve Z e X 4

R _- 1z 1z
) X e e
=21/ sin( )+/ — / —az
€ X Ve 4 YR Z

as e — 0.



. eiz
Integrating then - over (e = Vg *x Y xVp xR, We get:

—€ AlX iz R Aix iz
O:/ f(z)dz:/ e—dx+/ e—dz+/ e—dx+/ © dz.
r R X ve Z e X 4

R _- 1z 1z
) X e e
221/ sin( )+/ — / —az
€ X Ve 4 YR Z

as e — 0.
Then letting R — oo, it follows from Jordan’s Lemma that the

third term tends to zero so we see that

/OO sin(X)dX: 2/000 sin(x)dX:7T

X X

— OO



Computation of Residues



Computation of Residues

Recall if f has a pole of order k at z; then

()= S culz—2)"

n>—k



Computation of Residues

Recall if f has a pole of order k at z; then

()= S culz—2)"

n>—k
and
Poy(f) = c k(z —20) *+ckii(z—20) T+ ..+ c1(z—2z)

IS the principal part of f at z.



Computation of Residues

Recall if f has a pole of order k at z; then

()= S culz—2)"

n>—k
and

Poy(f) = c k(z —20) *+ckii(z—20) T+ ..+ c1(z—2z)

IS the principal part of f at z.

Res,, (f) = c_1

IS the residue of f at z;.



Computation of Residues

Recall if f has a pole of order k at z; then

()= S culz—2)"

n>—k

and
Pro(f) =c_k(z—20) "+ cks1(z—20) T+ ..+ cq(z2— 20) "

IS the principal part of f at z.

Res,, (f) = c_1

IS the residue of f at z;.

How do we these?



In order to use the Residue Theorem we need to calculate
residues of meromorphic functions. The integral formulas we
have obtained for the residue are often not the best way to do
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In order to use the Residue Theorem we need to calculate
residues of meromorphic functions. The integral formulas we
have obtained for the residue are often not the best way to do
this.

We discuss now a more direct method to calculate the residue
In the case of functions which are given as the ratio of two
holomorphic functions.

Precisely let F: U — C given to us as a ratio /g of two
holomorphic functions f, g on U. The singularities of the
function F are therefore poles which are located precisely at
the (isolated) zeros of the function g.



For convenience, we assume that we have translated the plane
so as to ensure the pole of F = f/g we are interested in is at
a=>_.
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for some r > 0.



For convenience, we assume that we have translated the plane
so as to ensure the pole of F = f/g we are interested in is at
a=>_.

Since g(0) = 0, there is a kK > 0 such that

9(z) = ckz(1+ Zanz”),

n>1

where ¢, # 0 and the power series converges on B(0,r) C U
for some r > 0.

We set h(z) = >_7°, a,z" ', then

g1 2@)



For convenience, we assume that we have translated the plane
so as to ensure the pole of F = f/g we are interested in is at
a=>_.

Since g(0) = 0, there is a kK > 0 such that

9(z) = ckz(1+ Zanz”),

n>1

where ¢, # 0 and the power series converges on B(0,r) C U
for some r > 0.

We set h(z) = >_7°, a,z" ', then

g1 2@)

we expand
1

1+ zh(z

§= > (-1)2"h(z)"
n=0



Note that this expansion is valid in B(0, ¢) for small ¢ by
Weierstrass M-test.
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Note that this expansion is valid in B(0, ¢) for small ¢ by
Weierstrass M-test.

Specifically if M = max{h(z) : z € B(0, r)} we may take
6 = min(r,1/2M).

We can ‘ignore’ the terms after k as:

> (—=1)7z"h(2)" = 2"hy(2)

m>k

(where hy is holomorphic) since then Lz 3~ -, (—1)"z"h(z)" is

Cka
holomorphic.
Hence the principal part of the Laurent series of 1/g(z) is equal
to the principal part of the function

k
1 _
ﬁ Z(_1 )k 1Zkh(z)k
n=1



Since we know the power series for h(z), this allows us to

compute the principal part of ﬁ.



Since we know the power series for h(z), this allows us to
compute the principal part of ﬁ.

Finally, the principal part Po(F) of F = f/g at z = 0 is just the
principal part of the function 7(z) - Py(g), which again we can
compute if we know the power series expansion of f(z) at 0.



. Calculate the principal part of f(z) = 1/(z?sinh(z)3).



Example. Calculate the principal part of f(z) = 1/(z?sinh(2)3).

sinh(z) = (e — e~ ¢)/2 vanishes on 7iZ, and these zeros are all
simple since %(sinh(z)) = cosh(z) has cosh(nmi) = (—1)" # 0.

2) f(‘&) = (2-01)13(2) - f ’(W %

Se J( fl[a)—.t(y a 1S vo+ o )OML& ZCveo



. Calculate the principal part of f(z) = 1/(z?sinh(z)3).

sinh(z) = (e — e %) /2 vanishes on 7iZ, and these zeros are all
simple since %(sinh(z)) = cosh(z) has cosh(nmi) = (—1)" # 0.

Thus f(z) has a pole or order 5 at zero, and poles of order 3 at
win for each n € Z\{0}. We calculate the principal part of f at
z = 0.



. Calculate the principal part of f(z) = 1/(z?sinh(z)3).

sinh(z) = (e — e %) /2 vanishes on 7iZ, and these zeros are all
simple since %(sinh(z)) = cosh(z) has cosh(nmi) = (—1)" # 0.

Thus f(z) has a pole or order 5 at zero, and poles of order 3 at
win for each n € Z\{0}. We calculate the principal part of f at
z = 0.

We will write O(z*) for holomorphic functions which have a
zero of order at least k at 0.
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z3 20 ez

z%sinh(2)° = z2°(z + a3 Tt O(z"))°’ =z°(1 + % tE Tt O(2%))°
— 25(1 +32 é—f)+‘°’5i,+0( )
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z3 20 ez

z%sinh(2)° = z2°(z + a3 Tt O(z"))°’ =z°(1 + % tE Tt O(2%))°
AR é—f)+‘°’5i,+0( ©))
=z°(1+ 2—2 + 182° + O(2%))

2 120



2 . 3 2 z2  Z 7\\3 5 zz 613
ZSIHh(Z) :Z(Z+§+§+O(Z)) :Z(1—|—§—|—§—|—O(Z))
3z2 3z* 3z°
_ 59 6
—Z(1—|—?—|—W‘|—ﬁ—|—0(2))

2 4
=S+ 5+ T2 0(2)

2 120

5 z 1323 .
— Z <1+z(2+120 + O(z ))>




z3 20

Zsinh(z)P=22(z+ 2 + L 10N =21 +Z +Z 10z

3] 5
3z 32 324
5 Me LY
_z(1+ (3') + 5| + O(z ))
2
5 z_ 13z% 5
=2°(1 + 5 + 120 + O(2°))

5 z 1378 .
— Z <1+z(2+120 + O(z ))>

2
3l

Using our previous notation, h(z) = 5 + 1132203 + O(2°)

4
o)

(z

°)°



23 25 2 4

. Z Z
Z° smh(Z)3 = 22(2 + 30 — &l + 0(27))3 = 25(1 + 30 + Gl T 0(26))3
322 3z4 374
5 6
>3- (1+?+W+?+O(Z )
2 4
=2°(1 + 5 + 120 + O(2°))

5 z 1323 .
— Z <1+z(2+120 + O(z ))>

. . . 13 3
Using our previous notation, h(z) = § + =& + O(2°)

so to find the principal part we just need to consider the first
two terms in the series (1 + zh(z))™!' = Y272 o(—1)"z"h(2)":

3r) £ru 23-(—224-—\530(2[)



1323
120

1/2%sinh(2)° = z7>(1 + Z(g + + O(ZS)))_1



2 . 3_ -5 Z 132° 5y\) 1
1/z%sinh(2)°> = z (1+z(2+ 150 + 0(2°)))

B z 1323 z2
5(1—z(é 120)+2222+O( z°))




5 . 3 5 z 1323
1/z%sinh(2)°> = z (1+z(§+ 150

+0(2%)) "

z 13z2° 2 2°

(1 z( +—)+2z 2

Ep
(1 _?HZ_@)Z +0(2° )

+ 0(2°))



| _ z 1323 1
1/2%sinh(2)° = z7>(1 + 2(5+ 259 + 0(z°)))

B z 1323 z2
5(1—z(— 120)+2222+O( z°))

(1 —Z—2+(1——)z + O(2%))
2 4 120
1 1 17

=25 558 120z




| _ z 1323 1
1/2%sinh(2)° = z7>(1 + 2(5+ 259 + 0(z°)))

B z 1323 z2
5(1—z(— 120)+2222+O( z°))

(1_2_2_|_(1__
2 4 120

1 1 17

=25 558 120z

)2* +0(2°))

Thus Po(f) = J5 — 555 + 1253, and Resg(f) = 17/120
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