Backpropagation and Predictive Coding: an
experimental comparison

Abstract

Predictive coding is a biologically inspired learning framework that is becoming
increasingly popular in the artificial intelligence community. Despite some initial
results about its relation with backpropagation, most aspects are yet to be investi-
gated. In this work, I propose an empirical comparison between the two techniques,
showing significantly different learning outcomes based on the choice of different
hyperparameters.

1 Introduction

Neural networks are an efficient and high-performance solution to any optimization problem and are
widely researched and used in industry. The transition from shallow to deep networks began around
2012 when convolutional deep models started to achieve human-like results in image recognition
tasks [3], overcoming their shallow counterparts. Nowadays deep architectures are used everywhere,
from transformers [12] to GANs [3], obtaining results before considered impossible in many fields
[TOI[8][TT]. However, the increase in the number of layers comes at the price of explainability of the
models themselves. Analysing the behaviour of this multi-dimensional objects has proven incredibly
hard. As a consequence, empirical results are considered one of the best tools to understand what is
happening behind the hood. In particular, the study of the behaviour of the loss function can provide
insights on the effects that different hyper-parameters can produce. The simple projection of it on a
one or two-dimensional space already allows for an immediate and effective visualization of some of
the model’s properties [6].

Despite the possibility of constructing various models with different topologies to suit the most exotic
tasks, the used learning paradigm is always the same: the problem is formalised by defining a loss
function {(D, 0) (that represents the performance on the data D given the model’s parameters 6) and

the training process consists in finding the value 0 that minimizes it. This optimization problem is

always solved by computing the gradient V = &;;’Gl and by updating 6 accordingly to the gradient
descent equation
o' =0—-nV (1)

where 7 is a small positive constant, until a local optimum is reached. However, the computation of
V is not trivial, considering that state-of-the-art models are composed by millions, if not billions,
of parameters. For years, to solve this problem, the solution has always been the same: the back-
propagation algorithm, developed in 1986 [9]. Consequently, although we are able to experiments
with different hyper-parameters to tune the performance of a model, we are limited by the training
technique that might affect the quality of the reached local minima.

1.1 Backpropagation

Throughout this work, I will focus on a supervised setting, where the data D consist of (z, y) pairs
and the network M has to approximate the underlying conditional distribution p(y|). In a standard
fully connected network, neurons are organised in N layers L1, ..., Ly, each of which transforms its
input &; 3 according to the formulas

a; =0;xi1 2

z; = f(ai), y =L 3)
where f is a non linear activation function. In order to obtain V, the error between the computed
y and the true § is computed and backpropagated through the net according to the chain rule.

Backpropagation has proven successful throughout the years, however, multiple concerns have been
raised regarding its actual feasibility as a biological learning system that can occur in our brain. In
fac, it is difficult to explain how the global error signal would flow back through the network, as
it requires complex and structured relationships within neurons, that have not yet been observed.
It is justified, therefore, to question whether different mechanisms, more naturally inspired, would
perform better.

1.2 Predictive coding

Predictive coding is a framework that only relies on local synaptic connections to perform learning
{2ll. Instead of trying to globally minimize the loss function, the networks optimizes a layer-local
free energy function by balancing the value y; computed by the previous layer with the value x;
predicted to be correct for the next layer. Once this inference step reaches convergence, the network’s
weights can be updated to further decrease the free energy. As each computation is local (i.e., it does
not involve the flowing of the error value through multiple layers), the learning is completely Hebbian
and, therefore, more biologically plausible. Formally, predictive coding can be described through
variational inference lens, obtaining the following. As we want to model the posterior p(y|z; 0),
assuming a single layer scenario, we can define a family of distributions gg and try to approximate p
by minimizing the KL divergence

&€ = Dxrlae([y)llp(y, z;0)] @
which is an upper bound to the divergence between gg(x|y) and the posterior p(y|z;0). Fur-
ther assuming a Gaussian form for the joint distribution p(y,z;0) = p(y|z;0)p(z;0) =

N (y; f(012), X2)N (z; f(02/1), £1) and a point mass distribution for g, we obtain that
1
£ = —Eg[Inp(y, z; 0)] = —E(z;leg + 271 + Indr?E B,) 6))

where ¢ = y — f(z,6;) and e, = = — f(f2,02). In a multi layer network /i is the z in the layer
before and we have that

N N
£ = Zgl = Z Stel +In2nysy (6)
=1 =1

where ¢, = @; — f(®i1—1,0:—1). The inference step, therefore, consists in updating the values x;
to minimize & until convergence, while in the learning step we update each 6 to further minimize
£. The update dynamics are defined by the gradient descent algorithm, according to the following
derivatives:

o0&

~ %0 = sihaoi 0 =3 ta @)
& _
a0, Bt g_1f m ()

It is easy to see that each rule requires only post and pre-synaptic values within each layer [, instead
of requiring the loss value to be transmitted throughout the layer hierarchy. A visualization of the
architecture is provided in ﬁgure. For a complete derivation of the formulas refer to ﬂ[ﬂand (.

1.3 Relations between the two learning techniques

Backpropagation and predictive coding share the same learning procedure: given an input & an output
y is computed through an inference step and, successively, an error between y and the given § is
computed and used to train the network. However, the nature of these steps is profoundly different
between the two algorithms: backpropagation requires a single forward and backward pass involving
a hierarchical computational structure among the layers, while predictive coding relies on multiple
iterative steps executed independently by each layer. It has been shown, however, that under precise
theoretical conditions the two learning algorithm converge to the same update rule [13]. These
conditions, however, are not easily maintainable in a real-world scenario or, even, seem to be a
limitation for the expressiveness of predictive coding. Throughout this work, I will try to explore the
similarities and differences that arise between two identical architectures (i.e., same parameters and
layout), one trained with backpropagation and the other with predictive coding. The three condition
highlighted by are:

!"The paper is still an early version and contains some inconsistencies in the mathematical derivations.

61

Figure 1: Learning through predictive coding. The red arrows show the errors’ propagation, which
affects only nearby weights via Hebbian rules.

1. | —y| < &: the predicted output should be close enough to the given label. This condition
is met once the model has achieved a sufficiently high accuracy, but is not true at the
beginning of the training process. Consequently it is not guaranteed that the minima found
through backpropagation and predictive coding will be the same.

2. Convergence of the inference step: before performing the learning step and update
the network’s weights, it is necessary for each x; to have converged to the minimum
of &(xy, ..., Ty, ..., o). However, it could require hundreds of inference steps to reach this
state, making predictive coding several orders of magnitude slower than backpropagation
and, as a consequence, not implementable for even the simplest tasks.

3. Fixed X: it is required that 3; = 1. However X; could be a trainable parameter of
the network (among with ;), allowing to optimize the energy function even further. As
backpropagation does not include these extra parameters, predictive coding models could be
seen as a super-set of it.

B Accuracy BN Training time @@ Time to convergence

T
[N]

Time (hours)

F
o

bp_256_8 pc_256_8 pc_256_8_rc2 pc_256_8_rc3 pc_256_8_rc23

Figure 2: Benchmarks of the different models, showing accuracy and required training time. Time to
convergence is the time necessary to reach 90% of the final accuracy.

2 Experiments and results

In order to compare the different learning settings, I trained several models with different hyper-
parameters using both backpropagation and predictive coding. The datasets used were MNIST
and FashionMNIST; the displayed results were obtained on FashionMNIST. A predictive learning
framework was developed using PyTorch and the models trained using a Nvidia Titan RTX. As
condition 1 cannot be enforced, I focus on the effects of relaxing conditions 2 and 3. Consequently,
for each architecture layout there will be five models: one trained with backpropagation and four
trained with predictive coding, with or without conditions 2 and 3. For convenience, I will use the
following naming scheme to refer to a particular network: algorithm_width_depth_relaxedConditions.
For example, bp_1024_8 is a network trained with backpropagation, with hidden dimension of 1024
and 8 hidden layers, while pc_256_8_rc2 is a 256x8 network trained using predictive coding and
by relaxing condition 2. To relax condition 3, it is simply necessary to add each ¥; to the model’s
trainable parameters. On the other hand, to enforce condition 2, I ran the inference step on each
training batch for 256 steps before performing the weights update. This was observed to be enough
to guarantee the desired convergence. Instead, when removing condition 2, I updated the weights
every 8 of those 256 steps, using the current values stored in the a; variables. As shown in ﬁgure@,
this allowed for significantly reduced training times, despite backpropagation still being faster. All
the results provided refer to networks composed by eight fully connected hidden layers, as, due to the
computational requirements of predictive coding and the limited time available, it was not possible to
experiment with more complex architectures.

Accurocy
Accuracy
Accuracy

. 5
410 [© 2 2
{ 3
: \’&_"{"‘“ E =iz Mw
o by :

o 20 P ¢ 1 20 % & © 10 20 30 40 10 2
Epochs Epochs Epochs Epochs

(a) bp_256_8 (b) pc_256_8 (c) pc_256_8_1c3 (d) pc_256_8_1c2

Figure 3: Comparison of the performance of different models. Predictive coding with condition 3
relaxed is the most similar to backpropagation. (The accuray is shown in red, the train (dotted) and
test loss in blue.)

y A A »
g ay | 7 | g |
N\ \ Bbe Y fo Y ¥
SAR* t e 12 st ‘l - ; -
4 \ 4 ; \ 4 s v #
~— ALy A Fr o Tl P i
& /}\c\)\‘\‘/{/ A - T\\z\‘\\/!" R -+ :\:\)\\\V,’i’ 2 - t\ :\t\\/{j -
(a) bp_256_8 (b) pc_256_8_rc3 (c) pc_256_8_rc2 (d) pc_256_8_1c23

Figure 4: Loss landscape of different models. The loss function is mostly convex for every model,
but the pc_256_8_rc23. This can explain the training instability experienced.

2.1 Analysis of the loss landscape

By comparing the loss value and the accuracy obtained by the same network trained via backpropa-
gation and predictive coding, we may conclude that the two techniques are actually equivalent, as
they generally produce similar results. However, it can happen that the standard predictive coding
model is not able to correctly approximate and reach condition 1 (especially in narrow networks)
and this results in an early convergence to a significantly sub-optimal minimum (fig. 3b). Relaxing
condition 3, on the other hand, seems to bring huge improvements to these scenarios, with the
network performance always reaching the backpropagation one (ﬁg.. This is partially true also
for condition 2, but it may be due to the extra weight training steps available when training for a fixed
amount of epochs (relaxing condition 2 allows the network to updates its weight every 8 steps, instead
of 256, ﬁg.. The results are consistent among both datasets and with different hyper-parameters.

Using the code provided by Li et al. [€] adapted to work with predictive coding networks, I plotted
the two-dimensional loss landscape of the various models in order to verify that, given their similar
final loss and accuracy, their behaviour was comparable even in the neighborhood of the trained
parameters. This was not the case, with significant differences between them. Observing ﬁgure it
can be seen that the landscape defined by the predictive coding training is similar to what is obtained
through backpropagation when relaxing condition 3. This could be explained by considering the
role of the variance ¥ in equations (7) and (8): the error e is scaled accordingly to the inverse of
the variance, consequently a variable and trainable X could allow for a smoother flow of the error
throughout the network and, therefore, for a faster and more stable convergence. In fact, the ability to
rescale the error at a neuron level could allow the network to satisfy condition 1 more easily.

On the contrary, the effect of relaxing condition 2 is incredibly impacting and profoundly changes
the dynamics of the network (fig. [E) The loss function remains convex in most scenarios, but
it rapidly grows (o excessive values, showing that even a slight change in the network’s weights
would result in significant loss in the prediction accuracy. Relaxing both condition 2 and 3 seems to
bring improvements, however the loss landscape appears chaotic and convexity is lost everywhere
around each minimum but in the immediate vicinity of it (fig. . This would explain why, in
these settings, it was necessary to use a learning rate as low as le-5 in order to perform any training

tayer 1 Layer 2 tayer 7 Layer 8

y ’ 1T)
| { \ [|
| i [! |
|
| 1 H
sansspsusssagmnsengennns | | QERERNNRRRARERENRRRRERAY | ‘-lllllllllll.lllllllllll_l |t AEIEERERREER R, J
s o owm D06 -004-001 080 G2 804 DB6 -OM9-005 GWe QA 0B DI 025 G 003 aid
(a) pc_256_8
_ayerd = Layer2 Nayer?7 lwyes

| [R———— AJuuumuumnumJ 11111111 PO —— L

(b) pc_256_8_rc2

Layer 1 Layes 2
N _— e

Layet 7 Layer 8

i
i

| .onmmammmm. J ‘ _..nlllllllllllln._} AT ||| [T |||
45 Q92 I o0 (E2) 1 oas oo -012 -05% Qo oS o©l0 ~01%-010-005 0

(c) pc_256_8_r1c3

Figure 5: Weight distributions of the first two and last two layers of different models.

at all (as it is very easy to escape from the small convex area). Appendix A shows more detailed
reconstructions. Despite these difficulties, relaxing both condition 2 and 3 is, using the currently
available hardware, the only feasible, though unstable, way to train scalable architectures. Future
studies, should, therefore aim at understanding the causes of such different behaviours.

2.2 Analysis of the weights distributions

Similar differences can be found when analyzing the weight distributions across the networks’ layers.
Relaxing condition 3 results in the most similar model to the backpropagation one, in which the
weights in each layer are updated and follow approximately a Gaussian distribution, as expected
(fig. . On the contrary, the networks trained according to the remaining settings, fail to update
the deepest layers, as if the error was not flowing smoothly through the network. At the same time
the last layers’ weight distributions present a less regular shape, confirming that relaxing condition 3
seems to be the most performing solution (fig. .

2.3 Effect of weight decay

Using the variational inference interpretation of predictive coding, we can consider the process of
minimizing the free energy & as trying to maximize the probability

L-1
p(x, T1,...,zN) = p(x) H p(zi|zi—1) ©)
1=0

where p(z|zi+1) = N (@i; f(01-1, ©1—1), X1). Consequently, adding weight decay on the trainable
parameters @ and 3 could be seen as implementing some sort of Gaussian unit prior for each normal
distribution p(z;|xi41). In fact, to avoid negative variances, the network effectively stores the values
InY;. Therefore, the weight decay makes the values ¥ — 1 and f (01—1,@1—1) — 0, and, thus,
p(x;) = N(0,1). By applying a mild weight decay (i.e. 1e-6), we can see that the resulting loss
landscape is smoother and the training process more stable (ﬁgure@. Furthermore, the weights
appear to follow a Gaussian distribution in every layer, showing that the entirety of the network
is learning. However, it seems very sensitive in the choice of this hyperparameter as even slightly
different values prevent any meaningful training.

3 Conclusion

In this work, I have shown how different implementations of predictive coding results in different
learning outcomes. Predictive coding with trainable variance seems to lead to the results that are most
similar to backpropagation. Furthermore, adding a mild weight decay allows for a fast and stable
training, even when updating the model’s weight before reaching convergence on the ;.

Layer 1

E 006 —0.04 —002 000 002 003 006 |

Layer §

o o
o
3 (|
e
® g ° . 8
Accuracy
\

ZEEp " 2 -03 -02 -01 ©0g 01 02 03
ochs

Figure 6: Performance of predictive coding when weight decay is applied. Both condition 2 and 3 are
relaxed.

References

(1]

[2]

(3]

[4

—

[5

—_—

[6]

[7]

(8]

[9

[}

[10]

[11]

[12]

[13]

Rafal Bogacz. A tutorial on the free-energy framework for modelling perception and learning. Journal of
Mathematical Psychology, 76:198-211, 2017. Model-based Cognitive Neuroscience.

Karl Friston and Stefan Kiebel. Predictive coding under the free-energy principle. Philosophical transac-
tions of the Royal Society of London. Series B, Biological sciences, 364:1211-21, 06 2009.

Tan Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in Neural Information Processing
Systems, 2014.

Donald O. Hebb. The organization of behavior: A neuropsychological theory. Wiley, New York, June
1949.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
neural networks. In Advances in Neural Information Processing Systems, 2012.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss landscape of
neural nets. In Advances in Neural Information Processing Systems, 2018.

Beren Millidge, Anil Seth, and Christopher L Buckley. Predictive coding: a theoretical and experimental
review, 2021.

Martin Popel, Markéta Tomkovd, Jakub Tomek, Eukasz Kaiser, Jakob Uszkoreit, Ondrej Bojar, and
7. Zabokrtsky. Transforming machine translation: a deep learning system reaches news translation quality
comparable to human professionals. Nature Communications, 2020.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning Representations by Back-
propagating Errors. Nature, (6088):533-536, 1986.

David Silver, Aja Huang, Christopher J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik
Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray
Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of go with deep neural networks
and tree search. Nature, 529:484-503, 2016.

Kathryn Tunyasuvunakool, Jonas Adler, Zachary Wu, Tim Green, Michal Zielinski, Augustin Zidek, Alex
Bridgland, Andrew Cowie, Clemens Meyer, Agata Laydon, Sameer Velankar, Gerard Kleywegt, Alex
Bateman, Richard Evans, Alexander Pritzel, Michael Figurnov, Olaf Ronneberger, Russ Bates, Simon
Kohl, and Demis Hassabis. Highly accurate protein structure prediction for the human proteome. Nature,
596:1-9, 08 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, L. ukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information Processing
Systems, 2017.

James Whittington and Rafal Bogacz. An approximation of the error backpropagation algorithm in a
predictive coding network with local hebbian synaptic plasticity. Neural Computation, 29:1-34, 03 2017.

A Detail of the loss landscape.

1

(c) pc_256_8_rc3 (d) pc_256_8_rc23

Figure 7: Zoomed version of the visualization of the loss landscape. It can be seen that pc_256_8_rc23
presents clear irregularities, while the other graphs are mostly convex.

