

C4.3 Functional Analytic Methods for PDEs Lectures 13-14

Luc Nguyen luc.nguyen@maths

University of Oxford

MT 2022

- Linear elliptic equations of second order.
- Classical and weak solutions.
- Energy estimates.
- First existence theorem: Riesz representation theorem.
- First existence theorem: Direct method of the calculus of variation.
- Second existence theorem: Fredholm alternative.

- Second existence theorem: Fredholm alternative.
- The compactness of the embedding $L^2(\Omega) \hookrightarrow H^{-1}(\Omega)$.
- Third existence theorem: Spectral theory.
- H^2 regularity of weak solutions to linear elliptic equations.

The Fredholm alternative

Theorem (Fredholm alternative)

Suppose that Ω is a bounded Lipschitz domain. Suppose that $a, b, c \in L^{\infty}(\Omega)$, a is uniformly elliptic, and $L = -\partial_i(a_{ij}\partial_j) + b_i\partial_i + c$.

The boundary value problem

$$\begin{cases} Lu = f + \partial_i g_i & \text{in } \Omega, \\ u = u_0 & \text{on } \partial\Omega \end{cases}$$

is uniquely solvable for each $f \in L^2(\Omega)$, $g \in L^2(\Omega)$ and $u_0 \in H^1(\Omega)$ if and only if $L|_{H^1_0(\Omega)}$ is injective.

- () The kernels N of $L|_{H_0^1(\Omega)}$ and N^{*} of $L^*|_{H_0^1(\Omega)}$ are finite dimensional, and their dimensions are equal.
- (a) If N is non-trivial, (BVP) has a solution if and only if $B(u_0, v) = \langle f, v \rangle \langle g_i, \partial_i v \rangle$ for all $v \in N^*$.

(BVP)

A consequence of the Fredholm alternative

Theorem

Suppose that Ω is a bounded Lipschitz domain. Suppose that $a, b, c \in L^{\infty}(\Omega)$, a is uniformly elliptic, and $L = -\partial_i(a_{ij}\partial_j) + b_i\partial_i + c$. If the bilinear form B associated to L is coercive, i.e. there is a constant C > 0 such that

$$B(w,w) \geq C \|w\|_{L^2(\Omega)}^2$$
 for all $w \in C_c^{\infty}(\Omega)$,

then the boundary value problem

$$\begin{cases} Lu = f + \partial_i g_i & \text{in } \Omega, \\ u = u_0 & \text{on } \partial \Omega \end{cases}$$
(BVP)

has a unique solution for every $f \in L^2(\Omega)$, $g \in L^2(\Omega)$ and $u_0 \in H^1(\Omega)$.

Proof

• By density (— fill in the details —), we have

$$B(w,w) \geq C \|w\|_{L^2(\Omega)}^2$$
 for all $w \in H_0^1(\Omega)$.

- By the Fredholm alternative, it suffices to show that if *u* ∈ H¹₀(Ω) satisfies *Lu* = 0, then *u* = 0.
- By the definition of weak solution, we have B(u, φ) = 0 for all φ ∈ H₀¹(Ω). In particular B(u, u) = 0. By the coercivity of B, we thus have ||u||_{L²} = 0 and so u = 0.

Definition

Let *H* be a Hilbert space. An bounded linear operator $K : H \to H$ is said to be *compact* if *K* maps bounded subset of *H* into pre-compact subsets of *H*.

Theorem (Fredholm alternative)

Let H be a Hilbert space and $K : H \rightarrow H$ be a compact bounded linear operator. Then we have the dichotomy that either I - K is invertible or Ker (I - K) is non-trivial.

Lemma

Let H be a Hilbert space and $K : H \to H$ be compact. If Ker (I - K) = 0, then V = Im(I - K) is a closed subspace of H.

- Take $(u_m) \subset H$ such that $v_m = (I K)(u_m) \rightarrow x$. We will show that $x \in V$ by showing that (u_m) has a convergent subsequence.
- It suffices to show that (u_m) is bounded. Indeed, once this is proved, as K is compact, there is a subsequence such that $Ku_{m_j} \rightarrow z$, and so $u_{m_j} = v_{m_j} + Ku_{m_j} \rightarrow x + z$.

A detour to FA

Proof

- Suppose by contradiction that (u_m) is not bounded, i.e. there is a subsequence (u_{m_i}) with $||u_{m_i}|| \to \infty$.
- Let $\tilde{u}_{m_j} = \frac{u_{m_j}}{\|u_{m_j}\|}$ and $\tilde{v}_{m_j} = (I K)\tilde{u}_{m_j} = \frac{v_{m_j}}{\|u_{m_j}\|}$.
- As (v_m) is convergent, $\tilde{v}_{m_j} \rightarrow 0$. We are thus in a similar situation as on the previous slide.
- In the same way, as (\tilde{u}_{m_j}) is bounded and K is compact, we can assume after passing to a subsequence if necessary that $K\tilde{u}_{m_j}$ converges to some $y \in H$.

•
$$\tilde{u}_{m_j} = \tilde{v}_{m_j} + K \tilde{u}_{m_j} \to y.$$

• This amounts to a contradiction to the hypothesis that Ker(I - K) = 0: On one hand, as $\|\tilde{u}_{m_j}\| = 1$, we must have on $\|y\| = 1$. On the other hand, as $(I - K)\tilde{u}_{m_j} = \tilde{v}_{m_j}$, we have (I - K)y = 0.

Theorem (Fredholm alternative)

Let H be a Hilbert space and $K : H \rightarrow H$ be a compact bounded linear operator. Then we have the dichotomy that either I - K is invertible or Ker (I - K) is non-trivial.

- Suppose by contradiction that Ker (I − K) = 0 but Im (I − K) is a proper subspace of H.
- Let $V_0 = H$ and define inductively $V_{m+1} = (I K)(V_m)$. We claim that V_{m+1} is a closed and proper subspace of V_m .
 - * By the lemma and the contradiction hypothesis, V_1 is a closed proper subspace of V_0 .
 - * We have $(I K)V_1 \subset (I K)V_0 = V_1$. It follows that $KV_1 \subset V_1$. By the lemma again, $V_2 = (I K)V_1$ is a closed subspace of V_1 .

- We are proving the claim that V_{m+1} is a closed and proper subspace of V_m .
 - \star V₁ is a closed proper subspace of V₀.
 - * V_2 is a closed subspace of V_1 .
 - \star As V_1 is a proper subspace of V_0 , we can take $u \in V_0 \setminus V_1$.
 - ★ It is clear that $(I K)u \in V_1$.
 - * If $(I K)u \in V_2$, then there is some (I K)u = (I K)w for some $w \in V_1$, contradicting the fact that Ker(I - K) = 0.
 - ★ We thus have $(I K)u \in V_1 \setminus V_2$. Hence V_2 is a closed proper subspace of V_1 .
 - \star The claim follows by induction.

- *H* = *V*₀ ⊋ *V*₁ ⊋ *V*₂ ⊋ ... is a strict nested sequence of closed spaces.
- We now use the projection theorem to write $V_m = V_{m+1} \oplus W_{m+1}$ where W_{m+1} is the orthogonal complement of V_{m+1} within V_m .
- Take some w_m ∈ W_{m+1} ⊂ V_m with ||w_m|| = 1. By the compactness of K, (Kw_m) has a convergent subsequence. To reach a contradiction, we show that ||Kw_l − Kw_m|| ≥ 1 for m > l.

A detour to FA

Proof

- … To reach a contradiction, we show that ||Kw_l − Kw_m|| ≥ 1 for m > l.
 - ★ We write

$$Kw_l - Kw_m = \left\{ (I - K)w_m - (I - K)w_l - w_m \right\} + w_l,$$

and consider the terms in curly braces.

* $w_l \in W_{l+1} \subset V_l$ and so $(I - K)w_l \subset V_{l+1}$.

$$\star W_m \in W_{m+1} \subset V_m \subset V_{l+1}.$$

$$\star (I-K)w_m \in (I-K)(V_m) = V_{m+1} \subset V_{l+1}.$$

- * So the terms in the curly braces belong to V_{l+1} .
- ★ As $w_l \in W_{l+1}$, we thus have by Pythagoras' theorem that $||Kw_l Kw_m|| \ge ||w_l|| = 1.$

As explained earlier, this gives a contradiction to the compactness of K and thus concludes the proof.

C4.3 - Lectures 13-14

The Fredholm alternative

Theorem (Fredholm alternative)

Suppose that Ω is a bounded Lipschitz domain. Suppose that $a, b, c \in L^{\infty}(\Omega)$, a is uniformly elliptic, and $L = -\partial_i(a_{ij}\partial_j) + b_i\partial_i + c$.

The boundary value problem

$$\begin{cases} Lu = f + \partial_i g_i & \text{in } \Omega, \\ u = u_0 & \text{on } \partial\Omega \end{cases}$$

is uniquely solvable for each $f \in L^2(\Omega)$, $g \in L^2(\Omega)$ and $u_0 \in H^1(\Omega)$ if and only if $L|_{H^1_0(\Omega)}$ is injective.

- () The kernels N of $L|_{H_0^1(\Omega)}$ and N^{*} of $L^*|_{H_0^1(\Omega)}$ are finite dimensional, and their dimensions are equal.
- (a) If N is non-trivial, (BVP) has a solution if and only if $B(u_0, v) = \langle f, v \rangle \langle g_i, \partial_i v \rangle$ for all $v \in N^*$.

(BVP)

The Fredholm alternative

Theorem (Uniqueness implies existence)

Suppose that Ω is a bounded Lipschitz domain. Suppose that a, b, $c \in L^{\infty}(\Omega)$, a is uniformly elliptic, and $L = -\partial_i(a_{ij}\partial_j) + b_i\partial_i + c$. Then $L : H_0^1(\Omega) \to H^{-1}(\Omega)$ is bijective if and only if it is injective.

- Step 1: Consideration of the top order operator L_{top} defined by $\overline{L_{top}u} = -\partial_i(a_{ij}\partial_j u).$
 - * We know from our first existence theorem that L_{top} is a bijection from $X = H_0^1(\Omega)$ in to X^* .
 - * Let $A: X^* \to X$ be the inverse of L_{top} . By the inverse mapping theorem, A is bounded linear.
 - * Let us give a direct proof for the boundedness of A. Suppose that AT = u, i.e. $L_{top}u = T$. Then $B_{top}(u, \varphi) = T\varphi$ where B_{top} is the bilinear form associated with L_{top} .

Proof

• Step 1: Consideration of the top order operator L_{top} defined by $\overline{L_{top}u} = -\partial_i(a_{ij}\partial_j u).$

 $\star~$ Using $\varphi=u$ and the ellipticity we have

$$\lambda \|\nabla u\|_{L^2(\Omega)}^2 \leq \int_{\Omega} a_{ij} \partial_j u \partial_i u \, dx = B_{top}(u, u) = Tu \leq \|T\| \|u\|_X.$$

 \star Thus, by Friedrichs' inequality, we have

$$||u||_X^2 \leq C ||Du||_{L^2(\Omega)}^2 \leq C ||T|| ||u||_X,$$

and so $||AT||_X \leq C ||T||$, i.e. A is bounded.

The Fredholm alternative

Proof

• Step 2: We recast the equation Lu = T as an equation in the form (I - K)u = AT where K is a linear operator from X into itself.

★ We have

$$Lu = T \Leftrightarrow L_{top}u + b_i\partial_i u + cu = T$$
$$\Leftrightarrow A(L_{top}u + b_i\partial_i u + cu) = AT$$
$$\Leftrightarrow u - A(-b_i\partial_i u - cu) = AT.$$

- * Hence Lu = T is equivalent to (I K)u = AT with $Ku = A(-b_i\partial_i u cu)$.
- * We saw earlier in Lecture 11 that the map $u \mapsto -b_i \partial_i u cu$ is a bounded linear map from X into X^{*}. Hence $K : X \to X$ is bounded linear.

- <u>Step 3</u>: We conclude using the Fredholm alternative for operators of the form *I Compact*.
 - \star To conclude, we need to show that I K is a bijection.
 - * Since $L: X \to X^*$ is injective, so is I K. Hence, by the Fredholm alternative for operators of the form I Compact, it suffices to show that K is compact, i.e. every bounded sequence $(u_m) \subset X$ has a subsequence u_{m_j} such that (Ku_{m_j}) is convergent.
 - ★ Suppose $(u_m) \subset X$ is bounded. As K is bounded, (Ku_m) is also bounded.
 - * As X is reflexive, we may assume after passing to a subsequence that $u_m \rightharpoonup u$ and $Ku_m \rightharpoonup w$ in $X = H_0^1(\Omega)$.
 - ★ In addition, by Rellich-Kondrachov's theorem, we may also assume that $u_m \rightarrow u$ and $Ku_m \rightarrow w$ in $L^2(\Omega)$.

The Fredholm alternative

Proof

• Step 3: We conclude using the Fredholm alternative...

 $\,\triangleright\,$ Sending $m\to\infty$ using the fact that $u_m\rightharpoonup u$ and $Ku_m\rightharpoonup w$ in H^1 we get

$$\int_{\Omega} a_{ij} \partial_j w \partial_i \varphi \, dx = \int_{\Omega} (-b_i \partial_i u - cu) \varphi \, dx \text{ for all } \varphi \in H^1_0(\Omega).$$

▷ This means
$$L_{top}w = -b_i\partial_i u - cu$$
, i.e.
 $w = L_{top}^{-1}(-b_i\partial_i u - cu) = Ku$.

The Fredholm alternative

Proof

- Step 3: We conclude using the Fredholm alternative...
 - * We thus have u_m converges weakly in H^1 and strongly in L^2 to u, and Ku_m converges weakly in H^1 and strongly in L^2 to Ku.
 - * We need to upgrade the weak convergence of Ku_m in H^1 to strong convergence. By working instead with the sequence $u_m - u$, we may assume at this point that u = 0.
 - * Recall that $L_{top}(Ku_m) = -b_i \partial_i u_m cu_m$ and so

$$\int_{\Omega} a_{ij} \partial_j (K u_m) \partial_i \varphi \, dx = \int_{\Omega} (-b_i \partial_i u_m - c u_m) \varphi \, dx \text{ for all } \varphi \in H^1_0(\Omega).$$

 \star Taking $\varphi = Ku_m$, and using ellipticity we thus find

$$\lambda \|\nabla \mathsf{K} u_m\|_{L^2(\Omega)}^2 \leq \|b_i \partial_i u_m + c u_m\|_{L^2(\Omega)} \|\mathsf{K} u_m\|_{L^2(\Omega)}$$

The first factor is bounded and the second factor goes to 0.

C4.3 - Lectures 13-14

- Step 3: We conclude using the Fredholm alternative...
 - * So we have proven that $\nabla Ku_m \to 0$ in L^2 . Together with the fact that $Ku_m \to 0$ in L^2 , we have that $Ku_m \to 0$ in H^1 .
 - \star We conclude that K is compact.
 - * As I K is injective, we conclude that I K is invertible, and so is L.

Let us make a couple of remarks on the proof.

- One of the ideas in the proof is to write Lu = T in the form $(I K)u = L_{top}^{-1} \circ T$ where $K : H_0^1(\Omega) \to H_0^1(\Omega)$ is compact.
- The operator K is given by $Ku = L_{top}^{-1}(-b_i\partial_i u cu)$. Hence $K = L_{top}^{-1} \circ B$ where $B : H_0^1(\Omega) \to H^{-1}(\Omega)$ is given by

$$Bu = -b_i \partial_i u - cu,$$

i.e. $Bu(\varphi) = \int_{\Omega} (-b_i \partial_i u - cu) \varphi \, dx$ for $\varphi \in H_0^1(\Omega).$

• The operator *B* can be decompose further as $B = J \circ B_0$ where $B_0: H_0^1(\Omega) \to L^2(\Omega)$ is given by $B_0 u = -b_i \partial_i u - cu$ and $J: L^2(\Omega) \to H^{-1}(\Omega)$ is the natural injection given by

$$Jv(arphi) = \int_{\Omega} v arphi \, dx ext{ for } v \in L^2(\Omega), arphi \in H^1_0(\Omega).$$

• Altogether we have the chain $K = L_{top}^{-1} \circ J \circ B_0$:

$$K: H^1_0(\Omega) \xrightarrow{B_0} L^2(\Omega) \xrightarrow{J} H^{-1}(\Omega) \xrightarrow{L^{-1}_{top}} H^1_0(\Omega).$$

• We have the following compactness result for J, which also implies the compactness of K.

Theorem

Suppose that Ω is a bounded Lipschitz domain. Then the natural injection $J : L^2(\Omega) \to H^{-1}(\Omega)$ defined by

$$Jv(\varphi) = \int_{\Omega} v\varphi \, dx \, \text{ for } v \in L^2(\Omega) \, \text{ and } \varphi \in H^1_0(\Omega)$$

is compact, i.e. if (v_m) is bounded in $L^2(\Omega)$, then there is a subsequence (v_{m_j}) such that (Jv_{m_j}) is convergent in $H^{-1}(\Omega)$.

Proof

- Suppose (v_m) is bounded in L²(Ω). Then there is a subsequence (v_{m_j}) which converges weakly in L² to some limit v ∈ L²(Ω).
- We aim to show that (Jv_{m_i}) converges in H^{-1} to Jv.
- By working with $v_{m_j} v$ instead of v_{m_j} , we may assume that v = 0.
- Suppose by contradiction that $Jv_{m_j} \not\rightarrow 0$. Passing to a subsequence, we may assume that

$$\|Jv_{m_j}\|_{H^{-1}} > \delta > 0.$$

• Let w_j be the solution to

$$\begin{cases} -\Delta w_j + w_j = v_{m_j} & \text{in } \Omega, \\ w_j = 0 & \text{on } \partial \Omega. \end{cases}$$

Proof

• As $Jv_{m_j} \neq 0$, we have that $w_j \neq 0$. Also, by definition of weak solution, we have

$$\int_{\Omega} v_{m_j} \varphi \, dx = \int_{\Omega} [\nabla w_j \cdot \nabla \varphi + w_j \varphi] \, dx \text{ for all } \varphi \in H^1_0(\Omega).$$

This means

$$Jv_{m_j}(\varphi) = \langle w_j, \varphi \rangle_{H^1}$$
 for all $\varphi \in H^1_0(\Omega)$.

 Observe that if we take supremum over φ ∈ H¹₀(Ω) with ||φ||_{H¹₀(Ω)} ≤ 1, then the supremum of the right hand side is attained exactly at φ_j := ^{w_j}/_{||w_j||_{H¹}}.

Proof

• We thus have, for
$$arphi_j = rac{w_j}{\|w_j\|_{H^1}}$$

$$\|J\mathbf{v}_{m_j}\|_{H^{-1}} = J\mathbf{v}_{m_j}(\varphi_j) = \int_{\Omega} \mathbf{v}_{m_j}\varphi_j \, dx.$$

- The sequence (φ_j) is bounded in H¹(Ω). By Rellich-Kondrachov's theorem, we may assume after passing to a subsequence, that φ_j converges strongly in L² to some φ_{*} ∈ L²(Ω).
- Now as v_{m_i} converges weakly to v = 0 in $L^2(\Omega)$, we arrive at

$$\lim_{j\to\infty} \|J\mathbf{v}_{m_j}\|_{H^{-1}} = \lim_{j\to\infty} \int_{\Omega} \mathbf{v}_{m_j}\varphi_j \, d\mathbf{x} = \int_{\Omega} \mathbf{0}\varphi_* \, d\mathbf{x} = \mathbf{0},$$

contradicting the statement that $\|Jv_{m_i}\|_{H^{-1}} > \delta > 0$.

Theorem (Spectrum of an elliptic operator)

Suppose that Ω is a bounded Lipschitz domain. Suppose that $a, b, c \in L^{\infty}(\Omega)$, a is uniformly elliptic, and $L = -\partial_i(a_{ij}\partial_j) + b_i\partial_i + c$. Then there exists an at most countable set $\Sigma \subset \mathbb{R}$ such that the boundary value problem

$$\begin{cases} Lu = \lambda u + f & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega \end{cases}$$
 (EBVP)

has a unique solution if and only if $\lambda \notin \Sigma$. Furthermore, if Σ is infinite then $\Sigma = \{\lambda_k\}_{k=1}^{\infty}$ with

$$\lambda_1 \leq \lambda_2 \leq \ldots \rightarrow \infty.$$

The set Σ is called the real spectrum of the operator *L*.

Proof

Let B be the bilinear form associated with L. Recall the energy estimate: There exists μ > 0 depending on the L[∞] bounds for a, b, c and the ellipticity constant λ such that

$$\frac{\lambda}{2} \|u\|_{H^1(\Omega)}^2 \leq B(u, u) + \mu \|u\|_{L^2(\Omega)}^2.$$

- If we define $L_{\mu}u = Lu + \mu u$ and let B_{μ} be the bilinear form associated with L_{μ} , then the right hand side above is exactly $B_{\mu}(u, u)$.
- So B_μ is coercive. By the Fredholm alternative, the operator
 L_μ : H¹₀(Ω) → H⁻¹(Ω) is invertible. Denote its inverse by S_μ.

Spectra of elliptic operators

Proof

• Define an operator $K: L^2(\Omega) \to L^2(\Omega)$ by:

$$\mathcal{K}: L^2(\Omega) \stackrel{J}{\hookrightarrow} \mathcal{H}^{-1}(\Omega) \stackrel{S_{\mu}}{\to} \mathcal{H}^1_0(\Omega) \stackrel{Id}{\hookrightarrow} L^2(\Omega).$$

The last leg is compact by Rellich-Kondrachov's theorem, hence K is compact.

(We also know that J is compact, but that is a harder statement.)

• Let Σ be the set of $\lambda \in \mathbb{R}$ such that (EBVP) is not always uniquely solvable. By the Fredholm alternative,

$$\lambda \in \Sigma \Leftrightarrow (L - \lambda Id)$$
 is not injective
 $\Leftrightarrow (L_{\mu} - (\lambda + \mu)Id)$ is not injective
 $\Leftrightarrow I - (\lambda + \mu)K$ is not injective
 $\Leftrightarrow \lambda + \mu \neq 0$ and $(\lambda + \mu)^{-1} \in \sigma_p(K)$.

Spectra of elliptic operators

Proof

 ... λ ∈ Σ if and only if λ + μ ≠ 0 and (λ + μ)⁻¹ ∈ σ_p(K). The conclusion follows from a general result for spectra of compact operators, which we take for granted.

Theorem (Spectra of compact operators)

Let H be a Hilbert space of infinite dimension, $K : H \to H$ be a compact bounded linear operator and $\sigma(K)$ be its spectrum (i.e. the set of $\lambda \in \mathbb{C}$ such that $\lambda I - K$ is not invertible). Then

) 0 belongs to
$$\sigma(K)$$
.

$$\sigma(K) \setminus \{0\} = \sigma_p(K) \setminus \{0\}, i.e. \ \lambda I - K \text{ has non-trivial kernel for } \\ \lambda \in \sigma(K) \setminus \{0\}.$$

 $\sigma(K) \setminus \{0\}$ is either finite or an infinite sequence tending to 0.

The question of regularity

In the rest of this course we consider regularity results for solutions to

$$Lu=-\partial_i(a_{ij}\partial_j u)+b_i\partial_i u+cu=f$$
 in a domain Ω

with $f \in L^2(\Omega)$.

• We want to keep in mind the following two motivating examples in 1*d*:

$$-u'' = f \text{ in } (-1,1)$$
 (*)

and

$$-(\mathit{au'})'=f$$
 in $(-1,1)$ where $\mathit{a}=\chi_{(-1,0)}+2\chi_{(0,1)}.$ (**)

- For (*), u belongs to H^2 .
- For (**), au' belongs to H¹. Typically this implies u' is discontinuous and hence u ∉ H². Nevertheless u is continuous.

Theorem (Interior H^2 regularity)

Suppose that $a \in C^1(\Omega)$, $b, c \in L^{\infty}(\Omega)$, a is uniformly elliptic, and $L = -\partial_i(a_{ij}\partial_j) + b_i\partial_i + c$. Suppose that $f \in L^2(\Omega)$. If $u \in H^1(\Omega)$ satisfies Lu = f in Ω in the weak sense then $u \in H^2_{loc}(\Omega)$, and for any open ω such that $\bar{\omega} \subset \Omega$ we have

$$||u||_{H^2(\omega)} \leq C(||f||_{L^2(\Omega)} + ||u||_{H^1(\Omega)})$$

where the constant C depends only on $n, \Omega, \omega, a, b, c$.

Theorem (Global H^2 regularity)

Suppose that Ω is a bounded domain and $\partial\Omega$ is C^2 regular. Suppose that $a, b, c \in C^1(\overline{\Omega})$, a is uniformly elliptic, and $L = -\partial_i(a_{ij}\partial_j) + b_i\partial_i + c$. Suppose that $f \in L^2(\Omega)$. If $u \in H^1_0(\Omega)$ satisfies Lu = f in Ω in the weak sense then $u \in H^2(\Omega)$ and

$$||u||_{H^2(\Omega)} \leq C(||f||_{L^2(\Omega)} + ||u||_{H^1(\Omega)})$$

where the constant C depends only on n, Ω, a, b, c .

Remark: If $\partial \Omega$ is C^{∞} , $a, b, c \in C^{\infty}(\overline{\Omega})$, and $f \in C^{\infty}(\Omega)$ then $u \in C^{\infty}(\Omega)$.

To illustrate the idea, we focus in the case *a* is constant, $b \equiv 0$, $c \equiv 0$. The local H^2 regularity result is equivalent to:

Theorem (Interior H^2 regularity for $-\Delta$)

Suppose $f \in L^2(B_2)$ and $u \in H^1(B_2)$. If $-\Delta u = f$ in B_2 in the weak sense, then $u \in H^2(B_1)$ and

$$\|u\|_{H^2(B_1)} \leq C(\|f\|_{L^2(B_2)} + \|u\|_{H^1(B_2)})$$

where the constant C depends only on n.

The start of the proof is the following simple but important lemma:

Lemma

Suppose that $u \in C^{\infty}_{c}(\mathbb{R}^{n})$. Then

$$\|\nabla^2 u\|_{L^2(\mathbb{R}^n)} = \|\Delta u\|_{L^2(\mathbb{R}^n)}.$$

The proof is a computation using integration by parts:

$$\begin{split} \|\nabla^2 u\|_{L^2(\mathbb{R}^n)}^2 &= \int_{\mathbb{R}^n} \partial_i \partial_j u \partial_i \partial_j u \, dx = -\int_{\mathbb{R}^n} \partial_j u \partial_j \partial_i^2 u \, dx \\ &= \int_{\mathbb{R}^n} \partial_j^2 u \partial_i^2 u \, dx = \|\Delta u\|_{L^2(\mathbb{R}^n)}^2. \end{split}$$

The following lemma is a generalisation in the weak setting:

Lemma

Suppose that $f \in L^2(\mathbb{R}^n)$, $u \in H^1(\mathbb{R}^n)$ and u has compact support. Suppose that $-\Delta u = f$ in \mathbb{R}^n in the weak sense. Then $u \in H^2(\mathbb{R}^n)$ and

$$\|\nabla^2 u\|_{L^2(\mathbb{R}^n)} \leq \|f\|_{L^2(\mathbb{R}^n)}.$$

Proof of the lemma

• Take a family of mollifiers (ϱ_{ε}) : Fix a non-negative function $\varrho \in C_{c}^{\infty}(B_{1})$ with $\int_{\mathbb{R}^{n}} \varrho = 1$ and let $\varrho_{\varepsilon}(x) = \varepsilon^{-n} \varrho(x/\varepsilon)$.

• Set
$$u_{\varepsilon} = \varrho_{\varepsilon} * u$$
 and $f_{\varepsilon} = \varrho_{\varepsilon} * f$.
Then $u_{\varepsilon}, f_{\varepsilon} \in C_{c}^{\infty}(\mathbb{R}^{n})$ and $u_{\varepsilon} \to u$ in $H^{1}(\mathbb{R}^{n})$ and $f_{\varepsilon} \to f$ in $L^{2}(\mathbb{R}^{n})$.

Proof of the lemma

• Claim:
$$-\Delta u_{\varepsilon} = f_{\varepsilon}$$
 in \mathbb{R}^n .

- * Fix $v \in C^{\infty}_{c}(\mathbb{R}^{n})$ and consider $\int_{\mathbb{R}^{n}} \nabla u_{\varepsilon} \cdot \nabla v \, dx$.
- * Recall that, as $u \in H^1(\mathbb{R}^n)$, $\nabla u_{\varepsilon} = \varrho_{\varepsilon} * \nabla u$.
- * Hence, by Fubini's theorem,

$$\begin{split} \int_{\mathbb{R}^n} \nabla u_{\varepsilon} \cdot \nabla v \, dx &= \int_{\mathbb{R}^n} \Big[\int_{\mathbb{R}^n} \varrho_{\varepsilon}(x-y) \partial_{y_i} u(y) \, dy \Big] \partial_{x_i} v(x) \, dx \\ &= \int_{\mathbb{R}^n} \partial_{y_i} u(y) \Big[\int_{\mathbb{R}^n} \varrho_{\varepsilon}(x-y) \partial_{x_i} v(x) \, dx \Big] \, dy. \end{split}$$

 $\star\,$ Integrating by parts in the inner integral we get

$$\int_{\mathbb{R}^n} \nabla u_{\varepsilon} \cdot \nabla v \, dx = - \int_{\mathbb{R}^n} \partial_{y_i} u(y) \Big[\int_{\mathbb{R}^n} \partial_{x_i} \varrho_{\varepsilon}(x-y) v(x) \, dx \Big] \, dy.$$

Proof of the lemma

• Claim:
$$-\Delta u_{\varepsilon} = f_{\varepsilon}$$
 in \mathbb{R}^{n} .
* $\int_{\mathbb{R}^{n}} \nabla u_{\varepsilon} \cdot \nabla v \, dx = -\int_{\mathbb{R}^{n}} \partial_{y_{i}} u(y) \Big[\int_{\mathbb{R}^{n}} \partial_{x_{i}} \varrho_{\varepsilon}(x-y) v(x) \, dx \Big] \, dy$.
* Now observe that $\partial_{x_{i}} \varrho_{\varepsilon}(x-y) = -\partial_{y_{i}} \varrho_{\varepsilon}(x-y)$.
* We thus have, by Fubini's theorem again,
 $\int_{\mathbb{R}^{n}} \nabla u_{\varepsilon} \cdot \nabla v \, dx = \int_{\mathbb{R}^{n}} \partial_{y_{i}} u(y) \Big[\int_{\mathbb{R}^{n}} \partial_{y_{i}} \varrho_{\varepsilon}(x-y) v(x) \, dx \Big] \, dy$
 $= \int_{\mathbb{R}^{n}} \Big[\int_{\mathbb{R}^{n}} \partial_{y_{i}} u(y) \partial_{y_{i}} \varrho_{\varepsilon}(x-y) \, dy \Big] v(x) \, dx.$
* As $-\Delta u = f$ in the weak sense, the inner integral is equal to
 $\int_{\mathbb{R}^{n}} f(y) \, \varrho_{\varepsilon}(x-y) \, dy$, which is $f_{\varepsilon}(x)$.
* We deduce that

$$\int_{\mathbb{R}^n} \nabla u_{\varepsilon} \cdot \nabla v \, dx = \int_{\mathbb{R}^n} f_{\varepsilon}(x) v(x) \, dx.$$

Luc Nguyen (University of Oxford)

C4.3 - Lectures 13-14

Proof of the lemma

- Claim: $-\Delta u_{\varepsilon} = f_{\varepsilon}$ in \mathbb{R}^n .
 - * As v was picked arbitrarily in $C_c^{\infty}(\mathbb{R}^n)$, we have that $-\Delta u_{\varepsilon} = f_{\varepsilon}$ in \mathbb{R}^n in the weak sense.
 - * As u_{ε} and f_{ε} are smooth, this equation also holds in the classical sense. (Check this!)
- Now, by the previous lemma, we have

$$\|\nabla^2 u_{\varepsilon}\|_{L^2(\mathbb{R}^n)} = \|\Delta u_{\varepsilon}\|_{L^2(\mathbb{R}^n)} = \|f_{\varepsilon}\|_{L^2(\mathbb{R}^n)}.$$

- Young's convolution inequality gives $\|f_{\varepsilon}\|_{L^{2}(\mathbb{R}^{n})} \leq \|f\|_{L^{2}(\mathbb{R}^{n})} \|\varrho_{\varepsilon}\|_{L^{1}(\mathbb{R}^{n})} = \|f\|_{L^{2}(\mathbb{R}^{n})} \text{ , and so}$ $\|\nabla^{2}u_{\varepsilon}\|_{L^{2}(\mathbb{R}^{n})} \leq \|f\|_{L^{2}(B_{2})}.$
- Therefore, along a subsequence, (∇²u_ε) converges weakly to some A ∈ L²(ℝⁿ; ℝ^{n×n}) with ||A||_{L²(ℝⁿ)} ≤ ||f||_{L²(B₂)}.

Proof of the lemma

- Putting things together we have $u_{\varepsilon} \to u$ in $H^1(\mathbb{R}^n)$, $\nabla^2 u_{\varepsilon} \rightharpoonup A$ in $L^2(\mathbb{R}^n)$ and $||A||_{L^2(\mathbb{R}^n)} \leq ||f||_{L^2(\mathbb{R}^n)}$.
- Claim: A is the weak second derivatives of u.
 Indeed, this follows by passing ε → 0 in the identity

$$\int_{\mathbb{R}^n} u_{\varepsilon} \partial_i \partial_j v = \int_{\mathbb{R}^n} \partial_i \partial_j u_{\varepsilon} v \text{ for all } v \in C^{\infty}_c(\mathbb{R}^n).$$

• We have thus shown that $u \in H^2(\mathbb{R}^n)$ and $\|\nabla^2 u\|_{L^2(\mathbb{R}^n)} = \|A\|_{L^2(\mathbb{R}^n)} \le \|f\|_{L^2(B_2)}.$