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Objectives

The stochastic optimisation problem we consider is to determine
θ ∈ Rd that minimises

E[f (θ,X )].

In statistics and machine learning, this may correspond to
maximising the log-likelihood given a large set of data:

−log-likelihood =
S∑

i=1

fi (θ) = E[S fI (θ)]

where the expectation comes from taking a random index I ,
uniformly distributed over {1, 2, . . . ,S}.



Challenges

There are two main computational challenges:

1. the dimension d of θ is large: use gradient descent (as
opposed to higher order methods, which require manipulations
of the (d × d) Hessian) and adjoint differentiation (back
propagation) to compute the gradient;

2. the number of samples S is large: use a (small) random
sample of data to estimate gradient in each iteration.



Steepest descent

The classic steepest descent method for solving ∇f (θ) = 0 is
based on a time-discretisation of

θ̇ = −∇f (θ)

which gives
θn+1 = θn − α∇f (θn).

From this we get

θn+1 − θn ≈ (I − αJ) (θn − θn−1)

where J is the Hessian at θn−1.

So it converges to the root θ∗ from near θ∗ if ‖I − αJ‖ < 1.



Robbins–Munro

Starting from
θn+1 = θn − αE[∇f (θn,X )]

the idea of Robbins & Munro was to replace the expectation by a
single sample to give

Θn+1 = Θn − αn∇f (Θn,Xn)

with independent samples Xn. Here, we use capital Θn to indicate
that it is random, and allow for varying step sizes αn.

If we write g(θ) ≡ E[∇f (θ,X )] then we can write this as

Θn+1 = Θn − αn g(Θn)− αn (∇f (Θn,Xn)− g(Θn))



Robbins–Munro

Consider now the SDE

dΘ̃t = −g(Θ̃t)dt + σ(Θ̃t) dWt

which has discretisation with timestep αn

Θ̂n+1 = Θ̂n − αn g(Θ̂n) + σn
√
αn Zn

Equating this (approximately) to

Θn+1 = Θn − αn g(Θn)− αn (∇f (Θn,Xn)− g(Θn))

gives
σ2
n ≈ αn V[f (Θn,Xn)]

Conclusion? For convergence we need
∞∑
n

αn →∞, αn → 0.



Robbins–Munro

Usually, the second condition is tightened to
∞∑
n

α2
n <∞.

A frequent choice is αn = a/n.

After running the iteration for N steps, the output of the
Robbins–Munro algorithm is the final value θN .

Polyak and Ruppert independently improved this by using an
average for the output

ΘN ≡ N−1
N∑
1

Θn

– the averaging cancels out a lot of the noise in Θn



(Batch) Stochastic Gradient Descent

For a fixed sample of finite size S , we write

f (θ) :=
1

S

S∑
i=1

fi (θ) → min
θ
.

I We also emphasise again that Θn are random;

I write In for the set of (randomly, uniformly) selected indices
at iteration n;

Then the batch gradient iteration is

Θn+1 = Θn − αnGn, Gn =
1

|In|
∑
i∈In

∇fi (Θn).

Reduces the variance and provides scope for parallelisation or
vectorisation.



SGD basic properties

We give a few basic properties: Let Fn be generated by Θn, and
En := E[·|Fn]. Assume for simplicity |In| = 1.

Then:

I En[Gn] = ∇f (Θn);

(A1) if fi have Lipschitz gradients ∇fi with Lipschitz constant L,

Enf (Θn+1) ≤ f (Θn)− αn∇f (Θn)>EnGn +
Lα2

n

2
En‖Gn‖2;

(A2) if, moreover, Vk [Gk ] := Ek [G 2
k ]− Ek [Gk ]2 ≤ M for some

M > 0, then

Enf (Θn+1) ≤ f (Θn)− αn(1− αnL/2)‖∇f (Θn)‖2 +
MLα2

n

2
.



SGD convergence of gradient

Let f ≥ fmin > −∞, and let (A1) and (A2) be satisfied, αn = α,
Θ0 = θ0, α ≤ 1/L. Then

min
1≤j≤n

E[‖∇f (Θj)‖2] ≤ αLM +
2(f (θ0)− fmin)

αn
.

Remarks:

I Need 2(f (θ0)− fmin)/(εα) iterations to get
E‖∇ . . . ‖2 ≤ ε+ αLM.

I Under stronger assumptions, can drop ‘min’ above, and show
convergence of E‖∇ . . . ‖2 to norm below αLM.

+ guaranteed bound

- no convergence due to noise



SGD convergence – convex case

Assume additionally that for all η ∈ [0, 1], θ1, θ2,

f (ηθ1 + (1− η)θ2) ≤ ηf (θ1) + (1− η)f (θ2)− γ
2
η(1− η)‖θ1− θ2‖2.

Then for the unique minimiser θ?,

E[f (Θn)]−f (θ?)−αLM
2γ
≤ (1− αγ)n

(
E[f (θ0)]− f (θ?)− αLM

2γ

)
.

+ faster (linear) decay to ‘noise floor’

- no convergence due to noise



SGD – learning rate schedules

Under the assumptions from the convex case, let

αn =
2

2L + γn
.

Then

E[f (Θn)]− f (θ?) ≤
max

(
f (θ0)− f (θ?), Mγ

)
1 + γ

2Ln
.

+ Convergence to minimum.

- Loss of linear convergence, even in convex case.



SGD – impact of batch size

In practice, choose |In| = m > 0.
To simplify the analysis, we choose instead

Gn =
1

m

m∑
i=1

∇fI in(Xn),

where I in are drawn i.i.d. from {1, 2, . . . ,S}, i.e. with replacement.
Then if M is the bound for the single sample variance,

V[Gn] ≤ M

m
,

and we get

E[f (Θn)]−f (θ?)−αLM
2γm

≤ (1− αγ)n
(
E[f (θ0)]− f (θ?)− αLM

2γm

)
.



SGD – using control variates

Again, I jn are drawn i.i.d. from {1, 2, . . . ,S}, j = 0, . . . ,m − 1.

Now consider Θ0
n = Θn and then, for j = 0, . . . ,m − 1:

G j
n = ∇f (Θn) +∇f

I jn
(Θj

n)−∇f
I jn

(Θn),

Θj+1
n = Θj

n − αj
nG

j
n.

Then set

1. Θn+1 = Θm
n ; or

2. Θn+1 = 1
m

∑m
j=1 Θj

n; or

3. Θn+1 = ΘJn
n , where Jn is a uniform, independent sample of

{1, . . . ,m}.
This is referred to as stochastic variance reduced gradient (SVRG).

+ Faster convergence due to reduced variance.

- Needs periodic evaluation of full gradient.



Convergence of SVRG

In addition to (A1) and (A2), assume all fi convex. Moreover,

4αL < 1, 1 < mαγ(1− 4αL).

Then, for option 3. from the previous slide,

E[f (Θn)]− f (θ?) ≤ ρn (f (θ0)− f (θ?)) ,

where

ρ =
1 + 2mαγL

mαγ(1− 2αL)
< 1.

R. Johnson and T. Zhang, Accelerating stochastic gradient descent using predictive

variance reduction, in NIPS 26, 2013, pp. 315?323.



SAGA
Inspired by stochastic average gradient descent (SAG) and SVRG,
SAGA avoids evaluation of the full gradient after the first iteration.

Let N j
n be the latest time prior to n that the gradient of fj was

computed.

I G0 = ∇f (Θ0); N j
0 = 0

I For random uniform In, let

Gn = ∇fIn(Θn) +
1

S

S∑
j=1

∇fj(Θ
N j

n
)−∇fIn(Θ

N In
n

),

Θn+1 = Θn − αnGn.

I Then set N In
n+1 = n and N j

n+1 = N j
n for j 6= In.

A. Defazio, F. Bach, and S. Lacoste-Julien, SAGA: A fast incremental gradient

methodwith support for non-strongly convex composite objectives, in NIPS 27, 2014,

pp. 1646–1654



Final words

I Stochastic gradient descent is good for fitting
high-dimensional parametric models for large sample sizes.

I Convergence requires a suitable learning rate schedule.

I Careful choice of mini-batch sizes and variance reduction can
help.

I Challenges in practice include non-convexity and lack of a
priori knowledge of constants in assumptions.
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