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Chapter 1

Thin film flows

1.1 Lubrication theory

Lubrication theory refers to a class of approximations of the Navier–Stokes equations
which are based on a large aspect ratio of the flow. The aspect ratio is the ratio of two
different directional length scales of the flow, as for example the depth and the width.
Typical examples of flows where the aspect ratio is large (or small, depending on which
length is in the numerator) are lakes, rivers, atmospheric winds, waterfalls, lava flows,
and in an industrial setting, oil flows in bearings (whence the term lubrication theory).
Lubrication theory forms a basic constituent of a viscous flow course and will not be
dwelt on here.

In brief the Navier–Stokes equations for an incompressible take the form

∇.u = 0,

ρ[ut + (u.∇)u] = −∇p+ µ∇2u, (1.1)

at least in Cartesian coordinates. It should be recalled that the actual definition of
∇2 ≡∇∇. −∇×∇×, and the components of ∇2u = ∇2uiei (we use the summation
convention) is only applicable in Cartesian coordinates. For other systems, one can
for example consult the appendix in Batchelor (1967).

We begin by non-dimensionalising the equations by choosing scales

x ∼ l, t ∼ l

U
, u ∼ U, p− pa ∼

µU

l
; (1.2)

this is the usual way to scale the equations, except that we have chosen to balance the
pressure with the viscous terms. The pressure pa is an ambient pressure, commonly
atmospheric pressure. The resulting dimensionless equations are

∇.u = 0,

Re u̇ ≡ Re [ut + (u.∇)u] = −∇p+∇2u, (1.3)

where

Re =
ρUl

µ
(1.4)
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Figure 1.1: A slider bearing.

is the Reynolds number; the overdot denotes the material derivative. For Re � 1
we have Stokes flow, where the inertial terms can be neglected, and for Re � 1,
boundary layers generally occur (and the pressure would be rescaled to balance the
inertia terms, thus p ∼ Re).

Lubrication theory describes a situation where the geometry of the flow allows
the neglect of the inertial terms, even if the Reynolds number is not small. Suppose
for example that l measures the extent of the flow in the x direction, but the fluid
thickness in the (say) z direction is small. A simple example is the slider bearing,
shown in figure 1.1, in which the fluid is confined between two surfaces, which we
might take to be z = 0 and z = h(x), and one of the surfaces moves at speed U
relative to the other. To be specific, we assume a two-dimensional flow in which the
coordinates are (x, z), the velocity components are (u,w), the bearing (z = h) is of
finite length l and lies above a flat surface z = 0 which moves at speed U ; the bearing
is open to the atmosphere at each end, and the gap width h ∼ d� l. We define the
small parameter

ε =
d

l
, (1.5)

so that in non-dimensional terms, the bearing is at z = εh(x) (where we scaled the
dimensional h with d, so that the dimensionless h is O(1)). It is then appropriate to
rescale the variables as follows:

z ∼ ε, w ∼ ε, p ∼ 1

ε2
, (1.6)

and the equations then take the form

ux + wz = 0,

ε2Re u̇ = −px + uzz + ε2uxx,

ε4Re ẇ = −pz + ε2(wzz + ε2wxx), (1.7)
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with boundary conditions

u = 1, w = 0 at z = 0,

u = w = 0 at z = h,

p = 0 at x = 0, 1. (1.8)

At leading order we then have p = p(x, t), and thus, integrating, we obtain

u =
z

h
− 1

2
px(hz − z2). (1.9)

The final part of the solution comes from integrating the mass conservation equa-
tion from z = 0 to z = h. This gives

0 = −[w]h0 = −
∫ h

0

wz dz =

∫ h

0

ux dz =
∂

∂x

∫ h

0

u dz, (1.10)

where we can take the differentiation outside the integral because u is zero at z = h.
In fact we can write down (1.10) directly since it is an expression of conservation of
mass across the layer; and this applies more generally, even if the base is not flat, and
indeed even if both surfaces depend on time, and the result can be extended to three
dimensions; see question 1.2. Calculating the flux from (1.9), we obtain∫ s

b

u dz = 1
2
h− 1

12
h3px = K (1.11)

is constant. Given h, the solution for p can be found as a quadrature, and is

p = 6

[
f2(x)− f2(1)f3(x)

f3(1)

]
, fn(x) =

∫ x

0

dx

hn
. (1.12)

In three dimensions, exactly the same procedure leads to the equation

1
12
∇H .(h

3∇Hp) = 1
2
hx, (1.13)

where the plate flow direction is taken along the x axis; derivation of this is left as
an exercise.

1.2 Droplet dynamics

When one of the surfaces is a free surface (meaning it is free to deform), such as a
droplet of liquid resting on a surface, or a rivulet flowing down a window pane, there
are two differences which must be accounted for in formulating the problem. One is
that the free surface is usually a material surface, so that a kinematic condition is
appropriate. In three dimensions, this takes the form

w = st + usx + vsy − a. (1.14)
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Here, z = s is the free surface, and (u, v, w) is the velocity; the term a is normally
absent, but a non-zero value describes surface accumulation (which might for example
be due to condensation); if a < 0 it describes ablation due for example to evaporation.

The other difference is that the boundary conditions at the free surface are gen-
erally not ones of prescribed velocity but of prescribed stress. In the common case of
a droplet of liquid with air above, these conditions take the form

σnn = −pa, σnt = 0, (1.15)

representing the fact that the atmosphere exerts a constant pressure on the surface,
and no shear stress. Commonly the pressure is taken as gauge pressure, i. e., measured
relative to atmospheric pressure, which is equivalent to taking pa = 0 in (1.15). To
unravel these conditions, we will consider the case of a two-dimensional incompressible
flow. In this case, the components of the stress tensor are

σ11 = −p+ τ1, σ13 = σ31 = τ3, σ33 = −p− τ1, (1.16)

where
τ1 = 2µux, τ3 = µ(uz + wx), (1.17)

and then with

n =
(−sx, 1)

(1 + s2
x)

1/2
, t =

(1, sx)

(1 + s2
x)

1/2
, (1.18)

we have

σnn = σijninj = −p− [τ1(1− s2
x) + 2τ3sx]

1 + s2
x

,

σnt = σijnitj =
[τ3(1− s2

x)− 2τ1sx]

1 + s2
x

. (1.19)

The dimensionless equations are virtually the same, as we initially scale p−pa, τ1 and
τ3 with µU/l, and then when the rescaling in (1.6) is done (note that consequently
we rescale τ3 ∼ 1/ε), the surface boundary conditions become

p+
ε2[τ1(1− ε2s2

x) + 2τ3sx]

1 + ε2s2
x

= 0,

τ3(1− ε2s2
x)− 2ε2τ1sx = 0, (1.20)

where
τ1 = 2ux, τ3 = uz + ε2wx. (1.21)

Putting ε = 0, we thus obtain the leading order conditions

p = τ3 = 0 on z = s. (1.22)

We can then integrate uzz = px, assuming also a no slip base at z = b, to obtain an
expression for the flux ∫ s

b

u dz = −1
3
h3px, (1.23)
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and the conservation of mass equation then integrates (see question 1.2) to give the
evolution equation for h = s− b in the form

ht = 1
3

∂

∂x
[h3px]. (1.24)

1.2.1 Gravity

The astute reader will notice that something is missing. Unlike the slider bearing,
nothing is driving the flow! Indeed, since p = p(x, t) and p = 0 at z = s, p = 0
everywhere. Related to this is the fact that there is nothing to determine the velocity
scale U . Commonly such droplet flows are driven by gravity. If we include gravity
in the z momentum equation, then it takes the dimensional form . . . = −pz − ρg . . .,
and since in the rescaled model all the other terms are negligible, the pressure will be
hydrostatic, p ≈ pa + ρg(s− z), and this gives a natural scale for p− pa ∼ ρgd, and
equating this with the eventual pressure scale µUl/d2 determines the velocity scale
as

U =
ρgd3

µl
. (1.25)

The dimensionless pressure then becomes p = s− z, so that px = sx, and (1.24) now
takes the form of a nonlinear diffusion equation,

ht = 1
3

∂

∂x
[h3sx]. (1.26)

One might wonder how the length scales l and d should be chosen; the answer to
this, at least if the base is flat, is that it can be taken from the initial condition for s.
The reason for this is that, since (1.26) is a diffusion equation, the drop will simply
continue to spread out: there is no natural length scale in the model. Associated with
this is the consequent fact that for an initial concentration of liquid at the origin (again
on a flat base), the solution takes the form of a similarity solution (see question 1.6).
On the other hand, if b is variable, then it provides a natural length scale. Indeed,
for a basin shaped b (for example x2, dimensionlessly), the initial volume (or cross-
sectional area) determines the eventual steady state as a lake with s constant, and
both d and l prescribed.

1.2.2 Surface tension

Another way in which a natural length scale can occur in the model is through the
introduction of surface tension at the interface. Let us digress for a moment to con-
sider how surface tension arises. Surface tension is a property of interfaces, whereby
they have an apparent strength. This is most simply manifested by the ability of
small objects which are themselves heavier than water to float on the interface. The
experiment is relatively easily done using a paper clip, and certain insects (water
striders) have the ability to stay on the surface of a pond.
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Figure 1.2: The simple mechanical interpretation of surface tension.

The simplest way to think about surface tension is mechanically. The interface
between two fluids has an associated tension, such that if one draws a line in the
interface of length l, then there is a force of magnitude γl which acts along this line:
γ is the surface tension, and is a force per unit length. The presence of a surface
tension causes an imbalance in the normal stress across the interface, as is indicated
in figure 1.2, which also provides a means of calculating it. Taking ds as a short
line segment in an interface subtending an angle dθ at its centre of curvature, a force
balance normal to the interface leads to the condition

p+ − p− =
γ

R
, (1.27)

where

R =
ds

dθ
(1.28)

is the radius of curvature, and its inverse 1/R is the curvature.
For a two-dimensional surface, the curvature is described by two principal radii of

curvature R1 and R2, the mean curvature is defined by

κ = 1
2

(
1

R1

+
1

R2

)
, (1.29)

and the pressure jump condition is

p+ − p− = 2γκ = γ

(
1

R1

+
1

R2

)
, (1.30)

although this is not much use to us unless we have a way of calculating the curvature
of a surface. This leads us off into the subject of differential geometry, and we do not
want to go there. A better way lies along the following path.
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Figure 1.3: The energetic basis of surface tension.

The sceptical reader will in any case wonder what this surface tension actually
is. It manifests itself as a force, but along a line? And what is its physical origin?
The answer to this question veers towards the philosophical. We think we understand
force, after all it pops up in Newton’s second law, but how do we measure it? Pressure,
for example, we conceive of as being due to the collision of molecules with a surface,
and the measure of the force they exert is due to the momentum exchange at the
surface. We pull on a rope, exerting a force, but the measure of the force is in the
extension of the rope via Hooke’s law. Force is apparently something we measure via
its effect on momentum exchange, or on mechanical displacement; we can actually
define force through these laws.

The more basic quantity is energy, which has a direct interpretation, whether as
kinetic energy or internal energy (the vibration of molecules). And in fact Newton’s
second law for a particle is equivalent to the statement that the rate of change of
energy is equal to the rate of doing work, and this might be taken as the fundamental
law.

The meaning of surface tension actually arises through the property of an interface,
which has a surface energy γ with units of energy per unit area. The interfacial
condition then arises through the (thermodynamic) statement that in equilibrium
the energy of the system is minimised.

To be specific, consider the situation in figure 1.3, where two fluids at pressures
p− and p+ are separated by an interface with area A. Consider a displacement of
the interface causing a change of volume dV as shown. Evidently the work done on
the upper fluid is p+ dV , which is thus its change of energy, and correspondingly the
change for the lower fluid is −p− dV . If the change of interfacial surface area is dA,
then the total change of energy1 is

dF = (p+ − p−) dV + γ dA, (1.31)

1This energy is the Helmholtz free energy.
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and at equilibrium this must be zero (since F is minimised). The equilibrium inter-
facial boundary condition is therefore

p+ − p− = −γ ∂A
∂V

, (1.32)

which, it turns out, is equivalent to (1.30).

Computation of
∂A

∂V
can be done as follows. We consider a displacement of the

interface as shown in figure 1.4. An element of surface A is displaced to A + dA,
and we can form a connecting volume dV such that the normal n to the interface is
always parallel to the connecting surface between the end faces A and A + dA. We
need to distinguish between the normal n̂ to the surface of the connecting volume
and the normal to the interfacial surface. Evidently we have n = n̂ at the end faces,
but n.n̂ = 0 on the connecting cylindrical surface.

Applying the divergence theorem, we see that the change in area is

dA =

∫
∂(dV )

n.n̂ dS =

∫
dV

∇.n dV, (1.33)

and thus
∂A

∂V
= ∇.n. (1.34)

For example, if the interface is represented as z = s(x, y, t), then

∇.n = −∇.

[
∇s

(1 + |∇s|2)1/2

]
, (1.35)

where on the right hand side ∇ = ∇H =

(
∂

∂x
,
∂

∂y

)
, and for small interfacial dis-

placement, this may be linearised to obtain

2κ = −∂A
∂V

= −∇.n = ∇.

[
∇s

(1 + |∇s|2)1/2

]
≈ ∇2s. (1.36)
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1.2.3 The capillary droplet

Now we use this in the droplet equation. Again we restrict attention to two-dimensional
droplets. For three-dimensional droplets, see question 1.7. The surface boundary con-
dition is now approximately p− pa = −γsxx, and non-dimensionally

p = − 1

B
sxx on z = s, (1.37)

where B (commonly also written Bo) is the Bond number, given by

B =
ρgl2

γ
. (1.38)

This gives a natural length scale for the droplet, by choosing B = 1, thus

l =

(
γ

ρg

)1/2

; (1.39)

in this case the dimensionless pressure is p = s− z− sxx, and thus mass conservation
leads to

ht = 1
3

∂

∂x

[
h3(sx − sxxx)

]
, (1.40)

and the surface tension term acts as a further stabilising term.2

Surface tension acts to limit the spread of a droplet. Indeed there is a steady state
of (1.40) which is easily found. Suppose the base is flat, so s = h. We prescribe the
cross-sectional area of the drop, A. In dimensionless terms, we thus require∫

h dx = 2α =

(
ρg

γ

)1/2
A

d
. (1.41)

Let us choose d so that the maximum depth is one (note that the value of d remains
to be determined). We can suppose that the drop is symmetric about the origin, and
that its dimensionless half-width is λ, also to be determined. Thus

h(±λ) = 0, h(0) = 1, (1.42)

as well as (1.41), and both α and λ are to be determined.
A further condition is necessary at the margins. This is the prescription of a

contact angle, which can be construed as arising through a balance of the surface
tension forces at the three interfaces at the contact line: gas/liquid, liquid/solid, and
solid/gas. All three interfaces have a surface energy, and minimisation of this corre-
sponds to prescription of a contact angle. Specifically, if θ is the angle between the

2This can be seen by considering small perturbations about a uniform solution h = s = 1 (with
a flat base), for which the linearised equation has normal mode solutions ∝ exp(σt + ikx), with
σ = − 1

3 (k2 + k4).
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gas/liquid and liquid/solid interfaces, then resolution of the surface tension tangential
to the wall leads to

γSL + γ cos θ = γSG, (1.43)

where γSL is the solid/liquid surface energy, and γSG is the solid/gas surface energy.
Defining S = l tan θ/d, this implies that

hx = ∓S at x = ±λ. (1.44)

The steady state of (1.40) is easily found. The flux is zero, so hx − hxxx is zero,
and integration of this leads to

h = 1−
(

coshx− 1

coshλ− 1

)
, (1.45)

and then (1.41) and (1.44) yield

α =
λ coshλ− sinhλ

coshλ− 1
,

sinhλ

coshλ− 1
= S. (1.46)

S(λ) is a monotonically decreasing function of λ (why?), and tends to one as λ→∞,
and therefore the second relation determines λ providing S > 1. It seems there is a
problem if S < 1, but this is illusory since both α and S depend on the unknown d,
so it is best to solve

α

S
=

A

2l2 tan θ
=
λ coshλ− sinhλ

sinhλ
; (1.47)

the right hand side increases monotonically from 0 to∞ as λ increases, and therefore
provides a unique solution for λ for any values of A and θ; d is then determined by
either expression in (1.46).

It is of interest to see when the assumption d� l is then valid. From (1.46),

ε = tan θ

(
coshλ− 1

sinhλ

)
. (1.48)

The expression in λ increases monotonically from 0 to 1 as λ increases. Thus ε� 1
if either θ � 1, or (if tan θ ∼ O(1)) λ � 1. From (1.47), this is the case provided

A� l2, i. e.,
ρgA

γ
� 1. For air and water, this implies A� 7 mm2.

1.2.4 Stability

We now consider the stability of steady solutions of (1.40), which we take in the form

ht =
[

1
3
h3(hx − hxxx)

]
x
. (1.49)

Before doing so, we comment on the meaning of the fourth derivative term, which is
present due to surface tension. The gravity term is clearly diffusive (with a nonlinear
diffusion coefficient 1

3
h3), but what does the surface tension term represent? In other
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contexts it is referred to as a long-range or non-local diffusion (or dispersion) term.
To understand such a reference, suppose that the flux of a quantity having density ρ
is given not by Fick’s law J = −D∇ρ, but by

J = −D∇W, W =

∫
R3

ρ(x + ξ, t)K(ξ) dξ, (1.50)

where the kernel function K = K(ξ) (here ξ = |ξ|) is spherically symmetric in an
isotropic medium, and can be taken (by choice of D) to have integral over all space
equal to one. If K is a delta function, K = δ(x − ξ), then we regain Fick’s law,
but more generally we might suppose it is a Gaussian, for example. (1.50) allows
a diffusive motion due to non-local concentrations. An example of such dependence
might be in traffic flow, where the motion of individual ‘molecules’ (cars) is affected
by the observation of conditions further ahead. Another example might be in herd
migration.

If we suppose that K is delta function-like, in the sense that it varies rapidly with
ξ, then it is appropriate to approximate (1.50) by Taylor expansion of ρ, and this
leads to

J = −D∇ρ−D2∇∇2ρ+ . . . , (1.51)

where

D2 = 1
6
D

∫
R3

ξ2K(ξ) dξ = 2
3
πD

∫ ∞
0

ξ4K(ξ) dξ. (1.52)

Solutions of the conservation law ρt = −∇.J, using the truncated expression in
(1.51), have the normal mode form

ρ = eik.x+σt, σ = −Dk2 +D2k
4, (1.53)

and we see that the well-posedness (σ < 0 as k →∞) in this truncated form requires
D2 < 0, which seems unlikely, unless K becomes negative at large ξ.

If we use the full expression in (1.50), then we find that (1.53) is replaced by

σ = −4πkDI(k), I(k) =

∫ ∞
0

rK(r) sin kr dr (1.54)

(use spherical polar coordinates and take the z axis in the direction of k). For example,
the (normalised) Gaussian

K(ξ) =
1

(πν)3/2
e−ξ

2/ν (1.55)

leads to
σ = −k2De−

1
4
νk2 , (1.56)

and expansion of this for small ν (or k) leads to the truncated version above. Note
that for the full expression, the limits ν → 0 and k →∞ do not commute.

Returning to the matter at hand (equation (1.49)), we first consider the case of
an infinite uniform layer of fluid, with constant solution h = 1. In this case we write
h = 1 + h1 and linearise on the basis that h1 � 1. This simply gives

h1t = 1
3
(h1xx − h1xxxx), (1.57)
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which has the normal mode solutions h1 = eikx+σt, and

σ = −1
3
(k2 + k4), (1.58)

and the steady solution is stable.
For the case of a finite droplet with solution h0(x) given by (1.45), we write

h = h0 + h1, and again supposing h1 � h0, we linearise as before, which leads (since
h′′′0 = h′0) to

h1t =
[

1
3
h3

0(h1x − h1xxx)
]
x
, (1.59)

and normal mode solutions are of the form h1 = H(x)eσt, and then

σH =
[

1
3
h3

0(Hx −Hxxx)
]
x
. (1.60)

This equation requires boundary conditions, but there are issues. If the margins
move, then the linearisation must become invalid, since it requires the assumption
that h1 � h0, which cannot in general be true if the margins move. Consideration
of this case requires a more subtle approach, which uses the method of strained
coordinates, but will be foregone here.

Let us suppose, then, that the margins do not move. In this case we should
prescribe

H = H ′ = 0 at x = ±λ. (1.61)

This provides four conditions, the gradient condition occurring because of the pre-
scribed contact angle. However, we note that the equation is degenerate since h0(±λ) =
0, so that the full complement of boundary conditions may not be able to be satis-
fied. Often in such singular problems (think of Bessel’s equation), one only needs to
suppress singular solutions. If (1.61) can be satisfied, then automatically H � h0 as
x→ ±λ, which is required for the validity of the analysis.

Perhaps an ingenious exact solution of (1.60) can be found, but failing that, we
resort to an energy-type argument. If we multiply both sides of the equation by
H −Hxx and integrate, then we find

σ =

−
∫ λ

−λ

1
3
h3

0(Hx −Hxxx)
2 dx∫ λ

−λ
(H2 +H2

x) dx

, (1.62)

and thus σ < 0: the droplet is stable. (1.62) actually provides a variational principle
for σ: see question 1.3.

Coming back to the issue of the behaviour of H at the end points, we put, for
example, X = x+ λ, so that

−αH ≈ [X3(HX −HXXX)]X , α =
3|σ|
S3

, (1.63)
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and we find possible solution behaviours as X → 0 of the form

H ∼ X2 + cX3 + . . . ,

H ∼ 1− bX lnX, (1.64)

where b and c are specific constants (see exercise 1.3). Therefore it seems in fact that
only one condition can be applied at each end, in keeping with the degenerate nature
of the equation, but that in fact the extra gradient condition in (1.61) is satisfied
automatically.

It should be mentioned that when droplets move, there are issues both with the
viability of prescribing a constant contact angle, because of experimentally observed
contact angle hysteresis, and also with the application of the no-slip condition, which
causes a contact line singularity. So the above discussion of stability is slightly inac-
curate.

1.2.5 Advance and retreat

When a droplet is of finite extent, it is possible to describe the behaviour near the
margins by a local expansion. Typically the surface approaches the base with local
power law behaviour, and this depends on whether the droplet is advancing or re-
treating. Consider, for example, the gravity-driven droplet with an accumulation or
ablation term:

ht = 1
3

(
h3hx

)
x

+ a, (1.65)

where a > 0 for accumulation, and a < 0 for ablation. (1.65) represents a simple
model for the motion of an ice sheet such as Antarctica, where a > 0 represents
accumulation due to snowfall. If we suppose that near the margin x = xs in a two-
dimensional motion, h ∼ C(xs−x)ν , then a local expansion shows that if the front is
advancing, ẋs > 0, then ν = 1

3
and ẋs ∼ 1

9
C3; in advance the front is therefore steep.

On the other hand, if the front is retreating, then this can only occur if a < 0 (as is in
fact obvious), and in that case ν = 1 and ẋs ∼ −|a|/C. The fact that the front slope
is infinite in advance and finite in retreat is associated with ‘waiting time’ behaviour,
which occurs when the front has to ‘fatten up’ before it can advance.

We can try and carry out the same analysis for the droplet with gravity and
surface tension. If the left hand margin is x = xs(t), we put x = xs + X, so that in
the (X, t) coordinates,

ht − ẋshX =
[

1
3
h3(hX − hXXX)

]
X

; (1.66)

however, finding a local expansion is not so easy. Trying various choices, it seems
that retreat (ẋs > 0) can be described by

h ∼ aX(− lnX)1/3, ẋs ∼ 1
9
a3, (1.67)

but no such simple (!) behaviour describes advance. However, a balance is possible
when there is a non-zero flux at the front qs, and then

h ∼ aX3/4, qs = 5
64
a4. (1.68)
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Figure 1.5: Schematic of a falling film e.g. rain flowing down a windshield.

But both these behaviours provide an infinite gradient at the margin, which is in-
consistent with the prescription of a finite slope contact angle, and also with the
lubrication theory linearisation of the curvature term, and for both these reasons, the
model becomes suspect if the margins are allowed to move.

1.2.6 Falling films

In this section we consider a class of flows called falling films, for which there is a
predominant background flow which plays an important role on the film dynamics.
Examples of such flows include rain falling down a windshield, or industrial coating
problems. As we will see, despite having a long-thin aspect ratio, inertia may still
play an important role in such flows.

We consider a thin two-dimensional falling film on a tilted plane with angle α
to the horizontal. We use rotated coordinates x, z, as illustrated in figure 1.5, such
that the the impermeable base is located at z = 0. The dimensional Navier-Stokes
equations in the tilted coordinates are given by

∇.u = 0,

ρ[ut + (u.∇)u] = −∇p+ µ∇2u− ρg, (1.69)

where g = (− sinα, cosα). We impose no slip conditions u = w = 0 on z = 0. In the
case where the upper surface is at constant level z = h0, the stress conditions become
p = pa and uz = 0 at z = h0. There is an exact solution for this scenario, which is
given by

ū =
ρg sinα

2µ
(2h0z − z2),

w̄ = 0,

p̄ = pa − ρg cosα(z − h0), (1.70)

where we use bar notation to indicate that this is the base state.
We consider long-wave perturbations to this flow, with aspect ratio ε = h0/l� 1.

Dimensional scalings are chosen as

x ∼ l, z ∼ εl, ū ∼ U =
ρg sinαh2

0

2µ
, w̄ ∼ εU, p̄− pa ∼ ρgh0 sinα. (1.71)
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We consider perturbations to the base state of the form

u = ū+ û,

w = ŵ,

p = p̄+ p̂, (1.72)

and we consider a variable profile for the thin film z = h(x, t). Hence, the governing
equations become

ûx + ŵz = 0,

Re ε [ût + (ū+ û)ûx + ŵ(ūz + ûz)] = −2εp̂x + ûzz + ε2ûxx,

Re ε2 [ŵt + (ū+ û)ŵx + ŵŵz] = −2p̂z + ε(ŵzz + ε2ŵxx), (1.73)

where Re= ρUh0/µ. The no-slip boundary conditions at z = 0 become

û = ŵ = 0, (1.74)

whereas the kinematic and stress conditions at z = h(x, t) become

ŵ = ht + (ū+ û)hx,

p̄+ p̂ = − γ

ρgl2 sinα
hxx +O(ε2),

ūz + ûz = O(ε2). (1.75)

It is assumed that S = γ/(ρgl2 sinα) is an order O(1) constant. Conservation of mass
can be written as

ht +
∂

∂x

[∫ h

0

(ū+ û) dz

]
= 0, (1.76)

which holds true at all orders. In the limit of ε→ 0, the above system has solution

û0 = 2z(h− 1),

ŵ0 = −z2hx,

p̂0 = (h− 1) cotα− Shxx. (1.77)

Likewise, (1.76) indicates that

ht + 2h2hx = 0, (1.78)

which is a nonlinear advection equation that has stable solutions. Next, we consider
an asymptotic expansion solution of the form

û = û0 + εû1 + . . . ,

ŵ = ŵ0 + εŵ1 + . . . ,

p̂ = p̂0 + εp̂1 + . . . . (1.79)
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Inserting this into the x momentum equation (1.73) gives us

Re
[
−4 zh2hx + 2 z2hhx

]
= −2

∂

∂x
[(h− 1) cotα− Shxx] + û1zz , (1.80)

at first order. Likewise, the boundary conditions at first order indicate that

û1z = 0 : z = h,

û1 = 0 : z = 0. (1.81)

Hence, the first order velocity correction is given by

û1 = [hx cotα− Shxxx] (z2 − 2zh) +
1

6
Rehhx(z

4 − 4z3h+ 8h3z). (1.82)

Inserting this into (1.76) gives the thin film equation

ht + 2h2hx + ε
∂

∂x

[
h3(−2

3
hx cotα + Shxxx) +

8

15
Reh6hx

]
= 0. (1.83)

This is sometimes referred to as the ‘Benney equation’ after a paper published by
D.J. Benney in 1966. The second term represents the base flow, the third term is
gravity-driven diffusion, the fourth term is surface-tension-driven diffusion, and the
fifth term is a non-linear inertial term.

This example of lubrication theory is different to the previous examples because
inertia plays an important role despite the fact that the flow is long and thin. The
inertial term can cause waves to bunch up and grow. This can be seen by considering
a small perturbation

h = 1 + η, (1.84)

where η(x, t)� 1. Inserting this into the Benney equation and linearising yields

ηt + 2ηx + ε

[
−2

3
ηxx cotα + Sηxxxx +

8

15
Re ηxx

]
= 0. (1.85)

Switching to the moving frame ξ = x + 2t and imposing a wave-like perturbation of
the form η = exp(σt+ ikξ) results in the dispersion relation

σ = εk2

[
−2

3
cotα +

8

15
Re− Sk2

]
. (1.86)

Hence, we can see that we require a base flow which is faster than Re > (5/4) cotα
for an instability to form.
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Figure 1.6: An elongational film flow.

1.3 Elongational flows

A different application of lubrication theory occurs in a falling sheet of fluid, such
as occurs when a tap is switched on. At low velocities, the flow is continuous and
laminar (though at very low flow rates it breaks up into droplets), and is also thin, but
is distinguished from surface droplets or bearing flows by the fact that both surfaces
of the fluid have zero stress acting on them.

To be specific, we consider the situation shown in figure 1.6. We consider flow
from an orifice, and we take the flow to be two-dimensional, with the x direction in
the direction of flow and z transverse to it. To begin with we ignore gravity and
suppose that the flow is driven by an applied tension T (force per unit width in the y
direction out of the page) at ∞; this is like drawing honey out of a jar with a spoon.

The basic equations are those as scaled in (1.3), and can be written in the form

ux + wz = 0,

Re u̇ = −px + τ1x + τ3z,

Re ẇ = −pz + τ3x − τ1z, (1.87)

where
τ1 = 2ux, τ3 = uz + wx. (1.88)

If the two free surfaces are z = s and z = b, then the boundary conditions on both
surfaces are σnn = σnt = 0 (we subtract off the ambient pressure), or in other words
σni = σijnj = 0, and for z = s, this gives

(p− τ1)sx + τ3 = 0,

−τ3sx − p− τ1 = 0. (1.89)
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(These are actually equivalent to (1.19).)
Now we rescale the variables to account for the large aspect ratio. The difference

with the earlier approach is that shear stresses are uniformly small, and so we also
rescale τ3 to be small. Thus we rescale the variables as

z ∼ ε, w ∼ ε, τ3 ∼ ε, (1.90)

and this leads to the rescaled equations

ux + wz = 0,

Re u̇ = −px + τ1x + τ3z,

ε2Re ẇ = −pz + ε2τ3x − τ1z, (1.91)

where
τ1 = 2ux, ε2τ3 = uz + ε2wx, (1.92)

and on the free surfaces (e. g., z = s)

(p− τ1)sx + τ3 = 0,

−ε2τ3sx − p− τ1 = 0. (1.93)

At leading order, we have u = u(x, t), p+ τ1 = 0, p = −2ux, whence we find

τ3z = Re u̇− 4uxx, (1.94)

with
τ3 = 4uxsx on z = s, τ3 = 4uxbx on z = b,

and from these we deduce

Reh(ut + uux) = 4(hux)x,

ht + (hu)x = 0, (1.95)

where the second equation is derived as usual to represent conservation of mass. Note
in this derivation that the inertial terms are not necessarily small; nevertheless the
asymptotic procedure works in the usual way.

1.3.1 Steady flow

For a long filament such as that shown in figure 1.6, it is appropriate to prescribe
inlet conditions, and these can be taken to be

h = u = 1 at x = 0, (1.96)

by appropriate choice of U and d. In addition, we prescribe the force (per unit width
in the third dimension) to be T , and this leads to

hux → 1 as x→∞, (1.97)
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Figure 1.7: Characteristics for (1.95). The dividing characteristic from the origin is
shown in red.

where the constant is set to one by choice of the length scale as

l =
2µdU

T
; (1.98)

thus the aspect ratio is small (d� l) if T � µU .
If we consider a slow, steady flow in which the inertial terms can be ignored

(Re→ 0), it is easy to solve the equations. We have hu = 1 and hux = 1, and thus

u = ex, h = e−x. (1.99)

As a matter of curiosity, one can actually solve the time-dependent problem (1.95),
at least when Re = 0. We write the equations in the form

ht + uhx = −1,

hux = 1, (1.100)

with the boundary and initial conditions as shown in figure 1.7. The characteristic
form of the first equation is

xt = u[x(ξ, t), t], ht = −1, (1.101)

where the partial derivatives are holding ξ fixed, i. e., we consider x = x(ξ, t), h =
h(ξ, t). The dividing characteristic from the origin (which we define to be t = td(x))
divides the quadrant into two regions, in which the initial data is parameterised
differently. For the lower region t < td(x), we have

h = h0(ξ)− t. (1.102)

19



We take the first equation in (1.101), and differentiate with respect to ξ. Using the
definition of ux from (1.100), we find

xξt =
xξ

h0(ξ)− t
. (1.103)

We can integrate this with respect to t, holding ξ constant, that is, the integral with
respect to t is along a characteristic. It follows that

xξ =
h0(ξ)

h0(ξ)− t
, (1.104)

in which we have applied the initial condition xξ = 1 at t = 0.
Next we integrate with respect to ξ holding t constant; since (1.104) only holds

for t < td(x), we integrate back to this, but note that this corresponds to the value
ξ = 0; we then have

x = xd(t) +

∫ ξ

0

h0(s) ds

h0(s)− t
, (1.105)

where xd is the inverse of td(x): to calculate this we need to solve for the upper region
t > td.

To do this, we can proceed as above, but it is quicker to note that since the
boundary conditions on x = 0 are constant, the solution is just the steady state
solution (1.99). In particular, the characteristics are e−x = 1 − (t − τ), and the
dividing characteristic is that with τ = 0, thus

td = 1− e−x, xd = − ln(1− t). (1.106)

The solution in t < td is thus

x = − ln(1− t) +

∫ ξ

0

h0(s) ds

h0(s)− t
, (1.107)

but the transient is of little interest since it disappears after finite time, t = 1. As a
check, notice that if h0 = e−ξ, the steady state solution is regained everywhere.

The steady solution can be extended to positive Reynolds number. In steady flow
we then find

ux = Ku+ 1
4
Reu2 (1.108)

for some constant K, and we see that there is no solution in which the filament can
be drawn to ∞, as pinch-off always occurs. This is in keeping with experience.

1.3.2 Capillary effects

As for the shear-driven droplet flows, one can add gravity to the model, and this is
done in question 1.4. In this section we consider the modification to the equations
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which occurs when capillary effects are included. The normal stress conditions are
modified to

−σnn = − γsxx
(1 + s2

x)
3/2

on z = s,

σnn = − γbxx
(1 + b2

x)
3/2

on z = b. (1.109)

The definition of σnn is in (1.19), and with the basic scaling (all lengths scaled with
l, etc.) this leads to

−p− 2τ3sx
1 + s2

x

− τ1(1− s2
x)

1 + s2
x

=
1

Ca

γsxx
(1 + s2

x)
3/2

on z = s, (1.110)

where

Ca =
µU

γ
(1.111)

is the capillary number; a similar expression applies on z = b, with the opposite sign
on the right hand side. When the equations are re-scaled (z ∼ ε, etc.), then these
take the approximate form

p+ τ1 ≈ − 1

C
sxx on z = s,

p+ τ1 ≈
1

C
bxx on z = b, (1.112)

where we write
Ca = εC. (1.113)

Now the normal stress is constant across the filament, thus

p+ τ1 ≈ −
1

C
sxx (1.114)

everywhere, and this forces symmetry of the filament, sxx = −bxx. The rest of the
derivation proceeds as before, except that (1.94) gains an extra term −sxxx/C on the
right hand side; integrating this and applying the boundary conditions leads to the
modification of (1.95) as (bearing in mind that h = s− b and thus hxx = 2sxx)

ht + (hu)x = 0,

Re h(ut + uux) =
1

2C
hhxxx + 4(hux)x. (1.115)

Steady flow

The extra derivatives for h require, apparently, two extra boundary conditions. If we
suppose the pressure becomes atmospheric at ∞, then we might apply

hxx → 0 as x→∞. (1.116)
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Since this also implies hx → 0, it may be sufficient. On the other hand, if h → 0 at
∞, the multiplication of the third derivative term by h may render an extra boundary
condition unnecessary.

Again we can consider the steady state. Then hu = 1, and (1.115) has a first
integral

K +
Re

h
=

1

2C

[
hhxx − 1

2
h2
x

]
− 4hx

h
, (1.117)

where K is constant. Evidently there is no solution if Re > 0, as pinch-off must again
occur. For the case of slow flow, taking Re = 0, we have K = 4 due to the far field
stress condition, and

h2hxx − 1
2
hh2

x − 8C(hx + h) = 0. (1.118)

We seek a solution of this with h(0) = 1 and h(∞) = 0. Phase plane analysis shows
that there is a unique such solution: see question 1.8.

Gravity

While we chose to model a thin filament pulled downwards by a tension, equally we
might consider a filament descending under its own weight. In this case, the model
can be derived much as before, but now the tension at infinity can be taken to be
zero, and the length scale is then chosen to normalise the gravity term to equal one.
The modification of (1.95) is then

ht + (hu)x = 0,

h[Re (ut + uux)− 1] = 4(hux)x. (1.119)

In this case, steady solutions extending to infinity exist, even if Re > 0, but if any
non-zero tension is applied at infinity, the solution breaks down as before and pinch-
out occurs. See also question 1.4.

Exercises

1.1 A thin incompressible liquid film flows in two dimensions (x, z) between a solid
base z = 0 where the horizontal (x) component of the velocity is U(t), and may
depend on time, and a stationary upper solid surface z = h(x), where a no slip
condition applies. The upper surface is of horizontal length l, and is open to the
atmosphere at the ends. Write down the equations and boundary conditions
describing the flow, and non-dimensionalise them assuming that U(t) ∼ U0.
(You may neglect gravity.)

Assuming ε = d/l is sufficiently small, where d is a measure of the gap width,
rescale the variables suitably, and derive an approximate equation for the pres-
sure p. Hence derive a formal solution if the block is of finite length l, and
the pressure is atmospheric at each end, and obtain an expression involving
integrals of powers of h for the horizontal fluid flux, q(t) =

∫ h
0
u dz.
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1.2 A two-dimensional incompressible fluid flow is contained between two surfaces
z = b(x, t) and z = s(x, t), on which kinematic conditions hold:

w = st + usx at z = s,

w = bt + ubx at z = b.

By integrating the equation of conservation of mass, show that the fluid thick-
ness h = s− b satisfies the conservation law

∂h

∂t
+

∂

∂x

∫ s

b

u dx = 0.

Extend the result to three dimensions to show that

ht + ∇H .

[∫ s

b

uH dz

]
= 0,

where uH = (u, v) is the horizontal velocity, and ∇H =

(
∂

∂x
,
∂

∂y

)
is the hori-

zontal gradient operator.

1.3 A two-dimensional droplet has thickness h(x, t) and satisfies the dimensionless
equation

ht =
[

1
3
h3(hx − hxxx)

]
x
,

with conditions that |hx| = S when h = 0. Show that for a steady solution
h0(x),

h0 =
S(coshλ− coshx)

sinhλ
,

where λ is an arbitrary (positive) parameter. If the (dimensionless) ‘volume’
of the drop V is prescribed, show that λ is uniquely determined, and that it
increases monotonically with V . Find approximate expressions for λ as V → 0
and V →∞.

By writing h = h0 + h1, linearising, and then putting h1 = H(x)eσt, derive a
linear equation for H, and give the boundary conditions for H, assuming the
margins of the drop do not move. By writing σ as a functional [H] in terms of
integrals of H and its derivatives, show that σ < 0 for any solution of this, and
thus that the drop is stable.

Suppose that H is a solution of its governing differential equation with cor-
responding eigenvalue σ[H]. By considering variations δH to H such that∫ λ

−λ
(H2 +H2

x) dx remains constant, show that the first variation σ[H + δH] −

σ[H] is zero.

Now let X = x + λ so that h0 ≈ SX. By considering limiting forms of the
resulting approximate equation for H, show that either H ∝ X2 + cX3 + . . . or
H ∝ 1 + bX lnX + . . ., and find the values of b and c.
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1.4 An incompressible two-dimensional flow from a slit of width d falls vertically
under gravity. Define vertical and horizontal coordinates x and z, with cor-
responding velocity components u and w. The stream is symmetric with free
interfaces at z = ±s, on which no stress conditions apply. Write down the
equations and boundary conditions in terms of the deviatoric stress compo-
nents τ1 = τ11 = −τ33 and τ3 = τ13 = τ31, and by scaling lengths with l,
velocities with the inlet velocity U , and choosing suitable scales for time t and
the pressure and stresses, show that the equations take the form

ux + wz = 0,

Re u̇ = −px + τ1x + τ3z + 1,

Re ẇ = −pz + τ3x − τ1z,

where you should define u̇, the Reynolds number Re, and write down expressions
for τ1 and τ3.

Now define ε =
d

l
, and assume it is small. Find a suitable rescaling of the equa-

tions, and show that the vertical momentum equation takes the approximate
form

h[Re u̇− 1] = 4(hux)x,

where u = u(x, t) and h is the stream width.

Show also that
ht + (hu)x = 0.

Explain why suitable boundary conditions are

h = u = 1 at x = 0, hux → 0 as x→∞.

Write down a single second order equation for u in steady flow. If Re = 0, find
the solution.

If Re > 0, find a pair of first order equations for v = lnu and w = vx. (Note:
w here is no longer the horizontal velocity.) Show that (∞, 0) is a saddle point,
and that a unique solution satisfying the boundary conditions exists. If Re� 1
(but still ε2Re � 1), show (by rescaling w = W/Re and x = ReX) that the
required trajectory hugs the W–nullcline, and thus show that in this case

u ≈
(

1 +
2x

Re

)1/2

.

1.5 A (two-dimensional) droplet rests on a rough surface z = b and is subject
to gravity g and surface tension γ. Write down the equations and boundary
conditions which govern its motion, non-dimensionalise them, and assuming the
depth at the summit d is much less than the half-width l, derive an approximate
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equation for the evolution in time of the depth h. Show that the horizontal
velocity scale is

U =
ρgd3

µl
,

and derive an approximate set of equations assuming

ε =
d

l
� 1, F =

U√
gd
� 1.

Hence show that

ht =
∂

∂x

[
1
3
h3

(
sx −

1

B
sxxx

)]
,

where you should define the Bond number B.

Find a steady state solution of this equation for the case of a flat base, assum-
ing that the droplet area A and a contact angle θ = εφ are prescribed, with
φ ∼ O(1), and show that it is unique. Explain how the solution chooses the
unknowns d and l.

1.6 A droplet of thickness h satisfies the equation

ht =
∂

∂x

[
1
3
h3hx

]
.

Find a similarity solution of this equation which describes the spread of a drop
of area one which is initially concentrated at the origin (i. e., h(x, 0) = δ(x)).

1.7 A three-dimensional droplet , subject to gravity and resting on a flat horizontal
surface z = 0, has surface z = h(x, y, t), on which the pressure is given by
p = γ∇.n, where n is the unit upward normal to the surface. Show that this
condition can be written in the form

p = −γ∇.

[
∇h

{1 + |∇h|2}1/2

]
,

where now (and below) ∇ is the horizontal gradient

(
∂

∂x
,
∂

∂y

)
.

Use the assumptions of lubrication theory to derive the dimensionless droplet
equation

ht = 1
3
∇.

[
h3∇

{
h− 1

Bo
∇2h

}]
,

and define the Bond number Bo.

Suppose that Bo =∞ (what does this mean in terms of the surface tension?),
and that a concentrated dollop of fluid of dimensionless volume 2π is released
at r = 0 at t = 0. By seeking a similarity solution of the form

h =
1

tα
f(η), η =

r

tβ
,
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derive and solve an equation for f , and hence show that the droplet is bounded
by a moving front at

r ≈ 1.55 t1/8.

[Hint:

(
8192

343

)1/8

≈ 1.55.]

Now suppose that Bo <∞. Explain why we may take Bo = 1. Assuming this,
and a boundary condition that hr = −S where h = 0, show that the steady
solution satisfies

hrr +
1

r
hr − h = −K,

where K is constant, and deduce that

h =
S[I0(λ)− I0(r)]

I ′0(λ)
,

where I0(r) is the modified Bessel function of the first kind, and r = λ is the
drop margin.

Suppose that the dimensionless volume V of the drop is prescribed, so that∫ λ

0

rh(r) dr =
V

2π
.

We want to show that this determines λ uniquely. By consideration of the
equation for h, show that

L(λ) ≡ λ

[
λI0(λ)

2I ′0(λ)
− 1

]
=

V

2πS
;

λ will thus be unique if L(λ) is monotonically increasing.

Define

η(λ) =
I ′0(λ)

I0(λ)
,

and show that
η′ = 1− η

λ
− η2.

Assuming that I0(λ) ∼ 1+ 1
4
λ2 + 1

64
λ4 + . . . as λ→ 0, find the limiting behaviour

of η as λ → 0, and by consideration of trajectory directions in the semi-phase
plane (λ, η), show that η(λ) is a monotonically increasing function of λ, with
η(∞) = 1. Derive a differential equation for g(λ) = 2η/λ, and by the same
device (but now using the (λ, g) semi-phase plane), show that g is a monoton-
ically decreasing function of λ. Hence show that L(λ) is a strictly increasing
function, as required.

Denoting this steady state as h0(r), perturb h as h = h0 + h1, and linearise
the equation. Now put h1 = H(x, y)eσt (do not assume that H is cylindrically
symmetric) and write down the resulting eigenvalue problem for σ. Assuming
that the drop margin is not perturbed, show that σ is real and negative for any
solution of this eigenvalue problem, and hence that the drop is stable.
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1.8 A film of fluid is drawn downwards under the action of a tensile force. A model
for the dimensionless thickness h and dimensionless downwards velocity u of
the film is

ht + (hu)x = 0,

Re h(ut + uux) =
1

2C
hhxxx + 4(hux)x,

with
h = u = 1 on x = 0, hux → 1 as x→∞.

Show that a steady state solution in which h → 0 as x → ∞ can only occur if
Re = 0. In that case, determine a second order differential equation satisfied
by h, and by writing h = 1

2
U2 and V = U ′ = Ux, write the equation as a pair

of first order equations for U and V . Show that the origin is a (degenerate)
saddle, and therefore show that a solution exists which satisfies the boundary
conditions.
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Chapter 2

Porous media

Groundwater is water which is stored in the soil and rock beneath the surface of
the Earth. It forms a fundamental constituent reservoir of the hydrological system,
and it is important because of its massive and long lived storage capacity. It is the
resource which provides drinking and irrigation water for crops, and increasingly in
recent decades it has become an unwilling recipient of toxic industrial and agricultural
waste. For all these reasons, the movement of groundwater is an important subject
of study.

Soil consists of very small grains of organic and inorganic matter, ranging in
size from millimetres to microns. Differently sized (inorganic) particles have different
names. Particularly, we distinguish clay particles (size < 2 microns) from silt particles
(2–60 microns) and sand (60 microns to 1 mm). Coarser particles still are termed
gravel.

Viewed at the large scale, soil thus forms a continuum which is granular at the
small scale, and which contains a certain fraction of pore space, as shown in figure
2.1. The volume fraction of the soil (or sediment, or rock) which is occupied by the
pore space (or void space, or voidage) is called the porosity, and is commonly denoted
by the symbol φ; sometimes other symbols are used, for example n.

Soils are formed by the weathering of rocks, and are specifically referred to as
soils when they contain organic matter formed by the rotting of plants and animals.
There are two main types of rock: igneous, formed by the crystallisation of molten
lava, and sedimentary, formed by the cementation of sediments under conditions of
great temperature and pressure as they are buried at depth.1 Sedimentary rocks,
such as sandstone, chalk, shale, thus have their porosity built in, because of the pre-
existing granular structure. With increasing pressure, the grains are compacted, thus
reducing their porosity, and eventually intergranular cements bond the grains into a
rock.

Igneous rock tends to be porous also, for a different reason. It is typically the
case for any rock that it is fractured. Most simply, rock at the surface of the Earth

1There are also metamorphic rocks, which form from pre-existing rocks through chemical changes
induced by burial at high temperatures and pressures; for example, marble is a metamorphic form
of limestone.
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Figure 2.1: A granular porous medium.

is subjected to enormous tectonic stresses, which cause it to fold and fracture. Thus,
even if the rock matrix itself is not porous, there are commonly faults and fractures
within the rock which act as channels through which fluids may flow, and which act
on the large scale as an effective porosity. If the matrix is porous at the grain scale
also, then one refers to the rock as having a dual porosity, and the corresponding flow
models are called double porosity models.

In the subsurface, whether it be soil, underlying regolith, a sedimentary basin,
or oceanic lithosphere, the pore space contains liquid. At sufficient depth, the pore
space will be saturated with fluid, normally water. At greater depths, other fluids
may be present. For example, oil may be found in the pore space of the rocks of
sedimentary basins. In the near surface, both air and water will be present in the
pore space, and this (unsaturated) region is called the unsaturated zone, or the vadose
zone. The surface separating the two is called the piezometric surface, the phreatic
surface, or more simply the water table. Commonly it lies several metres below the
ground surface, and more in arid regions.

2.1 Darcy’s law

Groundwater is fed by surface rainfall, and as with surface water it moves under a
pressure gradient driven by the slope of the piezometric surface. In order to char-
acterise the flow of a liquid in a porous medium, we must therefore relate the flow
rate to the pressure gradient. An idealised case is to consider that the pores consist
of uniform cylindrical tubes of radius a; initially we will suppose that these are all
aligned in one direction. If a is small enough that the flow in the tubes is laminar
(this will be the case if the associated Reynolds number is <∼ 1000), then Poiseuille
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flow in each tube leads to a volume flux in each tube of q =
πa4

8µ
|∇p|, where µ is

the liquid viscosity, and ∇p is the pressure gradient along the tube. A more realistic
porous medium is isotropic, which is to say that if the pores have this tubular shape,
the tubules will be arranged randomly, and form an interconnected network. How-
ever, between nodes of this network, Poiseuille flow will still be appropriate, and an
appropriate generalisation is to suppose that the volume flux vector is given by

q ≈ − a4

µX
∇p, (2.1)

where the approximation takes account of small interactions at the nodes; the numer-
ical tortuosity factor X >∼ 1 takes some account of the arrangement of the pipes.

To relate this to macroscopic variables, and in particular the porosity φ, we observe
that φ ∼ a2/d2

p, where dp is a representative particle or grain size so that q/d2
p ∼

−
(
φ2d2

p

µX

)
∇p. We define the volume flux per unit area (having units of velocity) as

the discharge u. Darcy’s law then relates this to an applied pressure gradient by the
relation

u = −k
µ

[∇p+ ρgk̂], (2.2)

where ρ is fluid density, g is the acceleration due to gravity, k̂ is a unit vector in the
vertical (upwards) direction, and k is an empirically determined parameter called the
permeability, having units of length squared. The discussion above suggests that we
can write

k =
d2
pφ

2

X
; (2.3)

the numerical factor X may typically be of the order of 103, but other assumptions
can be made instead.

To check whether the pore flow is indeed laminar, we calculate the (particle)
Reynolds number for the porous flow. If v is the (average) fluid velocity in the pore
space (what we will call the phase-averaged velocity), then

v =
u

φ
; (2.4)

If a is the pore radius, then we define a particle Reynolds number based on grain size
as

Rep =
2ρva

µ
∼ ρ|u|dp

µ
√
φ
, (2.5)

since φ ∼ a/dp. Suppose (2.3) gives the permeability, and we use the gravitational
pressure gradient ρg to define (via Darcy’s law) a velocity scale2; then

Rep ∼
φ3/2

X

(
ρ
√
gdp dp

µ

)2

∼ 10[dp]
3, (2.6)

2This scale is thus the hydraulic conductivity, defined below in (2.9).
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where dp = [dp] mm, and we have used φ3/2/X = 10−3, g = 10 m s−2, µ/ρ = 10−6

m2 s−2. Thus the flow is laminar for d < 5 mm, corresponding to a gravel. Only for
free flow through very coarse gravel could the flow become turbulent, but for water
percolation in rocks and soils, we invariably have slow, laminar flow.

In other situations, and notably for forced gas stream flow in fluidised beds or in
packed catalyst reactor beds, the flow can be rapid and turbulent. In this case, the
Poiseuille flow balance −∇p = µu/k can be replaced by the Ergun equation

−∇p =
ρ|u|u
k′

; (2.7)

more generally, the right hand side will a sum of the two (laminar and turbulent)
interfacial resistances. The Ergun equation reflects the fact that turbulent flow in a
pipe is resisted by Reynolds stresses, which are generated by the fluctuation of the
inertial terms in the momentum equation. Just as for the laminar case, the parameter
k′, having units of length, depends both on the grain size dp and on φ. Evidently, we
will have

k′ = dpE(φ), (2.8)

with the numerical factor E → 0 as φ→ 0.

Hydraulic conductivity

Another measure of flow rate in porous soil or rock relates specifically to the passage
of water through a porous medium under gravity. For free flow, the pressure gradient
downwards due to gravity is just ρg, where ρ is the density of water and g is the
gravitational acceleration; thus the water flux per unit area in this case is just

K =
kρg

µ
, (2.9)

and this quantity is called the hydraulic conductivity. It has units of velocity. A
hydraulic conductivity of K = 10−5 m s−1 (about 300 m y−1) corresponds to a
permeability of k = 10−12 m2, this latter unit also being called the darcy.

2.1.1 Homogenisation

The ‘derivation’ of Darcy’s law can be carried out in a more formal way using the
method of homogenisation. This is essentially an application of the method of multiple
(space) scales to problems with microstructure. Usually (for analytic reasons) one
assumes that the microstructure is periodic, although this is probably not strictly
necessary (so long as local averages can be defined).

Consider the Stokes flow equations for a viscous fluid in a medium of macroscopic
length l, subject to a pressure gradient of order ∆p/l. For simplicity we will ignore
gravity. If the microscopic (e. g., grain size) length scale is dp, and ε = dp/l, then
if we scale velocity with d2

p∆p/lµ (appropriate for local Poiseuille-type flow), length
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with l, and pressure with ∆p, the Navier-Stokes equations can be written in the
dimensionless form

∇.u = 0,

0 = −∇p+ ε2∇2u, (2.10)

together with the no-slip boundary condition,

u = 0 on S : f(x/ε) = 0, (2.11)

where S is the interfacial surface. We put x = εξ and seek solutions in the form

u = u(0)(x, ξ) + εu(1)(x, ξ) . . .

p = p(0)(x, ξ) + εp(1)(x, ξ) . . . . (2.12)

Expanding the equations in powers of ε and equating terms leads to p(0) = p(0)(x),
and u(0) satisfies

∇ξ.u
(0) = 0,

0 = −∇ξp
(1) +∇2

ξu
(0) −∇xp

(0), (2.13)

equivalent to Stokes’ equations for u(0) with a forcing term −∇xp
(0). If wj is the

velocity field which (uniquely) solves

∇ξ.w
j = 0,

0 = −∇ξP +∇2
ξw

j + ej, (2.14)

with periodic (in ξ) boundary conditions and u = 0 on f(ξ) = 0, where ej is the
unit-vector in the ξj direction, then (since the equation is linear) we have (summing
over j)3

u(0) = −∂p
(0)

∂xj
wj. (2.15)

We define the average flux

〈u〉 =
1

V

∫
V

u(0)dV, (2.16)

where V is the volume over which S is periodic.4 Averaging (2.15) then gives

〈u〉 = −k∗.∇p, (2.17)

3In other words, we employ the summation convention which states that summation is implied
over repeated suffixes, see for example Jeffreys and Jeffreys (1953).

4Specifically, we take V to be the soil volume, but the integral is only over the pore space volume,
where u is defined. In that case, the average 〈u〉 is in fact the Darcy flux (i. e., volume fluid flux per
unit area).
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where the (dimensionless) permeability tensor is defined by

k∗ij = 〈wji 〉. (2.18)

Recollecting the scales for velocity, length and pressure, we find that the dimensional
version of (2.17) is

〈u〉 = −k

µ
.∇p, (2.19)

where
k = k∗d2

p, (2.20)

so that k∗ is the equivalent in homogenisation theory of the quantity φ2/X in (2.3).

2.1.2 Empirical measures

While the validity of Darcy’s law can be motivated theoretically, it ultimately relies
on experimental measurements for its accuracy. The permeability k has dimensions
of (length)2, which as we have seen is related to the mean ‘grain size’. If we write
k = d2

pC, then the number C depends on the pore configuration. For a tubular
network (in three dimensions), one finds C ≈ φ2/72π (as long as φ is relatively
small). A different and often used relation is that of Carman and Kozeny, which
applies to pseudo-spherical grains (for example sand grains); this is

C ≈ φ3

180(1− φ)2
. (2.21)

The factor (1−φ)2 takes some account of the fact that as φ increases towards one, the
resistance to motion becomes negligible. In fact, for media consisting of uncemented
(i. e., separate) grains, there is a critical value of φ beyond which the medium as a
whole will deform like a fluid. Depending on the grain size distribution, this value
is about 0.5 to 0.6. When the medium deforms in this way, the description of the
intergranular fluid flow can still be taken to be given by Darcy’s law, but this now
constitutes a particular choice of the interactive drag term in a two-phase flow model.
At lower porosities, deformation can still occur, but it is elastic not viscous (on short
time scales), and given by the theory of consolidation or compaction, which we discuss
later.

In the case of soils or sediments, empirical power laws of the form

C ∼ φm (2.22)

are often used, with much higher values of the exponent (e.g. m = 8). Such behaviour
reflects the (chemically-derived) ability of clay-rich soils to retain a high fraction of
water, thus making flow difficult. Table 2.1 gives typical values of the permeability
of several common rock and soil types, ranging from coarse gravel and sand to finer
silt and clay.
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k (m2) material
10−8 gravel
10−10 sand
10−12 fractured igneous rock
10−13 sandstone
10−14 silt
10−18 clay
10−20 granite

Table 2.1: Different grain size materials and their typical permeabilities.

An explicit formula of Carman-Kozeny type for the turbulent Ergun equation
expresses the ‘turbulent’ permeability k′, defined in (2.7), as

k′ =
φ3dp

175(1− φ)
. (2.23)

2.2 Basic groundwater flow

Darcy’s equation is supplemented by an equation for the conservation of the fluid
phase (or phases, for example in oil recovery, where these may be oil and water). For
a single phase, this equation is of the simple conservation form

∂

∂t
(ρφ) + ∇.(ρu) = 0, (2.24)

supposing there are no sources or sinks within the medium. In this equation, ρ is the
material density, that is, mass per unit volume of the fluid. A term φ is not present
in the divergence term, since u has already been written as a volume flux (i.e., the φ
has already been included in it: cf. (2.4)).

Eliminating u, we have the parabolic equation

∂

∂t
(ρφ) = ∇.

[
k

µ
ρ{∇p+ ρgk̂}

]
, (2.25)

and we need a further equation of state (or two) to complete the model. The simplest
assumption corresponds to incompressible groundwater flowing through a rigid porous
medium. In this case, ρ and φ are constant, and the governing equation reduces (if
also k is constant) to Laplace’s equation

∇2p = 0. (2.26)

This simple equation forms the basis for the following development. Before pur-
suing this, we briefly mention one variant, and that is when there is a compressible
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pore fluid (e. g., a gas) in a non-deformable medium. Then φ is constant (so k is con-
stant), but ρ is determined by pressure and temperature. If we can ignore the effects
of temperature, then we can assume p = p(ρ) with p′(ρ) > 0, and (also neglecting
gravity whose effect for gases is commonly small)

ρt =
k

µφ
∇.[ρp′(ρ)∇ρ], (2.27)

which is a nonlinear diffusion equation for ρ, sometimes called the porous medium
equation. If p ∝ ργ, γ > 0, this is degenerate when ρ = 0, and the solutions display
the typical feature of finite spreading rate of compactly supported initial data.

2.2.1 Boundary conditions

The Laplace equation (2.26) in a domain D requires boundary data to be prescribed
on the boundary ∂D of the spatial domain. Typical conditions which apply are a no
flow through condition at an impermeable boundary, u.n = 0, whence

∂p

∂n
+ ρgn.k̂ = 0 on ∂D, (2.28)

or a permeable surface condition

p = pa on ∂D, (2.29)

where for example pa would be atmospheric pressure at the ground surface. Another
example of such a condition would be the prescription of oceanic pressure at the
interface with the oceanic crust.

A more common application of the condition (2.29) is in the consideration of flow
in the saturated zone below the water table (which demarcates the upper limit of
the saturated zone). At the water table, the pressure is in equilibrium with the air
in the unsaturated zone, and (2.29) applies. The water table is a free surface, and
an extra kinematic condition is prescribed to locate it. This condition says that the
phreatic surface is also a material surface for the underlying groundwater flow, so
that its velocity is equal to the average fluid velocity (not the flux): bearing in mind
(2.4), we have

∂F

∂t
+

u

φ
.∇F = 0 on ∂D, (2.30)

if the free surface ∂D is defined by F (x, t) = 0.

2.2.2 Dupuit approximation

One of the principally obvious features of mature topography is that it is relatively
flat. A slope of 0.1 is very steep, for example. As a consequence of this, it is typically
also the case that gradients of the free groundwater (phreatic) surface are also small,
and a consequence of this is that we can make an approximation to the equations of
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groundwater flow which is analogous to that used in shallow water theory or the lubri-
cation approximation, i. e., we can take advantage of the large aspect ratio of the flow.
This approximation is called the Dupuit, or Dupuit–Forchheimer, approximation.

To be specific, suppose that we have to solve

∇2p = 0 in 0 < z < h(x, y, t), (2.31)

where z is the vertical coordinate, z = h is the phreatic surface, and z = 0 is an im-
permeable basement. We let u denote the horizontal (vector) component of the Darcy

flux, and w the vertical component. In addition, we now denote by ∇ =

(
∂

∂x
,
∂

∂y

)
the horizontal component of the gradient vector. The boundary conditions are then

p = 0, φht + u .∇h = w on z = h,

∂p

∂z
+ ρg = 0 on z = 0; (2.32)

here we take (gauge) pressure measured relative to atmospheric pressure. The condi-
tion at z = 0 is that of no normal flux, allowing for gravity.

Let us suppose that a horizontal length scale of relevance is l, and that the corre-
sponding variation in h is of order d, thus

ε =
d

l
(2.33)

is the size of the phreatic gradient, and is small. We non-dimensionalise the variables
by scaling as follows:

x, y ∼ l, z ∼ d, p ∼ ρgd,

u ∼ kρgd

µl
, w ∼ kρgd2

µl2
, t ∼ φµl2

kρgd
. (2.34)

The choice of scales is motivated by the same ideas as lubrication theory. The pressure
is nearly hydrostatic, and the flow is nearly horizontal.

The dimensionless equations are

u = −∇p, ε2w = −(pz + 1),

∇.u + wz = 0, (2.35)

with
pz = −1 on z = 0,

p = 0, ht = w + ∇p.∇h on z = h. (2.36)

At leading order as ε→ 0, the pressure is hydrostatic:

p = h− z +O(ε2). (2.37)
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More precisely, if we put
p = h− z + ε2p1 + . . . , (2.38)

then (2.35) implies
p1zz = −∇2h, (2.39)

with boundary conditions, from (2.36),

p1z = 0 on z = 0,

p1z = −ht + |∇h|2 on z = h. (2.40)

Integrating (2.39) from z = 0 to z = h thus yields the evolution equation for h in the
form

ht = ∇. [h∇h], (2.41)

which is a nonlinear diffusion equation of degenerate type when h = 0.
This is easily solved numerically, and there are various exact solutions which

are indicated in the exercises. In particular, steady solutions are found by solving
Laplace’s equation for 1

2
h2, and there are various kinds of similarity solution. (2.41)

is a second order equation requiring two boundary conditions. A typical situation in
a river catchment is where there is drainage from a watershed to a river. A suitable
problem in two dimensions is

ht = (hhx)x + r, (2.42)

where the source term r represents recharge due to rainfall. It is given by

r =
rD
ε2K

, (2.43)

where rD is the rainfall rate and K = kρg/µ is the hydraulic conductivity. At the
divide (say, x = 0), we have hx = 0, whereas at the river (say, x = 1), the elevation
is prescribed, h = 1 for example. The steady solution is

h =
[
1 + r − rx2

]1/2
, (2.44)

and perturbations to this decay exponentially. If this value of the elevation of the
water table exceeds that of the land surface, then a seepage face occurs, where water
seeps from below and flows over the surface. This can sometimes be seen in steep
mountainous terrain, or on beaches, when the tide is going out.

The Dupuit approximation is not uniformly valid at x = 1, where conditions of
symmetry at the base of a valley would imply that u = 0 (below the river), and thus
px = 0. There is therefore a boundary layer near x = 1, where we rescale the variables
by writing

x = 1− εX, w =
W

ε
, h = 1 + εH, p = 1− z + εP. (2.45)

Substituting these into the two-dimensional version of (2.35) and (2.36), we find

u = PX , W = −Pz, ∇2P = 0 in 0 < z < 1 + εH, 0 < X <∞, (2.46)
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with boundary conditions

P = H, εHt + PXHX =
W

ε
+ r on z = 1 + εH,

PX = 0 on X = 0,

Pz = 0 on z = 0,

P ∼ H ∼ rX as X →∞. (2.47)

At leading order in ε, this is simply

∇2P = 0 in 0 < z < 1, 0 < X <∞,
Pz = 0 on z = 0, 1,

PX = 0 on X = 0,

P ∼ rX as X →∞. (2.48)

Evidently, this has no solution unless we allow the incoming groundwater flux r
from infinity to drain to the river at X = 0, z = 1. We do this by having a singularity
in the form of a sink at the river,

P ∼ r

π
ln
{
X2 + (1− z)2

}
near X = 0, z = 1. (2.49)

The solution to (2.48) can be obtained by using complex variables and the method
of images, by placing sinks at z = ±(2n+ 1), for integral values of n. Making use of
the infinite product formula (Jeffrey 2004, p. 72)

∞∏
1

(
1 +

ζ2

(2n+ 1)2

)
= cosh

πζ

2
, (2.50)

where ζ = X + iz, we find the solution to be

P =
r

π
ln

[
cosh2 πX

2
cos2 πz

2
+ sinh2 πX

2
sin2 πz

2

]
. (2.51)

The complex variable form of the solution is

φ = P + iψ =
2r

π
ln cosh

πζ

2
, (2.52)

which is convenient for plotting. The streamlines of the flow are the lines ψ =
constant, and these are shown in figure 2.2.

This figure illustrates an important point, which is that although the flow towards
a drainage point may be more or less horizontal, near the river the groundwater seeps
upwards from depth. Drainage is not simply a matter of near surface recharge and
drainage. This means that contaminants which enter the deep groundwater may
reside there for a very long time.
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Figure 2.2: Groundwater flow lines towards a river at X = 0, z = 1.

A related point concerns the recharge parameter r defined in (2.43). According
to table 2.1, a typical permeability for sand is 10−10 m2, corresponding to a hydraulic
conductivity of K = 10−3 m s−1, or 3× 104 m y−1. Even for phreatic slopes as low as
ε = 10−2, the recharge parameter r <∼ O(1), and shallow aquifer drainage is feasible.

However, finer-grained sediments are less permeable, and the calculation of r for
a silt with permeability of 10−14 m2 (K = 10−7 m s−1 = 3 m y−1 suggests that
r ∼ 1/ε2 � 1, so that if the Dupuit approximation applied, the groundwater surface
would lie above the Earth’s surface everywhere. This simply points out the obvious
fact that if the groundmass is insufficiently permeable, drainage cannot occur through
it but water will accumulate at the surface and drain by overland flow. The fact that
usually the water table is below but quite near the surface suggests that the long term
response of landscape to recharge is to form topographic gradients and sufficiently
deep sedimentary basins so that this status quo can be maintained.

2.2.3 Saltwater intrusion in a coastal aquifer

In many dry coastal areas around the world, such as Cyprus, Israel or Australia,
porous aquifers are often used as a means of storing and filtering water for safe use
(e.g. drinking water). Typically, aquifers are chosen above an impermeable bed rock
and are often dammed upstream to control the flow of water. Water flows towards the
sea, with fresh water meeting salty water below the coastline. It is important that the
salt water does not invade the aquifer since this would render the water unsuitable for
supply and put the aquifer out of use for a significant time. Hence, the groundwater
level is frequently monitored at various locations, and controlled by recharging if
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Figure 2.3: Schematic diagram of the long and thin sloping aquifer. The water table
level is indicated with the blue dashed curve. The coordinate system x and z is taken
respectively along and perpendicular to the bedrock, which is assumed to be flat and
α is the angle to the horizontal level. (Taken from Mondal et al. (2019)).

necessary. Below the water table the aquifer is fully saturated and approximately dry
above it. Here we will briefly describe and mathematically formulate such a scenario.

We choose a rotated coordinate system such that the x direction is parallel to the
bedrock level, inclined at a constant angle α to the horizontal, and the z direction is
perpendicular to the bedrock. L and H are the length and elevation of the aquifer,
respectively, and tanα = H/L (see Fig. 2.3). We denote by (u,w) the velocity
components in the (x, z) directions, and by p the pressure. The flow is governed by
the continuity equation and the Darcy equations as follows:

ux + wz = 0,

u = −k
µ

(px − ρg sinα) ,

w = −k
µ

(pz + ρg cosα) . (2.53)

The rate of extraction (sinks) and recharge (sources) is modelled by a function s(x, t)
in the kinematic condition

w = ht + uhx − s(x, t) : z = h(x, t). (2.54)

We also impose the dynamic condition p = pa on z = h, as well as impermeability
w = 0 on z = 0, constant flux (seepage from the dam) Q at x = 0 and that the
groundwater meets the sea level h = Hs at x = L.

After appropriate non-dimensionalisation and using the small angle approximation
sinα ≈ α ≈ H/L, the governing equations and boundary conditions become

ht + (h(1− hx))x = s,

h(1− hx) = Q̂ : x = 0,

h = Ĥ : x = 1, (2.55)
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where Q̂ = QL/εKH2 and Ĥ = Hs/H. In the steady state we can integrate this
system by defining

S =

∫ x

0

s dx, (2.56)

which is the cumulative extraction/recharge. Hence, the dimensionless velocity of the
flow is

1− hx =
Q̂+ S(x)

h
, (2.57)

indicating that the outflow will be positive under the condition

u(x = 1) > 0 if Q̂+ S(1) > 0. (2.58)

This imposes a constraint on the recharge rate S (given seepage rate Q̂) such that
seawater is not flowing into the aquifer (i.e. this allows water management teams
to recharge sufficiently to avoid seawater intrusion). Note, in the simple case where
S = 0 the solution is given implicitly as

h− Ĥ + Q̂ log
h− Q̂
Ĥ − Q̂

= x− 1. (2.59)

It is worth discussing the boundary between the fresh and salty water in more detail.
In general, this boundary is modelled as being sharp (for the sake of simplicity) or
diffuse, due to the transport of salt. In the case of a sharp interface model, there
is a level beneath the water table, below which the water is salty (with uniform salt
concentration) and above which it is completely fresh. In non-rotated coordinates
(i.e. measuring z above sea level), the water table height is denoted hw, whereas the
saltwater table height is denoted hs, such that an Archimedes balance indicates

hs =
ρw

ρs − ρw
hw ≈ 40hw, (2.60)

where ρs is the density of salty water. Under the small angle approximation we have

hw ≈ h−
(
Ĥ + x− 1

)
, (2.61)

where the subtracted quantity is the zero-flow case (u = 0). Hence, we can rearrange
to find the saltwater level

hs =
ρw

ρs − ρw

[
h−

(
Ĥ + x− 1

)]
. (2.62)

Again, this serves as a useful tool for estimating the intrusion of saltwater into the
aquifer, and to control recharge rates accordingly to avoid contamination. In prac-
tice, the interface between these two bodies of water is not sharp, because the salt
undergoes both advection and diffusion. In this case, the Boussinesq approximation
can be applied to the density, such that

ρ = ρw(1 + βc), (2.63)
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Figure 2.4: Schematic diagram of the Ghyben-Herzberg relationship for salt water
intrusion in a coastal aquifer (Taken from Barlow (2003)). In (2.60) the variables
hs, hw correspond to z, h in the image.

where β is an empirical parameter, and c is the concentration of salt which is subject
to the advection-diffusion equation

ct + u · ∇c = D∇2c, (2.64)

where D is the diffusion coefficient. This must be solved in conjunction with the
Darcy equations, typically using a numerical scheme. In such cases, iso-levels for the
concentration indicate the location of dangerous levels of saltwater intrusion.

2.2.4 Carbon capture and storage

Figure 2.5: Illustration of the process of Carbon Capture and Storage (CCS). In this
example, biomass (carbon sink) is combusted and CO2 emissions captured and stored
in a geological reservoir. (taken from Bui et al. (2018)).

The overproduction of carbon dioxide emissions is one of biggest challenges facing
humankind over the next century. As outlined in the Paris Agreement (2015), it is
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necessary to limit global warming to less than 2◦ C by the year 2100 to avoid the
most dangerous consequences of climate change. To meet these temperature targets
it is imperative to reduce our CO2 emissions quickly, and by as much as possible.

One of the few proposed technological solutions to this problem is carbon capture
and storage (CCS) - that is, capturing CO2 at source (e.g. power plants and factories)
and injecting it into porous geological reservoirs to be sequestered (stored) several
kilometres beneath the ground. Trapping of the CO2 occurs in a variety of different
ways that take place over vastly different timescales, as illustrated in Fig. 2.5 (taken
from Krevor et al (2015)). Initially (over the first few years of injection) the CO2 is
trapped by impermeable caprocks preventing it from rising upwards; then over longer
timescales it is trapped by small scale capillary forces and by dissolution within the
surrounding salty brine. Finally, over much longer time scales, the CO2 is converted
into various minerals and stored permanently in the rock.

Figure 2.6: Diagram showing the different trapping mechanisms for CO2 sequestration
and the timescales over which they take place (taken from Krevor et al. (2015)).

CO2 sequestration is currently being developed as a technology in different sites
around the world. Many sites still remain in the research phase, whilst others are
being designed and built to be used in conjunction with future power stations. The
most famous case study of CCS is at Sleipner, a natural gas field in the Norwegian
North Sea. Since 1996, after the Norwegian government introduced a significant tax
on carbon emissions, the operators began capturing and sequestering CO2 which is
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Figure 2.7: Schematic diagram of CO2 injected at a rate Q beneath an impermeable
cap rock located at z = 0.

extracted as a by-product of the natural gas (before this tax the CO2 was simply
released into the atmosphere). Between 1996 (when the project began) and 2018,
approximately one million tonnes of CO2 were stored at Sleipner, and it will continue
to be used for many years to come.

The complex flow patterns involved during CO2 sequestration, together with the
multi-scale nature of the process (with rock variations from the millimetre to the kilo-
metre), presents several modelling challenges. Here we discuss several useful math-
ematical tools, such as similarity and asymptotic analyses, to gain insights into the
factors that affect CO2 migration, and to help improve the overall safety and efficiency
of CO2 sequestration in porous geological reservoirs.

A simple illustration of CO2 injected at a rate Q beneath an impermeable cap
rock is illustrated in Fig. 2.7. For simplicity, we model this in two-dimensions (which
is equivalent to CO2 injected from a line source). The injected CO2 has a lower
density than the surrounding brine, such that ρ1 < ρ2. A coordinate system is chosen
with z increasing downwards, such that the impermeable cap rock is located at z = 0,
whereas the shape of the current is given by z = h(x, t) ≥ 0. We consider a symmetric
current and therefore restrict our attention to the half-width x ∈ [0, xN(t)], where
xN(t) is the position of the leading edge. We denote the density difference between
fluids as ∆ρ = ρ2 − ρ1 and the conductivity as K = k∆ρg/µ.

By non-dimensionalising variables according to

x, h ∼ Q/K, t ∼ φQ/K2, (2.65)

and applying the Dupuit approximation, the governing system of equations and
boundary conditions become

ht = (hhx)x ,

−hhx = 1, x = 0,

−hhx = 0, x = xN(t),

h = 0, x = xN(t). (2.66)
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One of these boundary conditions can be replaced by the mass conservation condition∫ xN

0

h dx = t. (2.67)

As discussed previously, such systems often admit self-similar solutions. In this case,
a self-similar solution exists of the form

h = t1/3f(η), η = x/t2/3, (2.68)

for which the system reduces to a BVP of the form

1

3
[f − 2ηf ′] = [ff ′]

′
,

−ff ′ = 1, η = 0,

f = 0, η = ηN ,∫ ηN

0

f dη = 1, (2.69)

where ηN is an unknown constant which is found as part of the solution (i.e. a free
boundary problem).

2.2.5 Numerical solutions to nonlinear differential equations

Whilst we have seen such problems before, we have not yet discussed how a solution
could actually be calculated. In general such problems must be solved numerically,
using a finite difference scheme for example. In such a numerical approach, it is
inconvenient that the size of the numerical domain (ηN) is unknown, so instead we
introduce a stretched coordinate system

y = η/ηN , F (y) = f(η), (2.70)

such that the system is written as

η2
N

3
[F − 2yF ′] = [FF ′]

′
,

− 1

ηN
FF ′ = 1, y = 0,

F = 0, y = 1,

ηN

∫ 1

0

F dy = 1. (2.71)

Using a finite difference approach, we discretise space into N steps, y1, y2, . . . , yN ,
where y1 = 0, yN = 1 and yi − yi−1 = dy is a constant step size. We denote
the corresponding function values as F1, F2, . . . , FN , and we consider second order
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accurate scheme (i.e. which solves the system up to an accuracy of O(dy2)). There
are many different possible ways we can choose to approximate derivatives using finite
difference. For example, we could use a forward, central, or backward scheme, which
are each given by

F ′(yi) ≈
1

2dy
(−3Fi + 4Fi+1 − Fi+2) , (2.72)

F ′(yi) ≈
1

2dy
(−Fi−1 + Fi+1) , (2.73)

F ′(yi) ≈
1

2dy
(Fi−2 − 4Fi−1 + 3Fi) , (2.74)

respectively (note, these coefficients are calculated by considering a Taylor expansion
about the function F evaluated at different locations). Hence, a consistent way of
writing a derivative matrix D (which operates on the vector F) is:

D F =
1

dy


−3/2 2 −1/2
−1 0 1

. . .

−1 0 1
1/2 −2 3/2




F1

F2
...

FN−1

FN

 . (2.75)

In this way, the derivative can be approximated to second order accuracy across the
whole domain without using any more or fewer points than necessary. Of course, we
could have used a higher (or lower) order method, in which case the above matrix
would contain more (or fewer) column entries corresponding to extra terms in the
Taylor series for the derivative.

The vector form of our governing equation is therefore

G :=
η2
N

3

[
F− 2y ◦D F

]
−D

[
F ◦D F

]
= 0, (2.76)

where the notation ◦ indicates the pointwise product (a◦b = (a1b1, a2b2, . . . , aNbN)).
This vector equation applies to all points i = 2, 3, . . . N − 1, whereas the boundary
conditions must be applied to the first and last points F1 and FN . These take the
form:

G1 : =
1

ηN

[
F ◦D F

]
1

+ 1 = 0,

GN : = FN = 0. (2.77)

This defines a square system of N equations (G) for N unknowns F. However, this
neglects the fact that ηN is also an unknown. Hence, the mass conservation constraint
provides a final equation, and we approximate this using the trapezoidal rule

GN+1 :=
ηNdy

2

[
F1 + FN +

N−1∑
i=2

2Fi

]
− 1 = 0. (2.78)
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Hence, we now have a (N + 1)× (N + 1) square system that is well-defined. However,
we note that the governing equations and hence the system is nonlinear, and therefore
cannot be solved by simple matrix inversion.

One way of solving the above system is using Newton’s method. If we write the
combined vector X = (F1, F2, . . . , FN , ηN), then Newton’s method provides iterations
for converging to the root of the function G(X). Starting with an initial guess X0,
iterations are thereafter given by

Xn+1 = Xn − J−1(Xn)G(Xn), (2.79)

where J is the Jacobian matrix. The Jacobian is defined (using subscript notation)
as

Jij =
∂Gi

∂Xj

. (2.80)

There are several ways we could calculate J. In principle, none of the individual
G equations are very complicated, so it’s feasible to calculate these analytically.
However, this is extremely tedious and prone to error, considering the number of
equations involved (i.e. for large N). Hence, one approach is to calculate J using
finite differences, by evaluating G at different values of X. However, since G and
X are both of length N + 1, this requires (N + 1)2 function evaluations per Newton
iteration. In other words, this becomes intractable for large N . However, for smaller
values of N (as we will see in Problem Sheet 2), this works fine.

Another approach is to use a computer to calculate the derivatives in J for us,
which is known as automatic differentiation. This is an extremely powerful (but
surprisingly seldom used) tool. The idea is that all variables written in computer
code are defined in terms of operations like multiplication, addition, and so on, which
can all be differentiated by the chain and product rules. Even more complicated
functions such as sin(x), exp(x), etc... are usually defined in terms of a Taylor series on
a computer, and therefore are simply defined in terms of addition and multiplication.
In this way, a computer can compile the Jacobian matrix in terms of a very long
list of chain rule operations given in terms of the variables X. This only needs to
be compiled once (before running the code) and can thereafter be evaluated at every
iteration. For example, the 1st row of G is

G1 =
1

2ηNdy
F1 (−3F1 + 4F2 − F3) + 1. (2.81)

It is straightforward for a computer to calculate derivatives of G1 using the product
and chain rule. For example, the first entry of the Jacobian (as seen by an automatic
differentiation algorithm) is

∂G1

∂F1

=
1

2ηNdy

∂F1

∂F1

(−3F1 + 4F2 − F3) +
1

2ηNdy
F1

(
−3

∂F1

∂F1

+ 0− 0

)
+ 0. (2.82)

Automatic differentiation is a feature of the Julia programming language, for example
(see Problem Sheet 2).
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Another approach to solve such problems is known as the shooting method. This
is where we convert the above BVP into an IVP and guess the value of ηN = ηN0 .
First we note that we can write the problem as a system of first order ODE’s,

F ′(y) = −L
F
,

L′(y) = −η
2
N

3

(
F + 2y

L

F

)
, (2.83)

where we have introduced the flux function L = −FF ′. At the right hand boundary
the variables satisfy

L(1) = 0, F (1) = 0, lim
y→1

L

F
=

2η2
N

3
, (2.84)

where the last of these is found by analysing the governing ODE’s near y ≈ 1. One
can then discretise the variables F, L, into N points, as before. Then, the solution is
found by marching backwards from y = 1 down towards y = 0 using a suitable finite
difference scheme. For example, a simple first order scheme gives us

Fi−1 = Fi − dy

[
−L
F

]
i

,

Li−1 = Li − dy

[
−η

2
N

3

(
F + 2y

L

F

)]
i

, (2.85)

which can be evaluated for i = N,N−1, . . . , 2. Hence, the flux value at the origin, L1

will not satisfy the correct condition L1 = ηN unless the correct value of ηN0 was used
as an initial guess. Equivalently, the same applies to the mass conservation condition
(2.67) (which is (2.78) in discretised form).

This is why the above approach is known as the shooting method. A guess is
chosen for the parameter ηN0 , after which one shoots towards the origin (missing
one’s target), and ηN is updated accordingly to get closer and closer to the target
iteratively. Essentially, we treat the above approach as a root-finding method for the
function

F(ηN) = ηN

∫ 1

0

F dy − 1, (2.86)

where the integral is discretised (e.g. using the trapezoidal rule) and the vector F,
which is calculated numerically using the shooting method, is considered a function
of the parameter ηN . Hence, ηN can be updated using any root-finding algorithm,
such as Newton’s method for example.

Whilst these examples give two possible approaches to solve nonlinear differential
equations, there are plenty of other methods, such as pseudo-time-stepping, for exam-
ple. Let’s briefly discuss time-stepping methods in general, since these are essential
in most fluid dynamics problems. Suppose that the boundary conditions of the above
problem were modified in such a way that no self-similar solution exists. For example,
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this can be achieved by setting the inflow condition to some function of time Q = Q(t)
which is not necessarily power law (e.g. set by the operator of the CO2 sequestration
site). In this case it is not possible to convert to a set of similarity equations, but
instead we must solve the full PDE system (2.66) numerically. However, there is no
need to fear since we already have nearly all the tools to do this.

First we discretise the shape of the current into a vector of N spatial points,
h. Then, we discretise in time by considering a time step of size dt and marching
forwards from t = 0 to the nth time step value, t = ndt. Approximating the time
derivative using a first order implicit Euler scheme, we get

1

dt

(
hn+1 − hn

)
= (D hn+1) ◦ (D hn+1) + hn+1 ◦ (D2 hn+1). (2.87)

This is known as an implicit scheme because the right hand side is evaluated at the
n+1 time step, rather than the n time step, which is far more stable (see any standard
textbook on numerical analysis). Hence, the above can be rearranged into a system
of equations for the unknown vector hn+1, which are

G(hn+1) := hn+1 − hn − dt
[
(D hn+1) ◦ (D hn+1) + hn+1 ◦ (D2 hn+1)

]
, (2.88)

where hn is known. This approach is often called the method of lines.
As before, we need to ensure that the boundary conditions are satisfied at x = 0

and x = xN(t). The flux boundary condition at x = 0 is imposed by replacing the
first equation in (2.88) with

G1 :=
[
hn+1 ◦ (D hn+1)

]
1

+Qn+1 = 0, (2.89)

where Qn+1 is the function Q(t) discretised and evaluated at the n+ 1 time step.
The boundary conditions at x = xN(t) can be dealt with using a special trick,

making use of the fact that the shape function h(x, t) has compact support. In other
words, for x ≥ xN(t) the shape satisfies h = 0, and −hhx = 0 exactly. Therefore, if
we define our numerical domain x ∈ [0, L] and discretise into N points hi, then we
can set the initial conditions for the gravity current as

h0
i =

{
f(xi) : 0 < xi < xN(0),

0 : xN(0) ≤ xi ≤ L,
(2.90)

for some function f which is continuous at the initial nose position x = xN(0).
Henceforth, for all time steps n > 0 we solve the nonlinear square system (2.88)
(with first entry (2.89)) using Newton’s method, and there is no need to impose any
boundary conditions at x = xN . This is because the flux −hhx naturally vanishes
wherever the thickness h drops to zero, i.e. at the moving boundary xN(t). There
is no need to impose the dynamic evolution of xN(t), since this will naturally follow
from conservation of mass (i.e. since the PDE and BC’s are satisfied). This method
can be applied to many diffusion problems with compact support, and we will explore
further in Problem Sheet 2.
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Figure 2.8: Illustration of gravity current dynamics when CO2 is injected over an
interval.

2.2.6 Injection intervals

Suppose that at some time after injection the flow rate is switched off Q = 0. In this
case, conservation of mass indicates that the gravity current must satisfy∫ xN (t)

0

h dx = V, (2.91)

for all time thereafter, where V is some constant. It is straightforward to show that
this setup admits a similarity solution of the form

h = taf(η), η = x/tb, (2.92)

where a = −1/3 and b = 1/3. Attention must be paid when considering the non-
dimensionalisation of this model, since Q no longer exists as a dimensional parameter.
Instead, appropriate scalings are given in terms of the volume (per unit width) of the
current

x, h ∼ V 1/2, t ∼ φV 1/2/K. (2.93)

We note that the vertical extent of the current h shrinks like ∼ t−1/3 when Q = 0,
compared to growing like ∼ t1/3 when Q is a constant. Hence, if we consider an
injection interval in which Q is switched off after some finite time tc, then the motion
of the current changes from a situation in which it is invading new vertical space to
a situation in which it is withdrawing from that vertical space. As we will discuss
later, due to contact line effects between the CO2, rock and water, the invading and
retreating properties of CO2 are different. In fact, as the CO2 withdraws from pore
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space, it typically leaves a fraction of its mass behind, trapped in the pore spaces due
to small scale capillary forces. This scenario is illustrated in Fig. 2.8, indicating the
region of trapped CO2 as the injection switches off. Since the objective of CCS is
to sequester as much CO2 as possible within a reservoir, there is an important and
active area of research in understanding ways to optimally store CO2 by controlling
injection rates in such ways.

2.2.7 Heterogeneities

Figure 2.9: Tullig point, Co. Clare, Ireland. (taken from Woods (2005)).

So far we have only considered spatially uniform rocks with constant permeability
k and porosity φ. In practice, all real porous media in the environment have sig-
nificantly non-uniform values of k and φ. For example, rocks are often composed of
sedimentary layers, as can be seen on some coastal cliffs. Such rocks were formed
by the deposition of different types of sediment over time, resulting in layers with
potentially very different properties (such as permeability), as shown in Fig. 2.9.
When considering flow of CO2, groundwater, or any such fluid through a heteroge-
neous rock, the resulting patterns can become extremely complex and difficult to
resolve. Hence, it is often desirable to describe the averaged, or upscaled, properties
of heterogeneous porous media, rather than modelling the precise details of these
complex layer arrangements. Here we will briefly discuss some approaches for upscal-
ing heterogeneous media, and how these heterogeneities can affect the macroscopic
arrangement of the flow.

Consider the two flow scenarios depicted in Fig. 2.10. A constant pressure drop
pb − pa is imposed across a layered rock of width L. We consider separately the flow
perpendicular to, and parallel to a two layer system with permeability values k1 and
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Figure 2.10: Schematic diagram of flow perpendicular (a) and parallel (b) to sedi-
mentary layers in a porous rock.

k2. Starting with the first (perpendicular) case, Darcy’s law states that the horizontal
flow is given by

u = −k(x)

µ
px. (2.94)

By integrating across the width of the flow region, we get

∆p = pb − pa =

∫ L

0

− µu

k(x)
dx. (2.95)

Meanwhile, the continuity equation ux + wz = 0 indicates that if there is no vertical
flow then u must be a constant. By symmetry (or by considering an infinitely tall
system) we see that w = 0, and hence the above integral simplifies and rearranges to

u = −k⊥∆p

µL
, (2.96)

where the effective permeability in the perpendicular direction is given by

k⊥ =
2

1/k1 + 1/k2

, (2.97)

which is incidentally the harmonic mean of the two permeability values. Since u is a
constant in this system, it is also equivalent to the average velocity value, and hence
we write u = ū.

In the case of flow parallel to the layers (as shown in Fig. 2.10b), the horizontal
flow is different in each of the two layers

u1 = −k1∆p

µL
,

u2 = −k2∆p

µL
. (2.98)
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Hence, the average flow across the system is given by

ū = −
k‖∆p

µL
, (2.99)

where

k‖ =
1

2
(k1 + k2). (2.100)

We now have two effective permeability values for flow perpendicular and parallel to
the layers. In this way, we can define the ratio between the two as

α =
k⊥
k‖

=
4κ

(1 + κ)2
, (2.101)

where κ = k1/k2. Clearly, α(κ) has a unique maximum at κ = 1. This indicates that
perpendicular flow is always less than parallel flow for a fixed pressure gradient and
viscosity.

In general, these upscaled permeability values are a good approximation for flow
across or along many-layered systems, so long as the flow length scale h is much larger
than the layer width scale d, such that h/d � 1. In other words, a unidirectional
flow across a system of many layers can be well approximated as a flow through a
homogeneous medium with uniform permeability given by k⊥.

In the case where the flow has more complex layer structures (i.e. with more than
two permeability values, or with differing layer widths), the above upscaling analysis
can be extended easily. In this case, we have

k⊥ =

[
1

L

∫ L

0

1

k
dx

]−1

,

k‖ =
1

H

∫ H

0

k dz, (2.102)

where H is the vertical extent of the flow region.
For real sedimentary systems the ratio α(κ) has been measured in the range 10−4−

10−1. Next we will investigate the possible consequences of such a large permeability
ratio. To do so, we consider a porous medium with upscaled properties k‖ and k⊥ in
the x and z directions. This is known as an anisotropic permeability field, for which
Darcy’s law is written

u = − 1

µ
k · ∇ [p+ ρgz] , (2.103)

where k = diag(k‖, k⊥). In doing so, we have approximated a heterogeneous system
of layers as a single medium with anisotropic properties. As discussed previously,
this is only valid when the flow extends across many layers. Alternatively, (2.103)
is also a valid model for rocks which are genuinely anisotropic, as can happen when
sedimentary layers undergo compaction due to high lithostatic pressures (i.e. the
weight of overlying rock) over very long time scales. In either case, such a model is
relevant to many real flow scenarios in porous media.
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2.2.8 Injection into anisotropic media

Consider the injection Q of CO2 into a two-dimensional anisotropic porous medium
with permeability field k = diag(k‖, k⊥) in the x, z directions. As before, we consider
that the flow is bounded above by a horizontal impermeable cap rock located at z = 0.
Due to the continuity equation, the pressure satisfies

k‖pxx + k⊥pzz = 0, (2.104)

within the injected fluid. By switching to a stretched coordinate system

ξ = α1/4x, ζ = α−1/4z, (2.105)

the pressure then satisfies the standard Laplace equation,

pξξ + pζζ = 0. (2.106)

The pressure solution (which satisfies suitable flux conditions at the origin) is simply
the Green’s function in two dimensions

p = −Qµ
πke

log r + f(t), (2.107)

where r = (ξ2 + ζ2)1/2, f(t) is some function of time, and ke = k‖α
1/2 = k⊥α

−1/2 is
the effective permeability. This solution does not include the effects of gravity and is
therefore only valid very close to the injection point. Hence, this is the appropriate
form of the pressure at very early times, when the injected region is very small. This
can be seen by comparing the dimensional pressure scaling associated with (2.107)
(Qµ/ke) and the pressure scale associated with the weight of a current of depth H
(∆ρgH). Hence, (2.107) is valid for currents which satisfy

Qµ

ke
� ∆ρgH. (2.108)

In this case, gravity can be ignored and the appropriate boundary condition for the
pressure at the edge of the current is p = pa. By symmetry (since gravity is negligible)
the current must grow radially outwards like a circle of radius R(t). Hence, we have

p− pa = −Qµ
πke

log
r

R(t)
. (2.109)

The dynamics of the radius are determined by the kinematic condition, which states
that

Ṙ =
ur
φ
, (2.110)

where ur is the radial velocity outwards, given by

ur = −ke
µ

∂p

∂r

∣∣∣∣
r=R(t)

=
Q

πR
. (2.111)
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Hence, integrating the above two equations gives

1

2
R2 =

Qt

πφ
. (2.112)

Note that this equation could also be derived by considering that an injected volume
Qt (per unit depth) must occupy a semicircle of area φπR2/2.

In the original coordinate system the radius satisfies

R2 = ξ2 + ζ2 = x2α1/2 + z2α−1/2. (2.113)

Hence, the shape of the injected flow is actually an ellipse with semi-major and semi-
minor axes

RH = Rα−1/4, RV = Rα1/4. (2.114)

Since α ≤ 1, the ellipse is always elongated in the horizontal direction (H) and
squashed in the vertical direction (V). Hence, the effect of anisotropy is to create a
long-thin elliptical flow (but not hydrostatic, as is typically assumed for long-thin
flows!).

Next, we consider the effects of gravity. From the earlier analysis (2.108) it is
clear that the effects of gravity are appreciable when

RV ≈
Qµ

ke∆ρg
=

Q

Ke

, (2.115)

where Ke = ke∆ρg/µ is the effective conductivity. From (2.112),(2.114), this happens
at a time

t =
πφQ

2K2
eα

1/2
. (2.116)

Hence, writing everything in terms of the conductivity in the parallel direction K =
k‖∆ρg/µ (which is the most commonly used), we see that the solution regime is
determined by two critical parameter values for RV and t, which are

R∗V = H∗ :=
Q

α1/2K
, t∗ :=

πφQ

2α3/2K2
. (2.117)

The regimes are summarised as follows: At early times t � t∗ (or when RV � H∗)
the flow is dominated by injection and gravity is negligible; at late times t � t∗

(or when RV � H∗) the flow is dominated by gravity. In the latter case, the earlier
gravity current analysis (i.e. (2.66)) is applicable, for which self-similar solutions exist
in which x ∼ t2/3 and z ∼ t1/3.

This analysis illustrates that the effect of anisotropy is to delay the time at which
gravity dominates the flow. Indeed for very heterogeneous/anisotropic geological
reservoirs, for which α = O(10−4), the CO2 current may not feel the effects of gravity
until several years after injection begins. This is very important to know, both from
the perspective of efficiency as well as safety, before selecting a geological reservoir for
carbon storage. Hence, detailed measurements are taken in as many locations as pos-
sible, in conjunction with seismic surveys, to assess the landscape of heterogeneities.
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Figure 2.11: Experiments of glycerol (dyed red) injected into a Hele-Shaw cell, aligned
vertically so gravity acts downwards. The flow is bounded below by an impermeable
substrate.

Despite the simplicity of this problem, we have shown that there exist two separate
self-similar regimes. These are summarised by the horizontal and vertical extents of
the current RH and RV . Hence we have

RH/H
∗ ∝

{
(t/t∗)1/2 : t� t∗,

(t/t∗)2/3 : t� t∗,

RV /H
∗ ∝

{
(t/t∗)1/2 : t� t∗,

(t/t∗)1/3 : t� t∗.
(2.118)

Snapshots taken from an experiment of glycerol injected between two glass plates
(known as a Hele-Shaw cell) are shown in Fig. 2.11. This is the inverted version of
a CO2 current since glycerol is heavy compared with the surrounding air, so gravity
causes it to slump downwards. At early times (towards the left of the figure) the
current grows like a semi-circle, whereas at late times (towards the right of the figure)
the current collapses into a classical gravity current, exactly as we have predicted here.

A similar analysis can be performed in three dimensions, assuming an axisymmet-
ric injection. In this case, different scalings are derived. For example, at early times
we have an ellipsoid with

RH = α−1/6R, RV = α1/3R, (2.119)

where R = (3Qt/4πφ)1/3 and the transition scalings

H∗ =

(
Q

K

)1/2

, t∗ =
2πφ

3α

(
Q

K3

)1/2

. (2.120)

2.3 Unsaturated soils

Let us now consider flow in the unsaturated zone. Above the water table, water and
air occupy the pore space. If the porosity is φ and the water volume fraction per
unit volume of soil is W , then the ratio S = W/φ is called the relative saturation. If
S = 1, the soil is saturated, and if S < 1 it is unsaturated. The pore space of an
unsaturated soil is configured as shown in figure 2.12. In particular, the air/water
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Figure 2.12: Configuration of air and water in pore space. The contact angle θ
measured through the water is acute, so that water is the wetting phase. γws, γas and
γaw are the surface energies of the three interfaces.

interface is curved, and in an equilibrium configuration the curvature of this interface
will be constant throughout the pore space. The value of the curvature depends on
the amount of liquid present. The less liquid there is (i. e., the smaller the value of
S), then the smaller the pores where the liquid is found, and thus the higher the
curvature. Associated with the curvature is a suction effect due to surface tension
across the air/water interface. The upshot of all this is that the air and water pressures
are related by a capillary suction characteristic or capillary pressure function which
expresses the difference between the pressures as a function of mean curvature, and
hence, directly, S. Elementary geometry in a cylindrical pore of diameter dp implies

pa − p =
2γ cos θ

dp
, (2.121)

where θ is the contact angle. More generally, we can take

pa − p = f(S). (2.122)

The suction characteristic f(S) is equal to 2γκ, where κ is the mean interfacial
curvature: γ is the surface tension. For air and water in soil, f is positive as water is
the wetting phase, that is, the contact angle at the contact line between air, water and
soil grain is acute, measured through the water (see figure 2.12). The resulting form
of f(S) displays hysteresis as indicated in figure 2.13, with different curves depending
on whether drying or wetting is taking place.

2.3.1 The Richards equation

To model the flow, we have the conservation of mass equation in the form

∂(φS)

∂t
+ ∇.u = 0, (2.123)
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Figure 2.13: Capillary suction characteristic (A.K.A. capillary pressure). It displays
hysteresis in wetting and drying.

where we take φ as constant. Darcy’s law for an unsaturated flow has the form

u = −k(S)

µ
[∇p+ ρgk̂], (2.124)

where the permeability k depends on S. If k(1) = k0 (the saturated permeability),
then one commonly writes k = k0kr(S), where kr is the relative permeability. The
most obvious assumption would be kr = S, but this is rarely appropriate, and a better
representation is a convex function, such as kr = S3. An even better representation

is a function such as kr =

(
S − S0

1− S0

)3

+

, where S0 is known as the residual saturation.

It represents the fact that in fine-grained soils, there is usually some minimal water
fraction which cannot be removed. It is naturally associated with a capillary suction
characteristic function pa − p = f(S) which tends to infinity as S → S0+, also
appropriate for fine-grained soils.

In one dimension, and if we take the vertical coordinate (upwards) to be z, we
obtain the Richards equation

φ
∂S

∂t
− ∂V (S)

∂z
=

∂

∂z

[
D(S)

∂S

∂z

]
, (2.125)

where

V (S) = K0kr(S), D(S) = −K0

ρg
kr(S)f ′(S), K0 =

k0ρg

µ
; (2.126)

K0 is the saturated hydraulic conductivity. We are assuming pa = constant (and also
that the soil matrix is incompressible).
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2.3.2 Non-dimensionalisation

We choose scales for the variables as follows:

f = peψ, z ∼ l, t ∼ φl

K0

, (2.127)

where we have defined the capillary pressure scale to be

pe =
γ

dp
; (2.128)

here dp is the (mean) pore diameter and γ is the surface tension, assumed constant.
The quantity pe is often referred to as the pore entry pressure, and we will discuss
this in more detail later.

The Richards equation then becomes, in dimensionless variables,

St − k′r(S)Sz = ε [D∗(S)Sz]z , (2.129)

where
D∗(S) = −kr(S)ψ′(S). (2.130)

Note that ψ is a decreasing function, so that the diffusion coefficient D∗ > 0, as is
indeed necessary. The single dimensionless parameter is

ε =
pe
ρgl

, (2.131)

and is small for coarse soils, and O(1) for fine-grained soils. As a specific example,
we take l = 1 m, so that ρgl ∼ 104 Pa. If we take γ = 70 mN m−1 fpr water/air, and
dp ∼ 0.1 mm, then pe ∼ 700 Pa, and ε ∼ 0.07; this may be appropriate for sandy
soils. For silty soils, we might have dp ∼ 10 µm, and then ε ∼ 0.7.

As a specific example, we consider the case of soil wetting due to surface infiltra-
tion: of rainfall, for example. Suppose that there is a constant downwards flux of
(dimensional) rainfall q at the surface. It is convenient to define the depth ζ = −z,
and take the vadose zone to be in 0 < ζ < 1. The Richards equation is then

St + k′r(S)Sζ = ε [D∗(S)Sζ ]ζ , (2.132)

and suitable boundary conditions for the saturation are

kr(S)− εD∗(S)Sζ = q∗ at ζ = 0, q∗ =
q

K0

,

S = 1 at ζ = 1. (2.133)

In the steady state, the first condition in (2.133) applies everywhere, and the
solution is a quadrature, ∫ 1

S

εD∗(S) dS

kr(S)− q∗
= 1− ζ. (2.134)
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Obviously S must be an increasing function of ζ, and this requires q∗ < kr(1) = 1, in
other words q < K0: the supplied rainfall must be less than the saturated hydraulic
conductivity.

What if it is not? It is easy to see from the solution (2.134) that as q∗ → 1−, the
saturation approaches one. If q > K0, the supplied flux at the surface is greater than
the soil’s maximum drainage capacity (which is the saturated hydraulic conductivity).
So in this case, water must pond at the surface, and the boundary condition is replaced
by S = 1 at ζ = 0; clearly in this case, the soil is waterlogged and the water table
is pushed up to the soil surface. Such ponding is commonly observed during periods
of heavy rainfall. For silt with k0 = 10−14 m2, the hydraulic conductivity K0 ∼ 10−7

m s−1 or 3 m y−1, while average rainfall in England, for example, is ≤ 1 m y−1.
Thus on average q∗ ≤ 1 for such soils, but during storms we can expect q∗ � 1.
When ponding does occur, the pond depth is determined by the balance between
precipitation, infiltration, and surface run-off.

2.3.3 Snow melting

An application of the unsaturated flow model occurs in the study of melting snow.
In particular, it is found that pollutants which may be uniformly distributed in snow
(e. g. sulphate SO2−

4 from sulphur emissions via acid rain) can be concentrated in melt
water run-off, with a consequent enhanced detrimental effect on stream pollution.
The question then arises, why this should be so? We shall find that uniform surface
melting of a dry snowpack can lead to a meltwater spike at depth.

Suppose we have a snow pack of depth l. Snow is a porous aggregate of ice
crystals, and meltwater formed at the surface can percolate through the snow pack to
the base, where run-off occurs. (We ignore effects of re-freezing of meltwater.) The
model (2.132) is appropriate, and to be specific, we will also take

kr = S3, ψ(S) =
1

S
− S, (2.135)

based on typical experimental results.
Suitable boundary conditions in a melting event might be to prescribe the melt

flux q0 at the surface, thus

kr

(
ε
∂ψ

∂ζ
+ 1

)
= q∗ =

q0

K 0
at ζ = 0. (2.136)

If the base is impermeable, then

kr

(
ε
∂ψ

∂ζ
+ 1

)
= 0 at ζ = 1. (2.137)

This is certainly not realistic if S reaches 1 at the base, since then ponding must
occur and presumably melt drainage will occur via a sub-horizontal flow under the
snowpack, but we will examine the initial stages of the flow using (2.137) before that
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happens. Finally, we suppose S = 0 at t = 0. Again, this is not realistic in the model
(it implies infinite capillary suction) but it is a feasible approximation to make.

Simplification of this model now leads to the dimensionless Richards equation in
the form

∂S

∂t
+ 3S2∂S

∂ζ
= ε

∂

∂ζ

[
S(1 + S2)

∂S

∂ζ

]
. (2.138)

If we choose γ = 70 mN m−1, dp = 0.1 mm, ρ = 103 kg m−3, g = 10 m s−2, l = 1
m as before, then again ε = 0.07. It follows that (2.138) has a propensity to form
shocks, these being diffused by the term in ε over a distance O(ε) (by analogy with
the shock structure for the Burgers equation).

We want to solve (2.138) with the initial condition

S = 0 at t = 0, (2.139)

and the boundary conditions

S3 − εS(1 + S2)
∂S

∂ζ
= q∗ on ζ = 0, (2.140)

and

S3 − εS(1 + S2)
∂S

∂ζ
= 0 at ζ = 1. (2.141)

Roughly, for ε� 1, these are

S = S0 at ζ = 0,

S = 0 at ζ = 1, (2.142)

where S0 = q∗1/3, which we initially take to be O(1) (and < 1, so that surface ponding
does not occur).

Neglecting ε, the solution is the step function

S = S0, ζ < ζf ,

S = 0, ζ > ζf , (2.143)

and the shock front at ζf advances at a rate ζ̇f given by the jump condition

ζ̇f =
[S3]+−
[S]+−

= S2
0 . (2.144)

In dimensional terms, the shock front moves at speed q0/φS0, which is in fact obvious
(given that it has constant S behind it).

The shock structure is similar to that of Burgers’ equation. We put

ζ = ζf + εZ, (2.145)
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Figure 2.14: S(Z) given by (2.150); the shock front terminates at the origin.

and S rapidly approaches the quasi-steady solution S(Z) of

−cS ′ + 3S2S ′ = [S(1 + S2)S ′]′, (2.146)

where c = ζ̇f ; hence
S(1 + S2)S ′ = −S(S2

0 − S2), (2.147)

in order that S → S0 as Z → −∞, and where we have chosen

c = S2
0 , (2.148)

(as S+ = 0), thus reproducing (2.144). The solution is a quadrature,∫ S (1 + S2) dS

(S2
0 − S2)

= −Z, (2.149)

with an arbitrary added constant (amounting to an origin shift for Z). Hence

S − (1 + S2
0)

2S0

ln

[
S0 + S

S0 − S

]
= Z. (2.150)

The shock structure is shown in figure 2.14; the profile terminates where S = 0
at Z = 0. In fact, (2.147) implies that S = 0 or (2.150) applies. Thus when S given
by (2.150) reaches zero, the solution switches to S = 0. The fact that ∂S/∂Z is
discontinuous is not a problem because the diffusivity S(1 + S2) goes to zero when
S = 0. This degeneracy of the equation is a signpost for fronts with discontinuous
derivatives: essentially, the profile can maintain discontinuous gradients at S = 0
because the diffusivity is zero there, and there is no mechanism to smooth the jump
away.

Suppose now that k0 = 10−10 m2 and µ/ρ = 10−6 m2 s−1; then the saturated
hydraulic conductivity K0 = k0ρg/µ = 10−3 m s−1. On the other hand, if a metre
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thick snow pack melts in ten days, this implies q0 ∼ 10−6 m s−1. Thus S3
0 = q0/K0 ∼

10−3, and the approximation S ≈ S0 looks less realistic. With

S3 − εS(1 + S2)
∂S

∂ζ
= S3

0 , (2.151)

and S0 ∼ 10−1 and ε ∼ 10−1, it seems that one should assume S � 1. We define

S =

(
S3

0

ε

)1/2

s; (2.152)

(2.151) becomes

βs3 − s
[
1 +

S3
0

ε
s2

]
∂s

∂ζ
= 1 on ζ = 0, (2.153)

and we have S3
0/ε ∼ 10−2, β = (S0/ε)

3/2 ∼ 1.
We neglect the term in S3

0/ε, so that

βs3 − s∂s
∂ζ
≈ 1 on ζ = 0, (2.154)

and substituting (2.152) into (2.138) leads to

∂s

∂τ
+ 3βs2 ∂s

∂ζ
≈ ∂

∂ζ

[
s
∂s

∂ζ

]
, (2.155)

if we define t = τ/ (εS3
0)

1/2
. A simple analytic solution is no longer possible, but

the development of the solution will be similar. The flux condition (2.154) at ζ = 0
allows the surface saturation to build up gradually, and a shock will only form if
β � 1 (when the preceding solution becomes valid).

2.3.4 Similarity solutions

If, on the other hand, β � 1, then the saturation profile approximately satisfies

∂s

∂τ
=

∂

∂ζ

[
s
∂s

∂ζ

]
,

−s∂s
∂ζ

=

{
1 on ζ = 0,
0 on ζ = 1.

(2.156)

At least for small times, the model admits a similarity solution of the form

s = ταf(η), η = ζ/τβ, (2.157)

where satisfaction of the equations and boundary conditions requires 2α = β and
2β = 1 = α, whence α = 1

3
, β = 2

3
, and f satisfies

(ff ′)′ − 1
3
(f − 2ηf ′) = 0, (2.158)
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with the condition at ζ = 0 becoming

−ff ′ = 1 at η = 0. (2.159)

The condition at ζ = 1 can be satisfied for small enough τ , as we shall see, because
the equation (2.158) is degenerate, and f reaches zero in a finite distance, η0, say, and
f = 0 for η > η0. As η = 1/τ 2/3 at ζ = 1, then this solution will satisfy the no flux

condition at ζ = 1 as long as τ < η
−3/2
0 , when the advancing front will reach ζ = 1.

To see why f behaves in this way, integrate once to find

f(f ′ + 2
3
η) = −1 +

∫ η

0

f dη. (2.160)

For small η, the right hand side is negative, and f is positive (to make physical sense),
so f decreases (and in fact f ′ < −2

3
η). For sufficiently small f(0) = f0, f will reach

zero at a finite distance η = η0, and the solution must terminate. On the other hand,

for sufficiently large f0,

∫ η

0

f dη reaches 1 at η = η1 while f is still positive (and

f ′ = −2
3
η1 there). For η > η1, then f remains positive and f ′ > −2

3
η (f cannot reach

zero for η > η1 since

∫ η

0

f dη > 1 for η > η1). Eventually f must have a minimum

and thereafter increase with η. This is also unphysical, so we require f to reach zero
at η = η0. This will occur for a range of f0, and we have to select f0 in order that∫ η0

0

f dη = 1, (2.161)

which in fact represents global conservation of mass. Figure 2.15 shows the schematic
form of solution both for β � 1 and β � 1. Evidently the solution for β ∼ 1 will
have a profile with a travelling front between these two end cases.

2.4 Immiscible two-phase flows

In some circumstances, the flow of more than one phase in a porous medium is
important. For example, the flow of CO2 in water (carbon sequestration), or the
flow of oil and gas, or oil and water (or all three!) in a sedimentary basin, such
as that beneath the North Sea. Suppose there are two phases; denote the phases
by subscripts w and n, being the wetting and non-wetting fluids, and Sw, Sn are the
saturations. It is assumed that together these two phases occupy all the pore space,
such that Sn + Sw = 1. Note that the definition of which fluid is wetting and which
is non-wetting relates to the size of the contact angle between the phases (i.e. if the
angle is less than π/2, the fluid is known as wetting).

For each phase, there is an associated relative permeability function, which we
denote krn(Sn) and krw(Sn). We write these in terms of the non-wetting saturation
without loss of generality (since Sw = 1−Sn). As discussed before, krn is a monotone
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Figure 2.15: Schematic representation of the evolution of s in (2.155) for both large
and small β.

increasing function of Sn, and for the same reasons krw is a decreasing function of
Sn. They do not necessarily have a similar functional form. Furthermore, they
typically display hysteresis phenomena. For example, it is easier (i.e. larger relative
permeability) for CO2 to invade a region of pore space than it is for it to withdraw
from an existing area. This is the chief mechanism for capillary trapping during
carbon sequestration.

The capillary (or suction) pressure pc = pn − pw is given by

pc(Sn) = peψ(Sn), (2.162)

where pe is the pore entry pressure, and ψ is a positive, monotonically increasing
function of saturation Sn. The pore entry pressure is the minimum pressure required
to fill the largest pore spaces of the rock with non-wetting phase. As the difference
in pressure pn − pw increases, smaller and smaller pore spaces can be occupied with
non-wetting phase.

Mass conservation takes the form

φ
∂Sn
∂t

+ ∇.un = 0,

φ
∂Sw
∂t

+ ∇.uw = 0, (2.163)

where φ is (constant) porosity, and Darcy’s law for each phase is

un = − k0

µn
krn(Sn)

[
∇pn + ρngk̂

]
,

uw = − k0

µw
krw(Sn)

[
∇pw + ρwgk̂

]
. (2.164)
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2.4.1 Buckley-Leverett Flow

A canonical case of two-phase flow in porous media is the study of immiscible displace-
ment in a long-thin aquifer, also known as Buckley-Leverett flow. To model this, we
make the assumption that the flow is approximately one-dimensional, and the effects
of gravity can be ignored. Such flows are relevant to geothermal energy production
and carbon sequestration, but the problem formulation was originally employed to
model hydrocarbon extraction in geological reservoirs.

We consider a constant injection of wetting and non-wetting phases at the aquifer
inlet x = 0, and model the spatial and temporal development of the saturations Sn,
Sw, downstream towards the aquifer outlet at x = L (see figure 2.16). By conservation
of mass (2.163) we have

un + uw = U, (2.165)

for some constant inlet velocity U . By inserting (2.164) (in one dimension) into
(2.165) and substituting pw = pn − pc, we get

− k0

µw

[
Mkrn

∂pn
∂x

+ krw

(
∂pn
∂x
− ∂pc
∂x

)]
= U, (2.166)

where M = µw/µn is the viscosity ratio. Hence, we can re-arrange to get the non-
wetting pressure gradient,

∂pn
∂x

=
−µwU/k0

Mkrn + krw
+

krw
Mkrn + krw

∂pc
∂x

. (2.167)

By inserting this into (2.163) we get the governing equation for the saturation

φ
∂Sn
∂t

+ V (Sn)
∂Sn
∂x

=
∂

∂x

[
D(Sn)

∂Sn
∂x

]
, (2.168)

where the functions V , D are defined as

V (Sn) = U
∂

∂Sn

[
Mkrn

Mkrn + krw

]
,

D(Sn) =
k0pe
µw

Mkrnkrw
Mkrn + krw

∂ψ

∂Sn
. (2.169)

The second term in (2.168) can therefore be interpreted as advection at speed V =
UJ ′(Sn), where J = Mkrn/(Mkrn + krw) is the flow rate fraction. The third term is
diffusive, indicating that the role of the capillary pressure is to smooth out gradients
in the saturation Sn. It should be noted that a similar formulation can be achieved
in terms of Sw, but here we stick with an Sn formulation without loss of generality.

It is interesting to measure the relative importance between each of these advective
and diffusive effects. For this, we define a dimensionless Peclet number,

Pe =
UµwL

k0pe
. (2.170)
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Figure 2.16: Schematic diagram and plots of the dimensionless flow rate fraction J(S)
and advection speed V (S) as a function of non-wetting fluid saturation Sn (for the
Buckley-Leverett problem). The viscosity ratio M is taken to be 30.

In many environmental scenarios, the above parameters lead to a large Peclet number
Pe � 1, such that the effects of diffusion (and hence the third term in (2.168)) can
be ignored to good approximation. This approximation breaks down, however, when
there are sharp gradients of Sn, such as near a shock. In such scenarios where there are
shocks, one can introduce a boundary layer near the shock front to address diffusive
effects.

By non-dimensionalising the model according to

x ∼ L, t ∼ φL/U, V ∼ U, (2.171)

and by dropping the subscript S = Sn, we get the simple advection equation

St + V (S)Sx = 0. (2.172)

Such equations can be solved using the method of characteristics

dx

dt
= V (S), (2.173)

given suitable inlet and initial conditions at x = 0 and t = 0. As an example we
consider the initial/boundary conditions

S(0, t) = 1,

S(x, 0) = 0. (2.174)
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Figure 2.17: Illustration of a shock developing during Buckley-Leverett flow, as well
as the corresponding characteristics in the x− t plane. Blue curves indicate Sn > Ss
and red curves indicate Sn = 0.

This corresponds to an aquifer which is initially saturated with wetting phase, at
which point pure non-wetting phase is injected at the inlet (e.g. CO2 injected into a
brine-filled aquifer).

To address this case, we first need to define expressions for the relative perme-
ability functions in the advection term V (S). For this we use the so-called ‘Corey’
model,

krn = Sα, krw = (1− S)β, (2.175)

where α, β > 0 are some empirical constants. In this case, plots of the flow rate
fraction J and advection speed V are shown in figure 2.16 for illustration. In general,
J is a monotone increasing function between 0 and 1 (reminiscent of a CDF for
example), whereas V is a positive function with a unique maximum.

The non-monotone behaviour of V in conjunction with (2.173)-(2.174) indicate
that a shock will develop to maintain a saturation S that is not multi-valued. To
determine the saturation value at the shock, we employ the Rankine-Hugoniot jump
condition, which takes the form

dx

dt
=

[Q]+−
[P ]+−

, (2.176)

for a PDE of the form Pt +Qx = 0. Hence, we have the shock condition

V (Ss)Ss = J(Ss), (2.177)

which must be solved to find Ss.
A typical shock solution is displayed in figure 2.17 together with characteristics in

the x− t plane. Clearly the shock at S = Ss causes the characteristics from t = 0 to
collide with the dividing characteristic X(t) = V (Ss)t. As described earlier, diffusive
effects due to the capillary pressure act to smooth out this shock front. This occurs
over a boundary layer of width δ ∝ (t/Pe)1/2, located near the shock front X(t).
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2.4.2 Two-phase flow in heterogeneous media

Earlier we described how heterogeneities can affect the flow of a single phase within
a porous medium. Here, we extend this analysis to account for multiphase effects
between immiscible flows. In our earlier analysis, we discussed how heterogeneities
are often characterised by variations in the pore size within a rock, manifesting in
non-uniform porosity and permeability φ, k. However, variations in the pore size
are also associated with different pore entry pressures pe and therefore non-uniform
capillary pressure pc. In this section we describe how such variations modify the flow
and distribution of the phase saturations Sn, Sw.

As before, it is useful to consider the most simple type of heterogeneity to gain a
general understanding of the typical behaviour. To do so, we consider flow parallel to
a system of two layers of equal thickness with permeability, porosity and pore entry
pressure values ki, φi, pei , for i = 1, 2. The length and thickness of the medium is
given by L, H, and the flow is predominantly horizontal, driven by an overarching
pressure gradient ∆p/L (e.g. in the non-wetting phase).

It is useful to characterise the relative importance of viscous and capillary effects
by the ratio

∂pn/∂x

∂pc/∂z
≈ ∆p/L

∆pe/H
, (2.178)

where ∆pe = pe1 − pe2 . The above expression is the ratio between horizontal viscous
pressure gradients and vertical gradients in the capillary pressure. We see this is
analogous to the capillary number described earlier (remember Ca ∼ µU/γ). Hence,
we write

Ca = 1/Γ =

∣∣∣∣∆pH∆peL

∣∣∣∣ , (2.179)

where a modulus sign is included to make sure the quantity is always positive, and
Γ is introduced as a more intuitive alternative to the capillary number (since large Γ
corresponds with large capillary effects).

The limit of large Γ is known as the “capillary limit”. In this case the saturation
of phases is dominated by capillary forces. Essentially, surface tension drives non-
wetting phase into regions of larger pore space and away from smaller pore space (i.e.
minimising surface energy). Comparatively the horizontal, viscous flow of phases is
of lesser importance than the lateral rearrangement due to capillary effects.

By contrast, the limit of small Γ is known as the “viscous limit”. In this case,
the effect of capillary forces is negligible, and instead the flow is dominated by the
flow-driving horizontal pressure gradients associated with viscous resistance. There
is little saturation rearrangement due to surface tension, so the lateral saturation
distribution remains close to the inlet conditions.

In general to account for the flow in such scenarios, we would have to solve the
governing equations (2.163)-(2.164) for fixed Γ and suitable boundary conditions.
However, in the limit of small and large Γ, we can make some simplifying assumptions
to derive analytical solutions which give insight into the problem.
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To start with we consider the case of steady flow in the viscous limit (Γ� 1). In
this case, it can be shown (via asymptotic analysis) that the saturation is spatially
uniform, e.g. Sn = S̄n = Sn(x = 0). In other words, the saturation of phases remains
the same as imposed at the inlet x = 0. Hence, the flow of non-wetting phase (for
example) is

un = −k(z)

µn
krn(Sn)

∂pn
∂x

= −k(z)

µn
krn(S̄n)

∆p

L
. (2.180)

Hence, we can derive an effective property for the relative permeabilities in the viscous
limit

kVrn(S̄n) =
µnūnL

−∆pk̄
= krn(S̄n),

kVrw(S̄n) =
µwūwL

−∆pk̄
= krw(S̄n), (2.181)

where bars indicate vertical averaging (e.g. k̄ = (k1 +k2)/2 for even thickness layers).
These effective properties tell us how the mean flow ūn, ūw depends on the mean sat-
uration, permeability, and viscous pressure gradient. Hence, if we know information
about the heterogeneity, we can immediately describe the flow in the viscous limit
without doing any intensive computations.

Similarly, in the capillary limit (Γ � 1) we can derive analogous effective prop-
erties. In this case, the flow is associated with very weak driving pressure gradients
∆p/L. Hence, pn and pw are expected to be approximately constant. This leads to a
capillary pressure

pc = pn − pw ≈ γ, (2.182)

for some constant γ. The capillary pressure is related to the saturation according to
(2.162), given some model for pc. For this, we employ the commonly used Brooks-
Corey model, which is

pc(Sn) = pe(z)(1− Sn)−1/λ, (2.183)

where λ represents the pore size distribution (large/small values of λ correspond with
a large/small distribution of pore sizes). Inverting this function we get

Sn(z) = 1−
(
pe(z)

γ

)λ
. (2.184)

This can be re-written in terms of the average (i.e. removing γ) as

Sn(z) = 1− pe(z)λ

pλe
(1− S̄n). (2.185)

Hence, we can insert this into the Darcy equations and take the average, giving

ūn = − 1

µn
k(z)krn(Sn(z))

∆p

L
. (2.186)
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Figure 2.18: Effective relative permeabilities in the viscous and capillary limits in the
case of flow parallel to a layered heterogeneous porous medium.

This (and a similar expression for the wetting phase) can be rearranged to derive
expressions for effective relative permeabilities in the capillary limit, which are

kCrn(S̄n) =
µnūnL

−∆pk̄
=
kkrn
k̄

,

kCrw(S̄n) =
µwūwL

−∆pk̄
=
kkrw
k̄

. (2.187)

Hence, we now have sufficient information to describe the bulk flow through a hetero-
geneous aquifer in the limit of small and large Γ without having do to any intensive
computations. These two cases are the two end members (extreme scenarios) and
therefore provide upper and lower bounds for the general case of Γ = O(1).

Due to the form of (2.184), capillary forces act to push non-wetting phase into
regions of smaller pe, which corresponds with larger pore space and larger values of
k, φ. Hence, non-wetting phase is preferentially rearranged into less resistive channels
of flow, enhancing ūn and reducing ūw. In this way, the effective relative permeabilities
usually satisfy

kCrn > kVrn, kCrw < kVrw. (2.188)

In other words, heterogeneities act to enhance the flow of non-wetting phase and
decrease the flow of wetting phase, which is in very good agreement with observations.
An example of these effective properties is illustrated in figure 2.18. We will explore
an example of such flows in Problem Sheet 3.
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2.4.3 Heterogeneous Buckley-Leverett flows

The Buckley-Leverett flow studied earlier can be easily extended to account for het-
erogeneous systems. Whilst the flow formulation is in one-dimension, we can account
for a vertical heterogeneity (i.e. sedimentary layers in two or three dimensions) by us-
ing effective properties for the relative permeabilities, either in the viscous or capillary
limits. Hence, this models the vertical rearrangement of saturation due to capillary
forces in a very long-thin aquifer in which the flow is predominantly one-dimensional.

As such, we can write down a dimensionless advection equation for the saturation
of non-wetting phase

St + V (S)Sx = 0, (2.189)

where the advection speed is given by either the capillary or viscous limits

V =

{
V V (S), using kVrn, k

V
rw : Γ� 1,

V C(S), using kCrn, k
C
rw : Γ� 1.

(2.190)

It should be noted that both the capillary and viscous limits have different shock
saturation values Ss and consequently different advection speeds. Typically, since the
flow of non-wetting phase is enhanced by heterogeneities, the capillary limit speed is
usually faster than the viscous limit speed, such that V C(Ss) > V V (Ss).

This class of approaches is sometimes referred to as ‘upscaling’, since the effects
of the small-scale heterogeneities are incorporated into a model which describes the
large-scale flow. Upscaling is useful in many environmental applications since it is
much more computationally efficient than direct simulation, and also allows for en-
semble predictions or best/worst case scenario estimates. Time-dependent simulation
of a three-dimensional reservoir incorporating heterogeneities from the mm scale up
to the km scale is not tractable. This is not only a result of computational limitations,
but also due to a lack of existing heterogeneity data. For example, seismic surveys
usually have a resolution of around ∼1 m.

2.4.4 Incorporating gravity

Let’s consider the two-phase analogy of a gravity current spreading beneath an im-
permeable cap rock. For example, in the context of carbon sequestration, CO2 is the
non-wetting phase and salty brine is the wetting phase. As before, we assume that
the flow has a long-thin aspect ratio. As a result, both the non-wetting and wetting
phases satisfy a hydrostatic balance at leading order, such that

∂pn
∂z

= ρng,

∂pw
∂z

= ρwg. (2.191)

This indicates that the capillary pressure satisfies

∂pc
∂z

= −∆ρg. (2.192)
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Hence, in the absence of heterogeneity we have

pc = pe −∆ρg(z − h), (2.193)

where z = h(x, t) is the gravity current thickness (measured downwards from the cap
rock at z = 0). Hence, the capillary pressure can be inverted for the saturation of
non-wetting phase,

Sn = 1− (1 + Bo(h/L− z/L))−λ , (2.194)

where Bo = ∆ρgL/pe is the Bond number. The above expression is known as the
‘gravity-capillary’ balance. Hence, given a thickness h and Bond number, we can
now calculate the vertical saturation distribution. In particular, Sn increases verti-
cally, indicating that the non-wetting phase (which is assumed to be lighter than the
wetting phase) preferentially rises towards the cap rock. The larger the effects of
surface tension (i.e. small Bo) the more the capillary pressure acts to spread out the
distribution of non-wetting phase.

2.5 Consolidation

Consolidation refers to the ability of a granular porous medium such as a soil to
compact under its own weight, or by the imposition of an overburden pressure. The
grains of the medium rearrange themselves under the pressure, thus reducing the
porosity and in the process pore fluid is expelled. Since the porosity is no longer
constant, we have to postulate a relation between the porosity φ and the pore pressure
p. In practice, it is found that soils, when compressed, obey a (non-reversible) relation
between φ and the effective pressure

peff = P − p, (2.195)

where P is the overburden pressure.
The concept of effective pressure, or more generally effective stress, is an extremely

important one. The idea is that the total imposed pressure (e. g., the overburden
pressure due to the weight of the rock or soil) is borne by both the pore fluid and the
porous medium. The pore fluid is typically at a lower pressure than the overburden,
and the extra stress (the effective stress) is that which is applied through grain to
grain contacts. Thus the effective pressure is that which is transmitted through the
porous medium, and it is in consequence of this that the medium responds to the
effective stress; in particular, the characteristic relation between φ and peff represents
the nonlinear pseudo-elastic effect of compression.

The dependence of the effective pressure on porosity is non-trivial and involves
hysteresis, as indicated in figure 2.19. Specifically, a soil follows the normal consol-
idation line providing consolidation is occurring, i.e ṗeff > 0. However, if at some
point the effective pressure is reduced, only a partial recovery of φ takes place. When
peff is increased again, φ more or less retraces its (overconsolidated) path to the nor-
mal consolidation line, and then resumes its normal consolidation path. Here we will
ignore effects of hysteresis, as in (3.147).
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When modelling groundwater flow in a consolidating medium, we must take ac-
count also of deformation of the medium itself. In turn, this requires prescription of
a constitutive rheology for the deformable matrix. This is often a complex matter,
but luckily in one dimension, the issue does not arise, and a one-dimensional model
is often what is of practical interest. We take z to point vertically upwards, and let
v and w be the linear (or phase-averaged) velocities of liquid and solid, respectively.
Then φv and (1 − φ)w are the respective fluxes, and conservation of mass of each
phase requires

∂φ

∂t
+
∂(φv)

∂z
= 0,

−∂φ
∂t

+
∂

∂z
{(1− φ)w} = 0; (2.196)

Darcy’s law is then

φ(v − w) = −k
µ

[
∂p

∂z
+ ρlg

]
, (2.197)

while the overburden pressure satisfies

∂P

∂z
= −[ρs(1− φ) + ρlφ]g, P = P0 on z = h; (2.198)

here z = h represents the ground surface and P0 is the applied load. The effective
pressure is just −peff = P − p.

Note that by adding the two mass conservation equations and integrating, we have

φv + (1− φ)w = q(t), (2.199)

φ

1 − φ

   consolidation

      line

normal

e
 p

10
log

ff

Figure 2.19: Form of the relationship between porosity and effective pressure. A
hysteretic decompression-reconsolidation loop is indicated. In soil mechanics this
relationship is often written in terms of the void ratio e = φ/(1− φ), and specifically
e = e0 − Cc log10 peff , where Cc is the compression index.
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which can be determined from the boundary conditions. In particular, if we assume
an impermeable basement where v = w = 0, then q = 0 and

w = − φv

1− φ
, φ(v − w) = −w. (2.200)

We use the definition of the effective pressure in (2.195), together with (2.198)
and (2.199), to derive the equation

∂φ

∂t
= − ∂

∂z

[
k

µ
(1− φ)

{
∂peff

∂z
+ ∆ρ(1− φ)g

}]
, (2.201)

where ∆ρ = ρs − ρl, and since peff(φ) is a monotonically decreasing function, this
brings us back to the Richards equation (2.125). Specifically, we can write (2.201) in
the form

φt + Vz = [Dφz]z , (2.202)

where

V (φ) =
k(φ)∆ρg

µ
(1− φ)2, D = −k(φ)

µ
(1− φ)p′eff(φ), (2.203)

and this can be compared to (2.125).
A commonly used expression in soil mechanics for the relationship between effec-

tive pressure and porosity is a logarithmic dependence of the void ratio φ/(1− φ) on
peff , as mentioned in figure 2.19. The normal consolidation line for a soil is that part
of the yield surface on which the shear stress vanishes, and we may take

φ

1− φ
= e0 − Cc log10

(
peff

p0
eff

)
; (2.204)

the quantity Cc is called the compression index. Note that this prescription will not
be valid at small effective pressure, since as peff → 0, the porosity will tend to its
value at loose packing, which we denote as φ0. This gives peff as a monotonically
decreasing function of φ for 0 < φ < 1, and in particular,

p′eff(φ) = − 0.43 peff

Cc(1− φ)2
, (2.205)

where 0.43 ≈ ln 10. In this case,

D =
0.43 k(φ)peff

µCc(1− φ)
. (2.206)

The diffusion coefficient D is sometimes written as cv, and is known as the coefficient
of consolidation. If we use values µ = 10−3 Pa s, peff = 104 Pa, k = 10−14 m2 (for silt),
Cc = 0.1 and φ = 0.4, then D ∼ 10−6 m2 s−1. Of course this value depends strongly

on the permeability, or equivalently the hydraulic conductivity K =
kρg

µ
. For the silt

permeability, K ∼ 3 m y−1, whereas actual soils (with organic matter, worm burrows,
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etc.), typically have hydraulic conductivities ∼ 1 m d−1, which is about a hundred
times larger, and would give a corresponding diffusion coefficient of D ∼ 10−4 m2 s−1.

We suppose these equations apply in a vertical column 0 < z < h, for which
suitable boundary conditions are (with an impermeable basement and no surface
load)

v = w = 0 at z = 0,

φ = φ0, ḣ = w at z = h, (2.207)

and with an initial condition for φ. Note that by comparing (2.196)1 and (2.202), and
using (2.200),

w = −(V −Dφz)
1− φ

. (2.208)

Therefore the boundary conditions in (2.207) collapse to

V −Dφz = 0 at z = 0,

φ = φ0, ḣ = −(V −Dφz)
1− φ

at z = h. (2.209)

In the steady state, it follows that V −Dφz = 0, and thus∫ φ0

φ

D(φ) dφ

V (φ)
= h− z. (2.210)

If Cc is small (and typical values are in the range Cc ≤ 0.1) then φ varies little, and
we can suppose V and D are approximately constant. In this case, the consolidation
equation takes the simpler form

φt = Dφzz, (2.211)

together with (2.209), and the steady solution (2.210) is just

φ = φ0 −
V

D
(h0 − z). (2.212)

We now consider settlement of the ground after imposition of a surface load pres-
sure ∆P . We suppose the final steady state has depth h∞, so that the final steady
solution (with D and V being constant) is

φ∗ = φ∞ −
V

D
(h∞ − z), (2.213)

and φ∞ = φ(p∞eff), where p∞eff is the applied surface effective pressure. With no initial
surface load, p∞eff = ∆P , the prescribed surface load, and so (for small changes in φ)

φ∞ ≈ φ0 − |φ′(0)|∆P. (2.214)
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We perturb the system by writing

φ = φ∗(z) + Φ, h = h∞ + η, (2.215)

and then linearising the equation and boundary conditions. This leads to

Φt = DΦzz,

Φz = 0 on z = 0,

V

D
η + Φ = 0, ηt =

DΦz

1− φ∞
on z = h∞. (2.216)

Eliminating η from the surface boundary condition gives

Φt +
V Φz

1− φ∞
= 0 on z = h∞. (2.217)

Subtracting the initial condition from the final condition, we find

Φ = φ0 − φ∞ −
V

D
(h0 − h∞), η = h0 − h∞ at t = 0. (2.218)

At this point we realise that the initial depth h is unconstrained. It is in fact
determined by the volume of solids in the domain (which, unlike the volume of water
which is squeezed out the top, is conserved). Thus we require∫ h∞+η

0

[1− (φ∗ + Φ)] dz =

∫ h∞

0

(1− φ∗) dz, (2.219)

and linearising this leads to the normalising condition∫ h∞

0

Φ dz = (1− φ∞)η. (2.220)

This is consistent with (2.216) (as it must be), and it provides the necessary relation
between h0 and h∞, which is, using (2.214),

h0 − h∞
h∞

=
|φ′(0)|∆P

1− φ∞ +
V h∞
D

, (2.221)

and this is the (relative) settlement due to a given load.
The other quantity of interest is the settlement time. The normal mode solutions

of (2.216) are

Φ = e−Ds
2t cos sz, (2.222)

where

tanκ = − κ

Pe
, κ = sh∞, P e =

h∞V

D(1− φ∞)
; (2.223)
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here Pe is a suitable Péclet number for the flow, and s is the wavenumber (normally
one uses k, but that is already taken for the permeability). It is graphically straight-
forward to see that there is an infinite number of values of κ1, κ2, . . . (positive, without
loss of generality) satisfying (2.223), with (n − 1

2
)π < κn < nπ. The settlement or

consolidation time scale tc is essentially determined by κ1, and is thus

tc ∼
h2
∞

Dκ2
1

, (2.224)

where κ1 lies between 1
2
π and π. It depends primarily on the permeability k. If we

use (2.206), and take k ∼ 10−14 m2 (silt), Cc = 0.1, φ = 0.3, µ = 10−3 Pa s, P0 = 105

Pa (a small house), then D ∼ 0.6 × 10−5 m2 s−1. Similarly, with ∆ρ = 2 × 103 kg
m−3, we find V ∼ 10−7 m s−1, and so, if we take h∞ = 10 m, the Péclet number is
Pe ∼ 0.23; not extremely small, but small enough to use the approximation of small
Pe in (2.223). When Pe is small, κ ≈ 1

2
π, and so 14.82

tc ∼
4h2
∞

π2D
, (2.225)

which gives tc ∼ 3 months.

Exercises

2.1 Show that for a porous medium idealised as a cubical network of tubes, the
permeability is given (approximately) by k = d2

pφ
2/72π, where dp is the grain

size. How is the result modified if the pore space is taken to consist of pla-
nar sheets between identical cubical blocks? (The volume flux per unit width
between two parallel plates a distance h apart is −h3p′/12µ, where p′ is the
pressure gradient.)

2.2 Groundwater flows between an impermeable basement at z = hb(x, y, t) and
a phreatic surface at z = zp(x, y, t). Write down the equations governing the
flow, and by using the Dupuit approximation, show that the saturated depth h
satisfies

φht =
kρg

µ
∇.[h∇zp],

where ∇ = (∂/∂x, ∂/∂y). Deduce that a suitable time scale for flows in an
aquifer of typical depth h0 and extent l is tgw = φµl2/kρgh0.

I live a kilometer from the river, on top of a layer of sediments 100 m thick
(below which is impermeable basement). What sort of sediments would those
need to be if the river responds to rainfall at my house within a day; within a
year?

2.3 A two-dimensional earth dam with vertical sides at x = 0 and x = l has a
reservoir on one side (x < 0) where the water depth is h0, and horizontal dry
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land on the other side, in x > l. The dam is underlain by an impermeable
basement at z = 0.

Write down the equations describing the saturated groundwater flow, and show
that they can be written in the dimensionless form

u = −px, ε2w = −(pz + 1),

pzz + ε2pxx = 0,

and define the parameter ε. Write down suitable boundary conditions on the
impermeable basement, and on the phreatic surface z = h(x, t).

Assuming ε� 1, derive the Dupuit-Forchheimer approximation for h,

ht = (hhx)x in 0 < x < 1.

Show that a suitable boundary condition for h at x = 0 (the dam end) is

h = 1 at x = 0.

Now define the quantity

U =

∫ h

0

p dz,

and show that the horizontal flux

q =

∫ h

0

u dz = −∂U
∂x

.

Hence show that the conditions of hydrostatic pressure at x = 0 and constant
(atmospheric) pressure at x = 1 (the seepage face) imply that∫ 1

0

q dx = 1
2
.

Deduce that, if the Dupuit approximation for the flux is valid all the way to
the toe of the dam at x = 1, then h = 0 at x = 1, and show that in the steady
state, the (dimensional) discharge at the seepage face is

qD =
kρgh2

0

2µl
.

Supposing the above description of the solution away from the toe to be valid,
show that a possible boundary layer structure near x = 1 can be described by
writing

x = 1− ε2X, h = εH, z = εZ, p = εP,

and write down the resulting leading order boundary value problem for P .
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2.4 I get my water supply from a well in my garden. The well is of depth h0 (relative
to the height of the water table a large distance away) and radius r0. Show that
the Dupuit approximation for the water table height h is

φ
∂h

∂t
=
kρg

µ

1

r

∂

∂r

(
rh
∂h

∂r

)
.

If my well is supplied from a reservoir at r = l, where h = h0, and I withdraw
a constant water flux q0, find a steady solution for h, and deduce that my well
will run dry if

q0 >
πkρgh2

0

µ ln[l/r0]
.

Use plausible values to estimate the maximum yield (gallons per day) I can use
if my well is drilled through sand, silt or clay, respectively.

2.5 A volume V of effluent is released into the ground at a point (r = 0) at time t.
Use the Dupuit approximation to motivate the model

φ
∂h

∂t
=
kρg

µ

1

r

∂

∂r

(
rh
∂h

∂r

)
,

h = h0 at t = 0, r > 0,∫ ∞
0

r(h− h0)dr = V/2π, t > 0,

where h0 is the initial height of the water table above an impermeable basement.
Find suitable similarity solutions in the two cases (i) h0 = 0 (ii) h0 > 0, h−h0 �
h0, and comment on the differences you find.

2.6 Rain falls steadily at a rate q (volume per unit area per unit time) on a soil of
saturated hydraulic conductivity K0 (= k0ρwg/µ, where k0 is the saturated per-
meability). By plotting the relative permeability kr and suction characteristic
σψ/d as functions of S (assuming a residual liquid saturation S0), show that a
reasonable form to choose for kr(ψ) is kr = e−cψ. If the water table is at depth
h, show that, in a steady state, ψ is given as a function of the dimensionless
depth z∗ = z/zc, where zc = σ/ρwgd (σ is the surface tension, d the grain size)
by

h∗ − z∗ = 1
2
ψ − 1

c
ln

[
sinh{1

2
(ln 1

q∗
− cψ)}

sinh{1
2

ln 1
q∗
}

]
,

where h∗ = h/zc, providing q∗ = q/K0 < 1. Deduce that if h � zc, then
ψ ≈ 1

c
ln 1

q∗
near the surface. What happens if q > K0?

2.7 Derive the Richards equation

φ
∂S

∂t
= − ∂

∂z

[
k0

µ
kr(S)

{
∂pc
∂z

+ ρwg

}]
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for one-dimensional infiltration of water into a dry soil, explaining the meaning
of the terms, and giving suitable boundary conditions when the surface flux q
is prescribed. Show that if the surface flux is large compared with k0ρwg/µ,
where k0 is the saturated permeability, then the Richards equation can be ap-
proximated, in suitable non-dimensional form, by a nonlinear diffusion equation
of the form

∂S

∂t
=

∂

∂z

[
D
∂S

∂z

]
.

Show that, if D = Sm, a similarity solution exists in the form

S = tαF (η), η = z/tβ,

where α =
1

m+ 2
, β =

m+ 1

m+ 2
, and F satisfies

(FmF ′)′ = αF − βηF ′, FmF ′ = −1 at η = 0, F → 0 as η →∞.

Deduce that

FmF ′ = −(α + β)

∫ η0

η

Fdη − βηF,

where η0 (which may be ∞) is where F first reaches zero. Deduce that F ′ < 0,
and hence that η0 must be finite, and is determined by∫ η0

0

F dη =
1

α + β
.

What happens for t > F (0)−1/α?

2.8 Write down the equations describing one-dimensional consolidation of wet sedi-
ments in terms of the variables φ, v, w, p, peff , these being the porosity, solid and
liquid (linear) velocities, and the pore and effective pressures. Neglect the effect
of gravity.

Saturated sediments of depth h lie on a rigid but permeable (to water) basement,
through which a water flux W is removed. Show that

w =
k

µ

∂p

∂z
−W,

and deduce that φ satisfies the equation

∂φ

∂t
=

∂

∂z

[
(1− φ)

{
k

µ

∂p

∂z
−W

}]
.

If the sediments are overlain by water, so that p = constant (take p = 0) at
z = h, and if φ = φ0 + p/K, where the compressibility K is large (so φ ≈ φ0),
show that a suitable reduction of the model is

∂p

∂t
−W ∂p

∂z
= c

∂2p

∂z2
,
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where c = K(1− φ0)k/µ, and p = 0 on z = h, pz = µW/k. Non-dimensionalise
the model using the length scale h, time scale h2/c, and pressure scale µWh/k.
Hence describe the solution if the parameter ε = µWh/k is small, and find the
rate of surface subsidence. What has this to do with Venice?

2.9 Write down a model for vertical flow of two immiscible fluids in a porous
medium. Deduce that the saturation S of the wetting phase satisfies the equa-
tion

φ
∂S

∂t
+

∂

∂z

[
Meff

{
q

Mnw

+ g∆ρ

}]
= − ∂

∂z

[
Meff

∂pc
∂z

]
,

where z is a coordinate pointing downwards,

pc = pnw − pw, ∆ρ = ρw − ρnw, M−1
eff = (M−1

w +M−1
nw),

q is the total downward flux, and the suffixes w and nw refer to the wetting and
non-wetting fluid respectively. Define the phase mobilities Mi. Give a criterion
on the capillary suction pc which allows the Buckley-Leverett approximation to
be made, and show that for q = 0 and µw � µnw, waves typically propagate
downwards and form shocks. What happens if q 6= 0? Is the Buckley-Leverett
approximation realistic — e.g. for air and water in soil? (Assume pc ∼ 2γ/rp,
where γ = 70 mN m−1, and rp is the pore radius: for clay, silt and sand, take
rp = 1 µ, 10 µ, 100 µ, respectively.)

2.10 A model for snow melt run-off is given by the following equations:

u =
k

µ

[
∂pc
∂z

+ ρlg

]
,

k = k0S
3,

φ
∂S

∂t
+
∂u

∂z
= 0,

pc = p0

(
1

S
− S

)
.

Explain the meaning of the terms in these equations, and describe the assump-
tions of the model.

The intrinsic permeability k0 is given by

k0 = 0.077 d2 exp[−7.8 ρs/ρl],

where ρs and ρl are snow and water densities, and d is grain size. Take d = 1
mm, ρs = 300 kg m−3, ρl = 103 kg m−3, p0 = 1 kPa, φ = 0.4, µ = 1.8 × 10−3

Pa s, g = 10 m s−2, and derive a non-dimensional model for melting of a one
metre thick snow pack at a rate (i.e. u at the top surface z = 0) of 10−6 m s−1.
Determine whether capillary effects are small; describe the nature of the model
equation, and find an approximate solution for the melting of an initially dry
snowpack. What is the (meltwater flux) run-off curve?
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2.11 Consider the following model, which represents the release of a unit quantity of
groundwater at t = 0 in an aquifer −∞ < x < ∞, when the Dupuit approxi-
mation is used:

ht = (hhx)x,

h = 0 at t = 0, x 6= 0,∫ ∞
−∞

h dx = 1

(i. e., h = δ(x) at t = 0). Show that a similarity solution to this problem exists
in the form

h = t−1/3g(ξ), ξ = x/t1/3,

and find the equation and boundary conditions satisfied by g. Show that the
water body spreads at a finite rate, and calculate what this is.

Formulate the equivalent problem in three dimensions, and write down the
equation satisfied by the similarity form of the solution, assuming cylindrical
symmetry. Does this solution have the same properties as the one-dimensional
solution?
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Chapter 3

Convection

Convection is the fluid motion induced by buoyancy; buoyancy is the property of a
fluid whereby its density depends on external properties. The most common form of
convection is thermal convection, which occurs due to the dependence of density on
temperature: warm fluid is light, and therefore rises. Everyday examples of this are
the circulation induced by a convector heater, or the motion which can be seen in a
saucepan of oil when it is heated. (In the latter case, one can see convection rolls in
the fluid, regular but time-dependent.) Another common form of convection is com-
positional convection, which is induced by density changes dependent on composition.
An example of this occurs during the formation of sea ice in the polar regions. As
salty sea water freezes, it rejects the salt (the ice is almost pure water substance),
and the resulting salty water is denser than the sea water from which it forms, and
thus induces a convective motion below the ice. Below, we discuss three geophysical
examples from convection, but convection is everywhere: it drives the oceanic circula-
tion, it drives the atmospheric circulation, it causes thunderstorms, it occurs in glass
manufacture, in a settling pint of Guinness, in back boilers, in solar panels. And, it
has formed the thematic core of the subject of geophysical fluid dynamics for almost
a century.

3.1 Mantle convection

Most people have heard of continental drift, the process whereby the Earth’s conti-
nents drift apart relative to each other. The Atlantic Ocean is widening at the rate of
several centimetres a year, the crashing of India into Asia over the last 50 My (fifty
million years) has caused the continuing uplift of the Himalayas, Scotland used to
be joined to Newfoundland. The continents ride, like rafts of debris, on the tectonic
plates of the Earth, which separate at mid-ocean ridges and converge at subduction
zones. The theory of plate tectonics, which originated with the work of Wegener and
Holmes in the early part of the twentieth century, and which was finally accepted by
geophysicists in the ‘plate tectonics revolution’ of the 1960’s, describes the surface
of the Earth as being split up into some thirteen major tectonic plates: see figure
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Figure 3.1: The tectonic plates of the Earth.

3.1. These plates move relative to each other across the surface, and this motion
is the surface manifestation of a convective motion in the Earth’s mantle, which is
the part of the Earth from the surface to a depth of about 3,000 kilometres, and
which consists of an assemblage of polycrystalline silicate rocks. Upwelling occurs at
mid-ocean ridges, for example the mid-Atlantic ridge which passes through Iceland,
and the East Pacific Rise off the coast of South America, which passes through the
Galapagos Islands. The plates sink into the mantle at subduction zones, which ad-
join continental boundaries, and which are associated with the presence of oceanic
trenches.

The plates are so called because they are conceived of as moving quasi-rigidly.
They are in fact the cold upper thermal boundary layers of the convective motion, in-

Figure 3.2: A cartoon of mantle convection. We see plumes, mid-ocean ridges, sub-
ducting slabs.
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dicated schematically in figure 3.2, and are plate-like because the strong temperature
dependence of mantle viscosity renders these relatively cold rocks extremely viscous.
One may wonder how the mantle moves at all, consisting as it does of mostly solid
polycrystalline rocks. In fact, solids will deform just as fluids do when subjected to
stress. The deformation is enabled by the migration of dislocations within the crys-
talline lattice of the solid grains of the rock. The effective viscosity of the Earth’s
mantle is a whopping 1021 Pa s; this is about eight orders of magnituse greater than
the viscosity of ice, and twenty-four orders greater than the viscosity of water.

The reason that the mantle convects is that the Earth is cooling. The primordial
heat of formation has gradually been lost over the Earth’s history, but the central
core of the planet is still very hot; some six thousand degrees Celsius at the centre of
the Earth. This heat from the core is instrumental in heating the mantle from below,
and driving the convective flow. Radioactive heating also contributes to an extent
which is not certain, but which is thought to be significant.

3.2 The Earth’s core

Part of the heat which drives mantle convection is derived from cooling the Earth’s
core. The core is the part of the Earth which lies between its centre and the mantle.
Like the mantle, it is also some three thousand kilometres deep, and consists of a
molten outer core of iron, alloyed with some lighter element, usually thought to be
sulphur or oxygen, in a concentration of some 10%. The inner core is solid (pure)
iron, of radius 1,000 km. It is generally thought that the core was initially molten
throughout, and that the inner core has gradually solidified from the outer core over
the course of geological time. It is the consequent release of latent heat which, at
least partly, powers mantle convection.

One may wonder how the outer core can be liquid, and the inner core solid, if the
inner core is hotter (as it must be). The reason for this is that the solidification tem-
perature (actually the liquidus temperature, see below) depends on pressure, through
the Clapeyron effect. This is the effect whereby a pressure cooker works: the boiling
temperature increases with pressure, and similarly, the solidification temperature of
the outer core iron alloy increases with pressure, and thus also depth. Thus, the inner
core can be below the solidification temperature because of the greater pressure there.

The convection in the outer core is partly due to the dependence of density on tem-
perature, but the primary dependence is, as often the case when composition varies,
due to the dependence of density on the concentration of sulphur (or oxygen). In order
to understand how the solidification of the inner core leads to convection, we need to
understand the general thermodynamic way in which melting and solidification occur
in multi-component materials. This is illustrated in figure 3.3, which indicates how
the solidification temperatures vary with composition in a two-component melt. At a
given temperature, there are two curves which describe the concentrations of the solid
and liquid, when these are in thermodynamic equilibrium with each other. These two
curves are called the solidus and liquidus, respectively. Often there are two sets of
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Figure 3.3: Typical phase diagram for a two-component alloy with a eutectic point.
When the liquid reaches the liquidus (L), the resulting solid has the concentration of
the solidus (S). When the liquid reaches the eutectic point, two solids, iron-rich and
sulphur-rich respectively, will be formed.

solidus and liquidus curves, and they meet at a point called the eutectic point. The
way in which a liquid alloy solidifies is then indicated by the red line in figure 3.3. In
the outer core, the composition is relatively constant, but the temperature decreases
(relative to the liquidus) from the core-mantle boundary (CMB) to the inner core
boundary (ICB), where solidification occurs. (The phase diagram is indicated as if
at constant pressure; in reality, the curves will also vary with pressure.)

At this temperature, the solid which crystallises has the solidus concentration,
which is richer in iron than the liquid, and so as the temperature cools during freezing,
the liquid concentration of sulphur or oxygen increases because of its rejection at the
freezing interface. It is this source of buoyancy which provides the driving force for
compositional convection.

Actually, it is typically the case that when alloys solidify, they do not form a solid
with a clear interface. Rather, such a situation is typically morphologically unstable,
and a dendritic mush consisting of a solid–liquid mixture is formed, as shown in figure
3.4. The convection caused by the release of light fluid now occurs throughout the
mush, and leads to the formation of narrow ‘chimneys’, from which plumes emerge.

In the Earth’s core, it is this convection which forms the magnetic field. Convec-
tion in an electrically conducting fluid causes a magnetic field to grow, providing the
magnetic diffusivity is sufficiently small, through the action of the Lorentz force. The
study of such instabilities is a central part of the subject of magnetohydrodynamics.
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Figure 3.4: A dendritic mush in the solidification of ammonium chloride in the lab-
oratory. Convection occurs within the mush, leading to the formation of ‘chimneys’
which act as sources of plumes in the residual melt. Photo courtesy of Grae Worster.

3.3 Magma chambers

Our final example of convection arises in the formation and cooling of magma cham-
bers. When mantle rock upwells, either at mid-ocean ridges, or in isolated thermal
plumes such as that below Hawaii, the slight excess temperature causes the rock to
partially melt. It is thought that the melt fraction can then ascend through the
residual porous matrix, forming rivulets and channels which allow the escape of the
magma through the lithosphere to the crust.1 As the magma ascends into the crust,
it can typically encounter unconformities, where the rock types alter, and where the
density may be less than that of the magma. In that case, the magma will stop rising,
but will spread laterally, simultaneously uplifting the overlying strata. Thus forms
the laccolith, a magmatic intrusion, and over the course of time such intrusions, or
magma chambers, will solidify, forming huge cauldrons of rock which may later be
exposed at the Earth’s surface.

Convection undoubtedly occurs in such chambers, which may be tens of kilome-
tres in extent. The hot magma is continuously chilled at the roof and sides of the
chamber, and this leads to convective currents continually draining towards the floor
of the chamber. There they will accumulate, leading to a cold, crystal-rich layer ly-

1The lithosphere is the cold surface boundary layer of the convecting mantle, of depth some 100
km in the oceanic mantle, somewhat greater beneath continents; the crust is a relatively thin layer
of rocks near the surface, formed through partial melting of the mantle and the resulting volcanism.
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Figure 3.5: Graded layering in the Skaergaard intrusion. Photograph courtesy of
Kurt Hollocher.

ing stagnant below the convecting upper portion. This is essentially the filling box
mechanism which is discussed further below.

Magmas are multi-component alloys, and their convective solidification can lead to
various exotic phenomena. The phase diagram of the type in figure 3.3 causes chemical
differentiation on the large scale (in metal alloy castings this is called macrosegrega-
tion). For example, in an olivine–plagioclase magma, the heavy olivine will crystallise
out first, and the crystals may settle to the base of the chamber. The residual liquid
is then plagioclase-rich and lighter. So the end result would be a chamber having two
distinct layers. Successive injections of magma may then lead to a sequence of such
layers, as is seen in the Scottish island of Rum, and this has been suggested as an
explanation for these particular layers.

Other magma chambers show layering at a much finer scale, and the origin of these
layers is a mystery. An example is shown in figure 3.5. The layers are reminiscent
of double-diffusive layering, which we discuss in section 3.6.2, but efforts to build a
theory round this idea, or indeed any other, have so far not met with success.

3.4 Rayleigh–Bénard convection

The simplest model of convection is the classical Rayleigh-Bénard model in which
a layer of fluid is heated from below, by application of a prescribed temperature
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Figure 3.6: Geometry of a convection cell.

difference across the layer. Depending on the nature of the boundaries, one may have
a no slip condition or a no shear stress condition applied at the bounding surfaces.
For the case of mantle convection, one conceives of both the oceans (or atmosphere)
and the underlying fluid outer core as exerting no stress on the extremely viscous
mantle, so that no stress conditions are appropriate, and in fact it turns out that this
is the simplest case to consider. The geometry of the flow we consider is shown in
figure 3.6. It is convenient to assume lateral boundaries, although in a wide layer,
these simply represent the convection cell walls, and can be an arbitrary distance
apart.

The equations describing the flow are the Navier-Stokes equations, allied with the
energy equation and an equation of state, and can be written in the form

ρt + ∇. (ρu) = 0,

ρ[ut + (u .∇)u] = −∇p− ρgk + µ∇2u,

ρcp[Tt + u .∇T ] = k∇2T,

ρ = ρ0[1− α(T − T0)]; (3.1)

in these equations, ρ is the density, u is the velocity, p is the pressure, g is the acceler-
ation due to gravity, k is the unit upwards vector, µ is viscosity, cp is the specific heat,
T is temperature, k is thermal conductivity, ρ0 is the density at the reference temper-
ature T0 at the surface of the fluid layer, and α is the thermal expansion coefficient.
The boundary conditions for the flow are indicated in figure 3.6, and correspond to
prescribed temperature at top and bottom, no flow through the boundaries, and no
shear stress at the boundaries. The lateral boundaries represent stress free ‘walls’,
but as mentioned above, these simply indicate the boundaries of the convection cells
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(across which there is no heat transport, hence the no flux condition for temperature).
To proceed, we non-dimensionalise the variables as follows. We use the convective

time scale, and a thermally related velocity scale, and use the depth of the box d as
the length scale:

u ∼ κ

d
, κ =

k

ρ0cp
, t ∼ d2

κ
, x ∼ d,

p− [p0 + ρ0g(d− z)] ∼ µκ

d2
, T − T0 ∼ ∆T. (3.2)

Here p0 is the (prescribed) pressure at the surface, which we take as constant. We
would also scale ρ ∼ ρ0, but in the scaled equations below, the density has been
algebraically eliminated. The scaled equations take the form

−BTt + ∇. [(1−BT )u] = 0,

1

Pr
[1−BT ][ut + (u .∇)u] = −∇p+RaTk +∇2u,

(1−BT )(Tt + u .∇T ) = ∇2T, (3.3)

and the dimensionless parameters are defined as

B = α∆T, Pr =
µ

ρ0κ
, Ra =

αρ0∆Tgd3

µκ
; (3.4)

the parameters Ra and Pr are known as the Rayleigh and Prandtl numbers, respec-
tively. The Prandtl number is a property of the fluid; for air it is 0.7, and for water
it is 7. The Rayleigh number is a measure of the strength of the heating. As we
shall see, convective motion occurs if the Rayleigh number is large enough, and it
becomes vigorous if the Rayleigh number is large. The parameter B might be termed
a Boussinesq number, although this is not common usage.

Suppose we think of values typical for a layer of water in a saucepan. We take
d = 0.1 m, µ = 2 × 10−3 Pa s, ∆T = 100 K, α = 3 × 10−5 K−1, ρ0 = 103 kg m−3,
κ = 0.3 × 10−6 m2 s−1, g = 9.8 m s−2. Then we have Pr ≈ 7, B ≈ 3 × 10−3, and
Ra ≈ 5×107. In this case, we have that B � 1 and Ra� 1. This is typically the case.
We now make the Boussinesq approximation, which says that B � 1, and we ignore
the terms in B in (3.3). In words, we assume that the density is constant, except
in the buoyancy term. The mathematical reason for this exception is that, although
Ra ∝ B (and so Ra→ 0 as B → 0), the actual numerical sizes of the two parameters
are typically very different. The adoption of the Boussinesq approximation leads to
what are called the Boussinesq equations of thermal convection:

∇.u = 0,
1

Pr
[ut + (u .∇)u] = −∇p+∇2u +RaT k̂,

Tt + u.∇T = ∇2T, (3.5)
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with associated boundary conditions for free slip:

T = 1, u.n = τnt = 0 on z = 0,

T = 0, u.n = τnt = 0 on z = 1, (3.6)

where τnt represents the shear stress.

3.4.1 Linear stability

It is convenient to study the problem of the onset of convection in two dimensions
(x, z). In this case we can define a stream function ψ which satisfies

u = −ψz, w = ψx. (3.7)

(The sign is opposite to the usual convention; for ψ > 0 this describes a clockwise
circulation.) We eliminate the pressure by taking the curl of the momentum equation
(3.5)2, which leads, after some algebra (see also question 3.2), to the pair of equations
for ψ and T :

1

Pr

[
∇2ψt + ψx∇2ψz − ψz∇2ψx

]
= RaTx +∇4ψ,

Tt + ψxTz − ψzTx = ∇2T, (3.8)

with the associated boundary conditions

ψ = ∇2ψ = 0 at z = 0, 1,

T = 0 at z = 1,

T = 1 at z = 0. (3.9)

In the absence of motion, u = 0, the steady state temperature profile is linear,

T = 1− z, (3.10)

and the lithostatic pressure is modified by the addition of

p = −Ra
2

(1− z)2. (3.11)

(Even if Ra is large, this represents a small correction to the lithostatic pressure, of
relative size O(B).) The stream function is just

ψ = 0. (3.12)

We define the temperature perturbation θ by

T = 1− z + θ. (3.13)
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This yields

1

Pr

[
∇2ψt + ψx∇2ψz − ψz∇2ψx

]
= ∇4ψ +Ra θx,

θt − ψx + ψxθz − ψzθx = ∇2θ, (3.14)

and the boundary conditions are

ψzz = ψ = θ = 0 on z = 0, 1. (3.15)

In the Earth’s mantle, the Prandtl number is large, and we will now simplify the
algebra by putting Pr =∞. This assumption does not in fact affect the result which
is obtained for the critical Rayleigh number at the onset of convection. The linear
stability of the basic state is determined by neglecting the nonlinear advective terms
in the heat equation. We then seek normal modes of wave number k in the form

ψ = f(z)eσt+ikx,

θ = g(z)eσt+ikx, (3.16)

whence f and g satisfy (putting Pr =∞)

(D2 − k2)2f + ikRa g = 0,

σg − ikf = (D2 − k2)g, (3.17)

where D = d/dz, and
f = f ′′ = g = 0 on z = 0, 1. (3.18)

By inspection, solutions are

f = sinmπz, g = b sinmπz, (3.19)

(n = 1, 2, ...) providing

σ =
k2Ra

(m2π2 + k2)2
− (m2π2 + k2), (3.20)

which determines the growth rate for the m-th mode of wave number k.
Since σ is real, instability is characterised by a positive value of σ. We can see

that σ decreases as m increases; therefore the value m = 1 gives the most unstable
value of σ. Also, σ is negative for k → 0 or k →∞, and has a single maximum. Since
σ increases with Ra, we see that σ > 0 (for m = 1) if Ra > Rack, where

Rack =
(π2 + k2)3

k2
. (3.21)

In turn, this value of the Rayleigh number depends on the selected wave number
k. Since an arbitrary disturbance will excite all wave numbers, it is the minimum
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value of Rack which determines the absolute threshold for stability. The minimum is
obtained when

k =
π√
2
, (3.22)

and the resulting critical value of the Rayleigh number is

Rac =
27π4

4
≈ 657.5; (3.23)

That is, the steady state is linearly unstable if Ra > Rac.
For other boundary conditions, the solutions are still exponentials, but the coef-

ficients, and hence also the growth rate, must be found numerically. The resultant
critical value of the Rayleigh number is higher for no slip boundary conditions, for
example, (it is about 1707), and in general, thermal convection is initiated at values
of Ra >∼ O(103).

3.5 High Rayleigh number convection

We have seen that convection occurs if the Rayleigh number is larger than O(103) in
general, depending on the precise boundary conditions which apply. In the Earth’s
mantle, suitable values of the constituent parameters are α = 3 × 10−5 K−1, ∆T =
3000 K, ρ0 = 3× 103 kg m−3, g = 10 m s−2, d = 3000 km, η0 = 1021 Pa s, κ0 = 10−6

m2 s−1, and for these values, the Rayleigh number is slightly less than 108. Thus the
Rayleigh number is much larger than the critical value, and as a consequence we can
expect the convection to be vigorous (if velocities of centimetres per year can be said
to be vigorous).

There are various intuitive ways in which we can get a sense of the likely behaviour
of the convective solutions of the Boussinesq equations when Ra� 1. Since Ra mul-
tiplies the buoyancy term, any O(1) lateral temperature gradient will cause enormous
velocities. One might thus expect the flow to organise itself so that either horizontal
temperature gradients are small, or they are confined to thin regions, or both. Since
O(1) temperature variations are enforced by the boundary conditions, the latter is
more plausible, and thus we have the idea of the thermal plume, a localised upwelling
of hot fluid which will be instantly familiar to glider pilots and seabirds.

A mathematically intuitive way of inferring the same behaviour follows from the
expectation that increasing Ra drives increasing velocities; then large Ra should
imply large velocity, and the conduction term in the heat equation u.∇T = ∇2T is
correspondingly small. Since the conduction term represents the highest derivative
in the equation, its neglect would imply a reduction of order, and correspondingly we
would expect thermal boundary layers to exist at the boundaries of the convecting
cell. This is in fact what we will find: a hot thermal boundary layer adjoins the lower
boundary, and a cold one adjoins the upper boundary, and a rapid circulation in the
interior of the cell detaches these as upwelling and downwelling plumes. The general
structure of the resulting flow is shown in figure 3.7. We analyse this structure in the
following sections.
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Figure 3.7: Schematic representation of boundary layer convection

3.5.1 Boundary layer theory

We now consider a convecton cell in a finite box, as shown in figure 3.7, with (di-
mensionless) top and bottom boundaries at z = 0, 1, and side walls at x = 0, a.
The Boussinesq equations describing thermal convection are written in the following
dimensionless form:

∇.u = 0,

1

Pr

du

dt
= −∇p+∇2u +RaTk,

dT

dt
= ∇2T, (3.24)

where u is velocity, p is pressure, T is temperature, and the Rayleigh and Prandtl
numbers are defined in (3.4).

By considering only two-dimensional motion in the (x, z) plane, we define the
stream function ψ by

u = −ψz, w = ψx; (3.25)

the vorticity is then (0, ω, 0), where ω = −∇2ψ. Taking the curl of the momentum
equation, we derive the set

ω = −∇2ψ,

dT

dt
= Tt + ψxTz − ψzTx = ∇2T,

1

Pr

dω

dt
= −RaTx +∇2ω, (3.26)
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which are supplemented by the boundary conditions

ψ, ω = 0 on x = 0, a, z = 0, 1,

T = 1
2

on z = 0,

T = −1
2

on z = 1,

Tx = 0 on x = 0, a; (3.27)

here a is the aspect ratio, and we have chosen free slip (no stress) conditions at
the cell boundaries. Note that we have chosen that we have changed the reference
temperature for the scaled temperature from T0 to T0− 1

2
∆T ; this is purely a matter

of convenience, as the resultant symmetry of the thermal boundary conditions is more
natural.

Rescaling

The idea is that when Ra� 1, thermal boundary layers of thickness δ � 1 will form
at the edges of the flow, and both ψ and ω will be � 1 in the flow. To scale the
equations properly, we rescale the variables as

ψ, ω ∼ 1

δ2
, (3.28)

and define
δ = Ra−1/3. (3.29)

Rescaled, the equations are thus, in the steady state,

ω = −∇2ψ,

ψxTz − ψzTx = δ2∇2T,

∇2ω =
1

δ
Tx +

1

Pr δ2

dω

dt
. (3.30)

In order that the inertia terms be unimportant, we require Pr δ2 � 1, i. e., Pr �
Ra2/3. This assumption is easily satisfied in the Earth’s mantle, but is difficult to
achieve in the laboratory. Nevertheless, we assume this henceforth.

As in any singular perturbation procedure, we now examine the flow region by
region, introducing special rescalings in regions where boundary conditions cannot be
satisfied. Before doing so, note that the statement of the flow problem is symmetric,
and we will therefore take the solution to be symmetric also.

Core flow

The temperature equation is linear in T , and implies T = T0(ψ) + O(δ2). For a flow
with closed streamlines, the Prandtl-Batchelor theorem then implies T0 = constant
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(this follows from the exact integral

∮
C

∂T

∂n
ds = 0, where the integral is around a

streamline, whence T ′0(ψ)

∮
C

∂ψ

∂n
ds = 0); it then follows that T is constant to all

(algebraic) orders of δ, and is in fact zero by the symmetry of the flow. Thus

T = 0,

∇4ψ = 0, (3.31)

and clearly the core flow cannot have ψ = ω = 0 at the boundaries, for non-zero ψ.
In fact, ω jumps at the side-walls where the plume buoyancy generates a non-zero
vorticity. We examine the plumes next.

Plumes

Near x = 0, for example, we rescale the variables as

x = δX, ψ = δΨ, (3.32)

so that to leading order, we have

ΨXX ≈ 0, (3.33)

whence Ψ ≈ wp(z)X, and to match to the core flow, we define wp = ψx |x=0 as the
core velocity at x = 0. Also

ΨXTz −ΨzTX ≈ TXX ,

ωXX ≈ TX , (3.34)

the latter of which integrates to give

ω =

∫ X

0

T dX, ωp =

∫ ∞
0

T dX, (3.35)

where matching requires ωp to be the core vorticity at x = 0. Integration of (3.34)1

gives ∫ ∞
0

T dΨ = C, (3.36)

where C is constant, and it follows that the core flow must satisfy the boundary
condition ωψx = C on x = 0 (and therefore, by symmetry, −C at x = a). In
summary, the effective boundary conditions for the core flow are

ψ = 0 on x = 0, a, z = 0, 1,

ψzz = 0 on z = 0, 1,

ψxψxx = −C on x = 0, ψxψxx = C on x = a, (3.37)
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and the solution can be found as the canonical solution

ψ = C1/2ψ̂(x, z), (3.38)

where ψ̂ must be determined numerically. It thus remains to determine C. This
requires consideration of the thermal boundary layers. Thermal boundary layers are
necessary at the top and bottom because the core temperature (T = 0) does not
satisfy the boundary conditions there.

Thermal boundary layers

Near the top surface, for example, we rescale the variables by writing

z = 1− δZ, ψ = δΨ, ω = δΩ, (3.39)

to find the leading order rescaled equation for Ψ to be simply

ΨZZ ≈ 0, (3.40)

whence Ψ ∼ us(x)Z, and us is the core value of the surface velocity − ψz|z=1. Then
ΩZZ ≈ Tx determines Ω (with Ω = 0 on Z = 0, and Ω ∼ ωs(x)Z as Z → ∞, where
ωs is the core value of the surface vorticity), and T satisfies

ΨZTx −ΨxTZ ≈ TZZ . (3.41)

In Von Mises coordinates x,Ψ, the equation is

Tx ∼
∂

∂Ψ

[
ΨZ

∂T

∂Ψ

]
, (3.42)

and putting ξ =

∫ x

0

us(x) dx, this is just the diffusion equation

Tξ = TΨΨ, (3.43)

with
T = −1

2
on Ψ = 0, T → 0 as Ψ→∞. (3.44)

Note that the same Von Mises transformation (but from (z,X) to (z,Ψ)) can be used
in the plume equation (3.34)1, which can thus also be written in the diffusion equation

form (3.43), where ξ is extended as

∫ z

wp(z) dz.

A quantity of interest is the Nusselt number, defined as

Nu = −
∫ 1

0

∂T

∂z
(x, 1) dx, (3.45)

and from the above, this can be written as

Nu ≈
[∫ ∞

0

−T dΨ

]x=a

x=0

Ra1/3. (3.46)
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Figure 3.8: Boundary conditions for the thermal boundary layer solution of (3.49).

Corner flow

The core flow has a singularity in each corner, where (if r is distance from the corner),
then ψ ∼ r3/2, ω ∼ r−1/2, and (for the corner at x = 0, z = 0, for example) x, z ∼ r.
There must be a region where this singularity is alleviated by the incorporation of the
buoyancy term. This requires ω/r2 ∼ 1/δr, whence r ∼ δ2/3. Rescaling the variables
as indicated (x, z ∼ δ2/3, ψ ∼ δ, ω ∼ δ−1/3) then gives the temperature equation as

ΨXTZ −ΨZTX ∼ δ∇2T, (3.47)

which shows that (since the ψ scale, δ, is the same as that of the boundary layers
adjoining the corner) the boundary layer temperature field is carried through the
corner region without change (to leading order). The corner flow thus has T ≈ T (Ψ),
so that

∇4Ψ + T ′(Ψ)ΨX = 0, (3.48)

with appropriate matching conditions. The main point of this is to show that in
solving the thermal boundary layer equations round the perimeter of the box, the
transverse profile (in Ψ) can be taken to be continuous when the boundary conditions
change at the corners.

Solution strategy

The Von Mises transformation shows that the temperature in the thermal boundary
layers and the thermal plumes satisfies the diffusion equation

Tξ = TΨΨ, (3.49)

where we define

ξ =

∫ s

0

U(s) ds, (3.50)

and we define s to be arc length around the perimeter of the box (starting for example
at the point A in figure 3.7, and U(s) is the (core-determined) tangential velocity
on the perimeter. The temperature equation must be solved in the four regions
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corresponding to the boundary layer at z = 1, plume at x = a, boundary layer at
z = 0, and plume at x = 0, representing the four edges AB, BC, CD, DA indicated
in figure 3.7, with T being continuous at each junction point (corner), and

T → 0 as Ψ→∞,

T = −1
2

on Ψ = 0 [z = 1, top AB],

TΨ = 0 on Ψ = 0 [x = a, right BC],

T = 1
2

on Ψ = 0 [z = 0, bottom CD],

TΨ = 0 on Ψ = 0 [x = 0, left DA], (3.51)

as indicated in figure 3.8.
What of the initial condition? The novelty here is that prescription of an initial

condition is supplanted by the necessary requirement that the solution be periodic in
ξ. Beginning from x = 0, z = 1, we may denote the values of ξ at the corners as ξA
(x = 0, z = 1), ξB (x = a, z = 1), ξC (x = a, z = 0), ξD (x = 0, z = 0). Now from
the definition of ξ, we have ξk = C1/2ξ̂k, where the values of ξ̂k are independent of C
(because they are determined by the canonical solution in (3.38)). Putting

ξ = C1/2ξ̂, Ψ = C1/4Ψ̂, T (ξ,Ψ) = T̂ (ξ̂, Ψ̂), (3.52)

we see that the problem for T̂ (ξ̂, Ψ̂) is independent of C.
Just as for the flow in the core, this problem must be solved numerically for

T̂ (ξ̂, Ψ̂). Assuming this is done, then∫ ∞
0

T (ξ,Ψ) dΨ = C1/4

∫ ∞
0

T̂ (ξ̂, Ψ̂) dΨ̂. (3.53)

If, for example, we evaluate both quantities at ξ = 0 (i. e., the point A), then it follows
from (3.36) that

C =

∫ ∞
0

T (0,Ψ) dΨ = C1/4

∫ ∞
0

T̂ (0, Ψ̂) dΨ̂, (3.54)

and this determines C as

C =

[∫ ∞
0

T̂ (0, Ψ̂) dΨ̂

]4/3

. (3.55)

Given this, the Nusselt number is then given from (3.46) as

Nu ≈ C1/4

[
−
∫ ∞

0

T̂ dΨ̂

]ξ̂A
0

Ra1/3. (3.56)
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No-slip boundary conditions

For no slip boundary conditions, the necessary preliminary rescaling is ψ ∼ 1/δ3,
ω ∼ 1/δ3, where δ = Ra−1/5. Thus the Nusselt number Nu ∼ Ra1/5. There is no
longer parity between the thermal boundary layers and plumes, as the former are
slowed down by the no slip conditions. The rescaled equations are

ω = −∇2ψ,

ψxTz − ψzTx = δ3∇2T,

∇2ω =
1

δ2
Tx. (3.57)

The core flow is as before; the thermal boundary layers have ψ ∼ δ2, ω ∼ 1, z ∼ δ,
so that vorticity balances buoyancy), and all three equations are necessary to solve
for T ; it is still the case that

∫
T dψ is conserved at corners, but now in the plume,

x ∼ δ3/2, ψ ∼ δ3/2, and T ∼ δ1/2. The initial plume profile is effectively a delta
function, and the plume temperature is just the resultant similarity solution. The
remainder of the structure must be computed numerically.

3.6 Double-diffusive convection

Double-diffusive convection refers to the motion which is generated by buoyancy, when
the density depends on two diffusible substances or quantities. The simplest examples
occur when salt solutions are heated; then the two diffusing quantities are heat and
salt. Double-diffusive processes occur in sea water and in lakes, for example. Other
simple examples occur in multi-component fluids containing more than one dissolved
species; convection in magma chambers is one such.

The guiding principle behind double-diffusive convection is still that light fluid
rises, and convection occurs in the normal way (the direct mode) when the steady state
is statically unstable (i. e., when the density increases with height), but confounding
factors arise when, as normally the case, the two substances diffuse at different rates.
Particularly when we are concerned with temperature and salt, the ratio of thermal
to solutal diffusivity is large, and in this case different modes of convection occur
near the statically neutral buoyancy state: the cells can take the form of long thin
‘fingers’, or the onset of convection can be oscillatory. In practice, fingers are seen,
but oscillations are not.

A further variant on Rayleigh-Bénard convection arises in the form of convec-
tive layering. This is a long-lived transient form of convection, in which separately
convecting layers form, and is associated partly with the high diffusivity ratio, and
partly with the usual occurrence of no flux boundary conditions for diffusing chemical
species.

We pose a model for double-diffusive convection based on a density which is related
linearly to temperature T and salt composition c in the form

ρ = ρ0[1− α(T − T0) + β(c− c0)], (3.58)
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where we take α and β to be positive constants; thus the presence of salt makes the
fluid heavier. The equation that then needs to be added to (3.1) is that for convective
diffusion of salt:

ct + u .∇c = D∇2c, (3.59)

where D is the solutal diffusion coefficient, assuming a dilute solution. We adopt the
same scaling of the variables as before, with the extra choice

c− c0 ∼ ∆c, (3.60)

where ∆c is a relevant salinity scale (in our stability analysis, it will be the prescribed
salinity difference between the lower and upper surfaces of the fluid layer). The
Boussinesq form of the scaled equations, based on the assumptions that α∆T � 1
and β∆c� 1, are then

∇.u = 0,
1

Pr
[ut + (u .∇)u] = −∇p+∇2u +RaT k̂−Rs ck̂,

Tt + u.∇T = ∇2T,

ct + u .∇c =
1

Le
∇2c. (3.61)

The Rayleigh number Ra and the Prandtl number Pr are defined as before, and the
solutal Rayleigh number Rs and the Lewis number Le are defined by

Rs =
βρ0∆cgd3

µκ
, Le =

κ

D
. (3.62)

Note that in the absence of temperature gradients, the quantity −RsLe would be
the effective Rayleigh number determining convection.

3.6.1 Linear stability

Now we study the linear stability of a steady state maintained by prescribed temper-
ature and salinity differences ∆T and ∆c across a stress-free fluid layer. In dimen-
sionless terms, we pose the boundary conditions

ψ = ∇2ψ = 0 at z = 0, 1,

T = c = 0 at z = 1,

T = c = 1 at z = 0, (3.63)

where as before, we restrict attention to two dimensions, and adopt a stream function
ψ. The steady state is

c = 1− z, T = 1− z, ψ = 0, (3.64)
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and we perturb it by writing

c = 1− z + C, T = 1− z + θ, (3.65)

and then linearising the equations on the basis that C, θ, ψ � 1. This leads to

1

Pr
∇2ψt ≈ Ra θx −RsCx +∇4ψ,

θt − ψx ≈ ∇2θ,

Ct − ψx ≈
1

Le
∇2C, (3.66)

with
C = ψ = ψzz = θ = 0 on z = 0, 1. (3.67)

By inspection, solutions satisfying the temperature and salinity equations are

ψ = exp(ikx+ σt) sinmπz,

θ =
ik

σ +K2
exp(ikx+ σt) sinmπz,

C =
ik

σ +
K2

Le

exp(ikx+ σt) sinmπz, (3.68)

where we have written
K2 = k2 +m2π2. (3.69)

Substituting these into the momentum equation leads to the dispersion relation de-
termining σ in terms of k:

(σ +K2Pr)(σ +K2)

(
σ +

K2

Le

)
+ k2Pr

[
(Rs−Ra)σ

K2
+Rs− Ra

Le

]
= 0. (3.70)

This is a cubic in σ, which can be written in the form

σ3 + aσ2 + bσ + c = 0, (3.71)

where

a = K2

(
Pr + 1 +

1

Le

)
,

b = K4

(
Pr +

1

Le
+
Pr

Le

)
+
k2

K2
Pr(Rs−Ra),

c =
K6

Le
Pr + k2Pr

(
Rs− Ra

Le

)
. (3.72)

Instability occurs if any one of the three roots of (3.71) has positive real part.
Since Le and Pr are properties of the fluid, we take them as fixed, and study the
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effect of varying Ra and Rs on the stability boundaries where Reσ = 0. Firstly, if
Ra < 0 and Rs > 0, then a, b and c are all positive. We can then show (see question
3.3) that Reσ < 0 for all three roots providing ab > c, and this is certainly the case if
Le > 1, which is always true for heat and salt diffusion. Thus when both temperature
and salinity fields are stabilising, the state of no motion is linearly stable.

To find regions of instability in the (Rs,Ra) plane, it thus suffices to locate the
curves where Reσ = 0. There are two possibilities. The first is referred to as exchange
of stability, or the direct mode, and occurs when σ = 0. From (3.71), this is when

c = 0, or Rs =
Ra

Le
− K6

k2Le
. This is a single curve (for each k), and since we know that

Reσ < 0 in Ra < 0 and Rs > 0, this immediately tells us that a direct instability
occurs if

Ra− LeRs > Rc = min
k

K6

k2
=

27π4

4
. (3.73)

This direct transition is the counterpart of the onset of Rayleigh-Bénard convection,
and shows that Ra− LeRs is the effective Rayleigh number. This is consistent with
the remark just after (3.62).

The other possibility is that there is a Hopf bifurcation, i. e., a pair of complex
conjugate values of σ cross the imaginary axis at ±iΩ, say. The condition for this
is ab = c, which is again a single curve, and one can show (see question 3.4) that
oscillatory instability occurs for

Ra >

(
Pr +

1

Le

)
Rs

1 + Pr
+

(
1 +

1

Le

)(
Pr +

1

Le

)
Pr

Rc. (3.74)

Direct instability occurs along the line XZ in figure 3.9, while oscillatory insta-
bility occurs at the line XW . Between XW and the continuation XU of XZ, there
are two roots with positive real part and one with negative real part. As Ra increases
above XW , it is possible that the two complex roots coalesce on the real axis, so that
the oscillatory instability is converted to a direct mode. One can show (see question
3.5) that the criterion for this is that b < 0 and

c = 1
9

[
ab+

(a2 − 6b)

3

{
−a+ (a2 − 3b)1/2

}]
. (3.75)

For large Rs, this becomes (for k2 =
π2

2
)

Ra ≈ Rs+
3R

1/3
c Rs2/3

22/3Pr1/3
, (3.76)

and is shown as the line XW in figure 3.9. Thus the onset of convection is oscillatory
only between the lines XW and XV , and beyond (above) XV it is direct. In practice,
oscillations are rarely seen.
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Figure 3.9: Stability diagram for double-diffusive convection.

Fingers

If we return to the cubic in the form (3.70), and consider the behaviour of the roots
in the third quadrant as Ra,Rs→ −∞, it is easy to see that one root is

σ ≈
K2

[
Ra

Le
−Rs

]
Rs−Ra

, (3.77)

while the other two are oscillatorily stable (see question 3.6). Thus this growth
rate is positive when LeRs < Ra < Rs and grows unboundedly with the wave
number k (since K2 = k2 + π2 when m = 1). This is an indication of ill-posedness,
and in fact we anticipate that σ will become negative at large k. To see when this
occurs, inspection of (3.70) shows that the neglected terms in the approximation
(3.77) become important when k ∼ |Ra|1/4, where σ is maximum (of O|Ra|1/2), and
then σ ∼ −O(k2) for larger k.2 Thus in the ‘finger’ régime sector indicated in figure
3.9, the most rapidly growing wavelengths are short, and the resulting waveforms are
tall and thin. This is what is seen in practice, and the narrow cells are known as
fingers. An example is shown in figure 3.10.

3.6.2 Layered convection

The linear stability analysis we have given above is only partially relevant to dou-
ble diffusive convection. It is helpful in the understanding of the finger régime, but

2In the common case where Pr, Le > 1, one finds σ ≈ − k
2

Le
.
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Figure 3.10: Finger convection (Turner 1974).

the oscillatory mode of convection is not particularly relevant. The other principal
phenomenon which double diffusive systems exhibit is that of layering. This is a
transient, but long-term, phenomenon associated often with the heating of a sta-
ble salinity gradient, and arises because in normal circumstances, more appropriate
boundary conditions for salt concentration are to suppose that there is no flux at the
bounding surfaces.

In pure thermal convection, the heating of an initially stably thermally stratified
fluid will lead to the formation of a layer of convecting fluid below the stable region.
This (single) convecting layer will grow in thickness until it fills the entire layer. This
is essentially the ‘filling box’. Suppose now we have a stable salinity gradient which
is heated from below. Again a convecting layer forms, which mixes the temperature
and concentration fields so that they are uniform within the layer. At the top of the
convecting layer, there will be a step down ∆T in temperature, and a step down ∆c
in salinity. It is found experimentally that α∆T = β∆c, that is, the boundary layer3

is neutrally stable. However, the disparity in diffusivities (typically Le � 1) means
that there is a thicker thermal conductive layer ahead of the interface. In effect, the
stable salinity gradient above the convecting layer is heated by the layer itself, and a
second, and then a third, layer forms. In this way, the entire fluid depth can fill up
with a sequence of long-lived, separately convecting layers. The layers will eventually
merge and form a single convecting layer over a time scale controlled by the very slow
transport of salinity between the convecting layers. Such layers are very suggestive

3For discussion of boundary layers, see section 3.5.1.
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Figure 3.11: Layered convection (Turner 1974). A stable salt solution has been heated
from below.

of some of the fossilised layering seen in magma chambers, as for example in figure
3.5, but the association may be a dangerous one. An experimental realisation of this
form of layered convection is shown in figure 3.11.

A further example of some of the exotic behaviour which double diffusion can lead
to is shown in figure 3.12, again taken from the review article by Turner (1974). In
this experiment, the two diffusing substances were sugar and salt, and the fluid was
initially set up with a top-heavy gradient of salt (which plays the rôle of temperature
here as its diffusivity is larger) and a bottom-heavy gradient of sugar, such that the
overall density gradient was statically stable. This is the analogue of cold/fresh above
hot/salty, so in the ‘diffusive’ régime of the first quadrant in figure 3.9. The rôle of
the Prandtl number is taken by the Schmidt number defined by

Sc =
ν

Dl

, (3.78)

where Dl is the diffusivity of salt and ν is the kinematic viscosity. (The ‘Lewis’
number is the ratio Dl/Dg, where Dg is the diffusivity of sugar. For salt and sugar,
Le ≈ 3.4) Now the Schmidt number for salt is around 106, so the ‘Prandtl’ number is
large, and the static stability limit in the diffusive régime is essentially the same as the

4Specifically, Dl ≈ 1.5× 10−9 m2 s−1 (Vitagliano and Lyons 1956) and Dg ≈ 0.5× 10−9 m2 s−1

(Ziegler et al. 1987).
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Figure 3.12: Sloping layered convection (Turner 1974).

dynamic stability limit: so nothing should happen. However, if a sloping boundary
exists as shown, convection is initiated, and takes the layered form shown. We leave
it as an exercise to explain why.

3.7 Turbulence

Many forms of convection involve turbulent flow, namely when the Reynolds number
and the Rayleigh number are sufficiently large (i.e. for strong inertia). For example,
the hot smoke rising from a flame can often be seen to transition from a smooth lami-
nar regime to a chaotic turbulent regime as it accelerates due to buoyancy. Similarly,
plumes arising from heat sources in buildings often transition to turbulence as they
rise towards the ceiling, before cooling and recirculating. Hence, in this section we
briefly outline some of the fundamentals of turbulent flows as well as common mod-
elling techniques. Much of the following section has been taken from the introduction
of (Benham, DPhil thesis (2018)). For further reading, see the books by Schlichting
(1960), Jimenez (2000) and Pope (2000).

We start by reminding ourselves of the dimensionless Navier-Stokes equations
(ignoring buoyancy for the moment), which are

∇ · u = 0,

∂u

∂t
+ (u · ∇) u = −∇p+

1

Re
∇2u, (3.79)

where Re = ρU0L/µ for some typical velocity and length scales U0, L. We consider
high Reynolds number flows Re � 1 where inertia is important. In particular, for
these flows, the non-linear inertial terms on the left hand side of the Navier-Stokes
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Figure 3.13: Dimensionless energy spectrum (one-dimensional) in terms of dimen-
sionless wavenumber for turbulent flow. This image is taken from (Jimenez (2000)).

equations are responsible for complex flow behaviour, also known as turbulence, which
is characteristic of the high Reynolds number regime.

One of the characteristic features of turbulent flows is the mechanism through
which energy is transferred between eddies. Although at high Reynolds number vis-
cous terms appear to be negligible (see (3.79)), turbulence is in fact dissipative. It
does not, however, dissipate energy at the large scale, like laminar flows. Instead,
energy is exchanged in an inviscid way between eddies of diminishing size. Energy is
only dissipated (i.e. converted to heat) due to eddies which are so small that viscous
effects become important. This critical size is called the Kolmogorov length scale and
is given by

η =

(
ν3

ε

)1/4

, (3.80)

where ε is the turbulent energy dissipation and ν is the kinematic viscosity ν = µ/ρ.
When modelling turbulence, it is necessary to account for many different length scales,
from the Kolmogorov scale η up to the dominant length scale of the problem L, which
can be problematic for computations. The energy spectrum for turbulent flow is
shown in figure 3.13, illustrating how energy is transferred from small wavenumbers
(large wavelengths) down to large wavenumbers (small wavelengths). This transfer of
energy from the large to the small scale, also known as the energy cascade, was first
described by Kolmogorov (1941). In this famous paper Kolmogorov derived a scaling
relationship between the energy of the eddies and their wavenumber E ∝ κ−5/3,
showing close agreement with experimental data.
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Re Spatial steps Time steps Total
2D 3D 2D 3D

103 3.2× 104 5.6× 106 1.8× 102 5.6× 106 1.0× 109

104 1.0× 106 1.0× 109 1.0× 103 1.0× 109 1.0× 1012

105 3.2× 107 1.8× 1011 5.6× 103 1.8× 1011 1.0× 1015

106 1.0× 109 3.2× 1013 3.2× 104 3.2× 1013 1.0× 1018

Table 3.1: Minimum number of spatial and time steps for DNS in two and three-
dimensional flows at different Reynolds numbers.

In order to solve (3.79) numerically (with suitable boundary conditions), which
is known as Direct Numerical Simulation (DNS), the domain is discretised spatially
with step size ∆x. Let us assume that there are N elements along each dimension of
the domain, such that

N∆x = L. (3.81)

Making sure that the smallest eddies are resolved, we must choose ∆x ≤ η. According
to an equilibrium-based scaling law, the energy dissipation obeys the self-similar
relationship (i.e. across scales)

ε ≈ uL
3

L
≈ ũ3

η
, (3.82)

where uL, ũ are the velocity scales associated with the largest and smallest (Kol-
mogorov) eddies. Therefore, if we redefine the Reynolds number in terms of uL, the
Kolmogorov length scale is written in dimensionless form as η/L = Re−3/4. Hence,
the number of spatial steps must be

N ≥ Re3/4. (3.83)

Therefore, the number of steps for a two dimensional domain scales like N2 ∼ Re3/2,
and like N3 ∼ Re9/4 for a three-dimensional domain. To make things worse, we
must also consider the number of discretisation points in time. Since memory storage
requirements (due to spatial discretisation) are very large at high Reynolds numbers,
integration of the solution in time is usually performed using an explicit method. For
explicit methods with time step ∆t, the Courant-Friedrichs-Lewy (CFL) condition

uL∆t

∆x
< 1, (3.84)

must hold in order to achieve stability. If we take τ = L/uL as the timescale of
interest for the flow, then the number of time steps Nt is given by

Nt∆t =
L

uL
. (3.85)

Hence, the CFL condition (3.84) implies

Nt ≥ Re3/4. (3.86)
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Figure 3.14: Illustration of the difference between laminar flow (a) at Reynolds num-
ber Re = 1150 and turbulent flow (b) at Reynolds number Re = 2520. This image
is taken from Dubs (1939), which describes the coloured filament experiments of
Reynolds (1883).

In Table 3.1 we display the minimum number of spatial and time steps necessary
to perform DNS at Reynolds numbers between Re = 103 and Re = 106. It is
clear that DNS becomes incredibly computationally intensive at even moderately
high Reynolds numbers for both two and three-dimensional problems, though three-
dimensional problems are much worse. For example, if we cap the number of degrees
of freedom at 1010, which is still a very computationally demanding procedure, then
Re > 2.8× 104 becomes intractable for two-dimensional flows and Re > 2.2× 103 for
three-dimensional flows.

Reynolds exhibited the disruptive and chaotic qualities of turbulence in 1883 with
a coloured dye experiment (see Figure 3.14). He concluded that it would be almost
impossible to model flow characteristics exactly and introduced the idea of averaging
the Navier-Stokes equations over time. Such approaches are known as Reynolds-
averaged Navier-Stokes (RANS) modelling. Let us define the time-averaging of a
function f as

f̄ = lim
T→∞

1

T

∫ T

0

f (t) dt. (3.87)

We split all variables into a time-dependant part, which corresponds to turbulent
fluctuations, and a time-averaged part, such that

ui = Ui (x, y, z) + u′i (x, y, z, t) , i = 1, 2, 3,

p = P (x, y, z) + p′ (x, y, z, t) , (3.88)

where subscripts 1, 2, 3 correspond to coordinate directions x, y, z. We define the
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fluctuating parts to have zero mean, such that

u′i = 0, i = 1, 2, 3,

p′i = 0. (3.89)

This decomposition into mean and fluctuating parts is known as the Reynolds de-
composition.

By inserting (3.88) into the continuity equation and averaging, we see that this
equation is preserved for both the mean and fluctuating parts of the velocity

∂Ui
∂xi

= 0,

∂u′i
∂xi

= 0, (3.90)

where we sum over the indices using Einstein notation. Similarly, by inserting (3.88)
into the dimensional momentum equation and averaging, we get

ρUj
∂Ui
∂xj

= −∂P
∂xi

+ µ
∂2Ui
∂xj∂xj

− ρu′j
∂u′i
∂xj

, (3.91)

where the final term on the right hand side is an inertial term due to the turbulent
fluctuations. We keep it on the right hand side, together with the viscous stress term,
because it represents a stress contribution due to the turbulent fluctuations. Hence,
it is known as the Reynolds stress term. It should be noted that

ρu′j
∂u′i
∂xj

=
∂

∂xj

[
ρu′iu

′
j

]
, (3.92)

due to (3.90). The Reynolds stress is typically written in terms of an ‘eddy viscosity’
µt and gradients in the mean velocity, such that

−ρu′iu′j = µt

[
∂Ui
∂xj

+
∂Uj
∂xi

]
. (3.93)

Considering (3.93), the momentum equation (3.91) can be rewritten as

ρUj
∂Ui
∂xj

= −∂P
∂xi

+
∂

∂xj

(
(µ+ µt)

(
∂Ui
∂xj

+
∂Uj
∂xi

))
. (3.94)

The eddy viscosity plays an important role in turbulence modelling. Whilst in laminar
flows, viscous stresses are responsible for the diffusion of momentum, in turbulent
flows, it is the eddies and the turbulent fluctuations which are responsible. Therefore,
we represent the Reynolds stress as a diffusive term on the right hand side of (3.94),
where the diffusion coefficient is the non-linear eddy viscosity.

Equations (3.90a) and (3.94) together are by no means complete. The non-
uniqueness of the Reynolds decomposition results in a so-called ‘closure problem’,
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where we are left with too few equations for too many unknowns. Some approaches
involve finding higher moments of the governing equations. For example, the turbu-
lent kinetic energy is defined as

k =
1

2
u′iu
′
i, (3.95)

for which a governing equation can be derived my multiplying the Navier-Stokes
equations by u′i and averaging. However, since new variables are introduced, the
system remains unclosed, requiring higher and higher moments (an unending process).
Typically, turbulence models make an empirical hypothesis for µt (and/or k) to close
the system. In the next section we discuss one such turbulence closure assumption.

3.7.1 Prandtl mixing length theory

There are a vast number of different turbulence closure models that have been pro-
posed in the literature. These models are largely classified into three different types.
The most basic type, known as algebraic models, do not model the turbulent kinetic
energy k, but instead use an eddy viscosity µt, which is a function of the mean veloc-
ity Ui and its gradients alone. In these models, (3.90a) and (3.94) form a complete
system of equations. Next we summarise the assumptions of one of these models,
known as Prandtl mixing length theory.

In the early 20th century Ludwig Prandtl suggested a very simple algebraic model
for the eddy viscosity which is based on simple scaling laws (Prandtl (1925)). Prandtl
mixing length theory states that the kinematic eddy viscosity νT = µt/ρ is propor-
tional to a velocity scale via a mixing length `, such that

νT = ` U0, (3.96)

where in simple shear flows the velocity scale is locally determined by the mean
velocity gradient

U0 = `

∣∣∣∣∂U∂y
∣∣∣∣ . (3.97)

Therefore, the eddy viscosity is written as

νT = `2

∣∣∣∣∂U∂y
∣∣∣∣ . (3.98)

The mixing length ` can be interpreted as the approximate distance it takes for
a parcel of fluid to move before it becomes blended into its surroundings due to
turbulent mixing. The mixing length is considered as a variable and it is modelled
differently depending on the problem. For example, in wall bounded flows the mixing
length may be taken as the distance to the wall. For flow in a mixing layer, the
mixing length may be taken as proportional to the width of the mixing layer.

This model provides a good approximation for simple turbulent flows, such as a
boundary layer on a flat plate, or a free mixing layer, though may be less accurate
for more complicated turbulent flows. Nevertheless, it is one of the few turbulence
models which yields simple and useful analytical results. Later we use Prandtl mixing
length theory to derive a model for the growth of a turbulent mixing layer.
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3.7.2 Turbulent boundary layer equations

Next we discuss the boundary layer approximation to the RANS equations (3.90a)
and (3.94), restricting our attention to two-dimensional flows. We scale the variables
according to

x ∼ L, y ∼ LRe−1/2, U ∼ U0, V ∼ U0Re−1/2, P ∼ ρU2
0 . (3.99)

Therefore, to leading order the two-dimensional turbulent boundary layer equations
(reverting the variables back to lower case for convenience) are

∂u

∂x
+
∂v

∂y
= 0,

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+

∂

∂y

(
(ν + νT )

∂u

∂y

)
,

0 = −∂p
∂y
. (3.100)

For axisymmetric flows, we follow the above steps, except starting with the Navier-
Stokes equations in cylindrical coordinates (r, θ, z). The corresponding the time-
averaged velocities are (Ur, Uθ,W ). Since the flow is axisymmetric, we ignore all
derivatives in θ and we assume zero swirl (Uθ = 0). The corresponding scalings for
the variables are

z ∼ L, r ∼ LRe−1/2, Ur ∼ U0Re−1/2, W ∼ U0, P ∼ ρU2
0 . (3.101)

Therefore, in dimensional form and reverting the variables back to lower case for
convenience, the cylindrical turbulent boundary layer equations are

1

r

∂

∂r
(rur) +

∂w

∂z
= 0,

0 = −1

ρ

∂p

∂r
,

ur
∂w

∂r
+ w

∂w

∂z
= −1

ρ

∂p

∂z
+

1

r

∂

∂r

(
(ν + νT ) r

∂w

∂r

)
. (3.102)

3.7.3 A mixing layer model for unconfined parallel flows

Mixing layers, where two parallel flows undergo turbulent mixing, are a common
feature in convection. For laterally unconfined flows, mixing layers can be described
using a simple analytical model, which is derived from the turbulent boundary layer
equations and Prandtl mixing length theory. In this section we derive this simple
model in the absence of buoyancy (i.e. where the flow is momentum-driven rather
than density-driven). However, the components of this model will be used later in
Section 3.8 when considering convective plumes.
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Figure 3.15: (a) Schematic diagram of a mixing layer between parallel flows. (b)
Kelvin-Helmholtz vortices in a mixing layer experiment (taken from Lasheras and
Choi (1988)).

The flow situation we consider is illustrated in Figure 3.15, in which we illustrate
our chosen coordinate system (x, y). A flow with velocity U1 in the x direction
meets a second, parallel flow with velocity U2 < U1. Due to the Kelvin-Helmholtz
instability, the flow profile is unstable to perturbations. The discontinuous jump
in velocity between U2 and U1 generates a vortex sheet which rolls up downstream
into discrete vortical structures. These structures pair and merge forming larger
vortical structures. In this way a region of flow forms between the parallel flows
which undergoes intense mixing, and which grows downstream, entraining fluid from
either side. The time-averaged velocity in the layer is a smoothed quasi-linear profile
which increases from U2 to U1 over an approximate width δ(x). The layer is known
as a mixing layer due to the intense mixing.

The mixing layer region is long and thin, such that the two-dimensional bound-
ary layer approximation applies (3.100). However, since the flow is unconfined it is
expected that pressure gradients in the x direction are negligible. Furthermore, we
ignore the viscous stress term in (3.100) since we expect ν � νT within the mixing
layer. Therefore, the governing equations, defined for 0 ≤ x <∞ and −∞ < y <∞,
are

∂u

∂x
+
∂v

∂y
= 0,

u
∂u

∂x
+ v

∂u

∂y
=

∂

∂y

(
νT
∂u

∂y

)
. (3.103)

The boundary conditions for the streamwise velocity u correspond to matching with
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the free stream velocities

u(x,∞) = U1,

u(x,−∞) = U2, (3.104)

and the inflow condition

u(0, y) = Uc +
∆U

2
sgn(y), (3.105)

where Uc = (U1 + U2)/2 is the average velocity and ∆U = U1 − U2 is the velocity
difference. We also need a boundary condition for v, but we leave this for later
discussion.

We rewrite the velocity u in terms of a similarity variable ζ = y/δ(x) that depends
on the width of the mixing layer, such that

u = Uc + ∆U
dU
dζ
, (3.106)

where U = U(ζ) is an unknown function. From (3.103) the transverse velocity v must
take the form

v = ∆U
dδ

dx

(
ζ

dU
dζ
− U

)
. (3.107)

We use the Prandtl mixing length model (3.98) for the eddy viscosity, where we
approximate the velocity gradient by∣∣∣∣∂u∂y

∣∣∣∣ ≈ ∆U

δ
, (3.108)

and we use a mixing length proportional to the width of the mixing layer ` = Cδ,
such that

νT = C2δ∆U. (3.109)

Inserting (3.106), (3.107) and (3.109) into the momentum equation (3.103), we get

dδ

dx

Uc
∆U

(
∆U

Uc
U + ζ

)
d2U
dζ2

+ C2 d3U
dζ3

= 0. (3.110)

Similarity solutions to (3.110) are only possible if

dδ

dx

Uc
∆U

= S, (3.111)

where S is a constant known as the spreading parameter, and whose value has been
determined by experiments, finding S = 0.06−0.11. Equation (3.111) is often written
in terms of the free stream velocities U1 and U2, such that

dδ

dx
= 2S

U1 − U2

U1 + U2

. (3.112)
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The mixing layer growth rate (3.112) increases with velocity difference, indicating
that more non-uniform mixing layers entrain fluid faster.

We simplify (3.110) by introducing rescaled variables

ξ =

√
S

C
ζ, F (ξ) =

∆U
√
S

UcC
U
(
Cξ√
S

)
. (3.113)

In terms of these new variables (3.110) becomes

(ξ + F )
d2F

dξ2
+

d3F

dξ3
= 0, (3.114)

and the boundary condition (3.104) becomes

dF

dξ
(±∞) = ±γ, (3.115)

where γ = (U1 − U2)/(U1 + U2).
In the case of a weak mixing layer γ � 1, we rescale F ∼ γ and the governing

equations and boundary conditions simplify to

ξ
d2F

dξ2
+

d3F

dξ3
= 0,

dF

dξ
(±∞) = ±1. (3.116)

This system can be solved explicitly, such that

dF

dξ
= erf (ξ/

√
2),

F =
√

2/πe−ξ
2/2 + ξerf (ξ/

√
2) +D, (3.117)

where D is a constant of integration. This is determined by considering the transverse
velocity

lim
ξ→∞

(
ξ

dF

dξ
− F

)
= −D = lim

ξ→−∞

(
ξ

dF

dξ
− F

)
. (3.118)

Hence, we set D = 0 to avoid a net mean transverse flow (which is unphysical).
In the case where γ is not small, the transverse boundary condition requires more

careful attention. Schlichting (1960) suggested the boundary condition

v(x,∞) = −U2

U1

v(x,−∞), (3.119)

which is based on a global momentum balance. The condition (3.119) indicates that
there is greater entrainment from the slower stream than the faster stream. Hence
the dividing streamline, along which v = 0, is inclined downwards from the x-axis.
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Figure 3.16: Solution to (3.114) for different values of U2/U1. (a) Streamwise velocity
(3.106) (rescaled). (b) Transverse velocity (3.107) (rescaled).

This is in accordance with experimental observations. In dimensionless terms, this
takes the form

lim
ξ→∞

(
ξ

dF

dξ
− F

)
= −

(
U2

U1

)
lim

ξ→−∞

(
ξ

dF

dξ
− F

)
. (3.120)

Given a value for U2/U1, or equivalently γ, we can solve Equation (3.114), with
boundary conditions (3.115) & (3.120), for the function F (ξ). In Figure 3.16 the
numerical solution is plotted using three different values of U2/U1 = 0.3, 0.5, 0.7
(corresponding to γ = 1.08, 0.67, 0.35).

We can see that the streamwise velocity (a) within the mixing layer is approxi-
mately linear. The transverse velocity (b) indicates that there is greater entrainment
when the velocity difference is larger, which is consistent with (3.112). However,
entrainment is always greater (in magnitude) at the slower stream.

3.8 Parameterised convection

The boundary layer theory described in section 3.5 applies to steady state solutions
at high Rayleigh number, but in fact real convection becomes time-varying at such
parameter values. The behaviour becomes first oscillatory, and then becomes in-
creasingly irregular, so that at very high Rayleigh numbers, the cellular structure of
convection in a fluid layer breaks down. The upwelling and downwelling plumes of
the boundary layer theory still exist, but their detachment is sporadic and irregu-
lar. In these circumstances, the theoretical description of convection may become,
paradoxically, easier. Just as for turbulent shear flows at high Reynolds numbers,
one uses empirically-based measures of the fluxes at boundaries to describe the flow.
Turbulence mixes the fluid, so that, as in the boundary layer theory, the interior of a
convecting cell is taken to be isothermal. In this section, we describe one particular
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Figure 3.17: On the left, a sub-oceanic black smoker issuing from a vent at the ocean
floor; image from http://oceanexplorer.noaa.gov. On the right, a laboratory
plume; image courtesy of Andy Woods.

example of turbulent convection to illustrate these ideas. The example is that of the
turbulent convective plume.

3.8.1 Plumes

A plume is an isolated convective upwelling. Examples are the rise of smoke from an
industrial chimney, the formation of cumulus clouds over oceans, ‘black smokers’ at
mid-ocean rise vents, and explosive volcanic eruptions. In these examples, a source
of buoyancy at (essentially) a point drives a convective flow in the fluid above. As
suggested in figure 3.17, the plume forms a turbulent, approximately conical region,
with a fairly sharp (but time-varying) boundary. The turbulence causes rapid con-
vective mixing, and allows us to conceptualise the plume as a relatively homogeneous
cloud of density ρ = ρ0 −∆ρ rising through an ambient medium of density ρ0. If ρ0

depends on height z, then the medium is called a stratified medium, and it is stably
stratified if ρ′0(z) < 0.
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Mathematical model

The simplest mathematical model is of a steady5 cylindrically symmetric plume of
radius r = b(z), in which we use cylindrical coordinates (r, z), with corresponding
velocity components (u,w) (thus the upwards fluid velocity is w). The plume rises
through a medium of density ρ0(z). We will make the Boussinesq approximation,
which is that variations in density are neglected, except in the buoyancy term of the
momentum equation, and in the ‘buoyancy’ equation itself. This requires variations
of the density from that of the ambient density to be small, and also that the variation
of ρ0 with height (if any) is small. We also make the assumption that the plume has
a long and thin aspect ratio, such that the boundary layer approximation (3.102)
applies. The basic model is then given by

1

r
(ru)r + wz = 0,

0 = − 1

ρ0

pr,

uwr + wwz = − 1

ρ0

pz −
ρ

ρ0

g +
1

r

∂

∂r

[
νT r

∂w

∂r

]
,

uρr + wρz = +
1

r

∂

∂r

[
νT r

∂ρ

∂r

]
. (3.121)

These equations represent respectively conservation of mass, momentum (horizontal
and vertical), and buoyancy; p is the pressure, ρ the density, ρ0 the reference density,
and g is the acceleration due to gravity. We have included radial diffusion terms
which represent the effects of turbulent mixing. We define the density deficit ∆ρ in
the plume to be

∆ρ = ρ0 − ρ. (3.122)

The Boussinesq approximation is based on the assumption that ∆ρ is small, ∆ρ� ρ0.
The rather odd-looking final equation in (3.121) requires some comment. It caters

for the fact that the density deficit in plumes may arise because of temperature, dis-
solved concentrations or particulate load, or a combination. But in all such cases, the
turbulent conservation field for the relevant variable is simply that advection is zero;
for example we would have Tt+u .∇T = ∇. [νT∇T ] for temperature, and similarly for
particulate or solute concentrations. Thus the buoyancy conservation equation sim-
ply represents this fact, together with the assumption that the density is an algebraic
function of the conserved quantities. In certain circumstance, the veracity of this
assumption may need to be examined further. For example, in a volcanic ash-laden
plume, the eruption column has a density which is dependent on both temperature
and ash concentration, and it rises through a surrounding stratified atmosphere whose
stratification is itself determined by the relation of density to temperature and pres-
sure. In such circumstance, (3.121)4 may warrant further consideration, but such
issues will be ignored here.

5The turbulent time variation is averaged out.
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The boundary layer approximation implies that radial pressure gradients are neg-
ligible, and hence that the pressure is that of the surrounding ambient fluid,

pz ≈ −ρ0g. (3.123)

This allows us to write the remaining three equations in terms of the reduced gravity,
which is defined to be

g′ =
g∆ρ

ρ0

. (3.124)

The equations (3.121) then take the simple form

(ru)r + rwz = 0,

uwr + wwz = g′ +
1

r

∂

∂r

[
νT r

∂w

∂r

]
,

N2w + ug′r + wg′z =
1

r

∂

∂r

[
νT r

∂g′

∂r

]
, (3.125)

where N is the Brunt-Väisälä frequency, defined as

N =

(
−gρ

′
0

ρ0

)1/2

, (3.126)

and we have put a pre-factor of 1− ∆ρ

ρ0

equal to one in the N2 term.

It is fairly evident in figure 3.17 that the plume has a fairly well-defined edge,
and we will assume this. The boundary of the plume is taken to be at r = b(z).
The question then arises as to what, if any, boundary conditions should be applied
there. Since the ambient fluid outside the plume has w = g′ = 0, these are natural
conditions to apply, at least when the diffusion terms are included. We therefore pose
the conditions

w = g′ = 0 at r = b(z). (3.127)

One might suppose that also u = 0 would be appropriate, but in fact this is
found not to be the case. The turbulent eddies of the plume incorporate the ambient
fluid, and dramatically increase the plume volume flux. If the entrainment velocity
(inwards) at the edge of the plume is ue, then we have that

u = −ue at r = b. (3.128)

The entrainment velocity needs to be constituted, and a common assumption is to
suppose that

ue = αw̄, (3.129)

where w̄ is the cross-sectionally averaged vertical velocity, and the value of α is found
experimentally to be approximately 0.1. We note that the plume boundary r = b(z)
is indeterminate, so that an extra condition to determine it is apparently necessary.
If b =∞, this issue does not arise.
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The case νT = 0

We now ignore the radial diffusion terms in (3.125) by putting νT = 0. The resulting
equations are given by

(ru)r + rwz = 0,

uwr + wwz = g′,

ug′r + wg′z = −N2w, (3.130)

and are hyperbolic, and suitable boundary conditions to consider are (3.127) and
(3.128) at the plume boundary; in addition, for a plume emanating from a vent of
radius a at z = 0, we might pose

w = w0, u = 0, g′ = g′0 at z = 0, 0 < r < a. (3.131)

Whether all these conditions can be applied depends on the characteristic directions
of the hyperbolic set (3.130). This is examined in question 3.8. If we define the
Stokes stream function by ru = ψz, rw = −ψr, then the characteristics are just
the streamlines, and follow the direction of flow. Therefore the characteristics point
inwards from all parts of the boundary, and all the boundary conditions can be
applied.

Without writing an analytical solution for the flow, what happens is fairly clear
(we assume positive vent buoyancy, g′0 > 0). On the streamlines from the vent which
form the central part of the plume, g′ ≡ g′0, and w increases upwards, thus the vent
streamlines shrink radially. Equally, the prescription of g′ = 0 on the plume boundary
r = b ensures that g′ = w = 0 on all characteristics that begin there, so that g′ = 0
everywhere outside the vent characteristics; the characteristics are horizontal. In
fact, there is no reason to define the plume outside the central core, since there is no
buoyancy there.

It is fairly clear what the matter is: the diffusion terms in (3.125) can not be
ignored. Their effect is precisely to broaden the spike of buoyancy which emerges
from the vent. We can go further. A typical prescription for the eddy viscosity is to
take (in the present situation)

νT = εT bw, (3.132)

where εT is relatively small, perhaps ∼ 10−2. The point is that with this assumption,
the eddy viscosity tends to zero at the plume edge, which suggests as with other ex-
amples of such degenerate diffusion that no extra condition is necessary to determine
it (and that its location is at a finite distance).

Moment equations

In order to progress with the solution of the equations (3.125), we integrate them
from the centre to the edge of the plume, the second and third after multiplying by
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r. With our assumption that νT = 0 when w = 0, the two diffusion integrals vanish,
and we are left with three evolution equations for the three quantities

Q = 2π

∫ b

0

rw dr,

M = 2π

∫ b

0

rw2 dr,

B = 2π

∫ b

0

rwg′ dr, (3.133)

which are the volume flux, the momentum flux and the buoyancy flux, respectively.
Bearing in mind that w = g′ = 0 at r = b, we find, noting also (3.128) and (3.129),

dQ

dz
= 2παbw̄,

dM

dz
= 2π

∫ b

0

rg′ dr,

dB

dz
= −N2Q. (3.134)

We note also that
Q = πb2w̄, (3.135)

so that these are almost self-contained. In order to proceed, some further simplifica-
tions must be made. We consider first the case of an unstratified environment.

Unstratified environment

In the case that the ambient fluid is unstratified, the Brunt-Väisälä frequency N is
zero, and the buoyancy flux B is constant. In practice it is sufficient to consider the
release of buoyant material from a point source, as this effectively is the common
situation of interest. If in addition we suppose that the volume flux (and hence also
the momentum flux) is zero at the source, then there is no intrinsic length scale in
the problem, and a similarity solution is suggested. Indeed, the only dimensional
quantities in the problem are the buoyancy flux B with units of m4 s−3 and the
lengths r and z. So the similarity variable must be

η =
r

z
, (3.136)

and the solution must have the form, by dimensional reasoning,

b = βz, w = B1/3z−1/3W (η), g′ = B2/3z−5/3G(η), (3.137)

with u being determined by quadrature. It seems that these expressions fit well to
experiments, with the functions W and G being approximately Gaussians.
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The question then arises, can we actually find the functions W and G by solving
the model (3.125)? As we might expect, the equations without the diffusion terms
admit a similarity form of solution, although as discussed above this is of little use.
What is (perhaps) surprising is that the equations (3.125) including the diffusion
terms, have a similarity solution of the form

w = zνW (η), u = zνU(η), g′ = z2ν−1G(η), η =
r

z
, b = βz, ν = −1

3
,

(3.138)
providing we choose the eddy viscosity to be given by (3.132), and then U , W and G
satisfy the equations

(ηU)′ + η(νW − ηW ′) = 0,

UW ′ +W (νW − ηW ′) = G+
εTβ

η
(ηWW ′)′,

UG′ +W{(2ν − 1)G− ηG′} =
εTβ

η
(ηWG′)′, (3.139)

with such boundary conditions as we can muster:

W = G = 0, U = −2α

β2

∫ β

0

ηW dη at η = β. (3.140)

There will be symmetry conditions at η = 0, but since the equations in (3.139) are
degenerate at both end points (and β is not known), it is unclear just how many
conditions are necessary. In addition we have the prescribed buoyancy flux B, which
gives another condition via the presumed first integral

B = 2π

∫ β

0

ηWGdη. (3.141)

It remains to be seen whether the numerical solution of (3.139) gives solutions similar
to observations.

Plumes in a stratified environment

If, as for example in the atmosphere, the ambient density decreases with height, then a
similarity solution is no longer feasible because the stratification introduces a natural
scale height. To derive a model for such a plume, we must assume some form for
the cross-section profiles, which will allow closure expressions for the average fluxes
B, Q and M in terms of the plume (average) velocity w and radius b. The simplest
assumption to make is that the profiles of buoyancy and vertical velocity have ‘top
hat’ profiles, that is to say they are uniform and then drop rapidly at the plume
edges. Such profiles might be motivated by a particular choice of expression for the
eddy viscosity in (3.125), for example. With this assumption, we find

B = πb2wg′, Q = πb2w, M = πb2w2; (3.142)

124



Figure 3.18: An umbrella cloud resulting from the eruption of Mount Redoubt,
Alaska, in 1991. Image from Huppert (2000).

in addition we have

2π

∫ b

0

rg′ dr = πb2g′. (3.143)

Eliminating w and b finally yields the equations

dB

dz
= −N2Q,

dM

dz
=

BQ

M
,

dQ

dz
= 2π1/2αM1/2. (3.144)

We can see from this that the buoyancy flux continually decreases with height,
while the volume flux increases. When B = 0, the plume reaches its level of neutral
buoyancy, but continues to rise because of its momentum. With B < 0, M decreases,
and will not rise any further when M reaches 0. According to the equations, the
volume flux is still positive, but in fact the plume spreads out laterally, forming an
umbrella cloud as shown in figure 3.18, and the one-dimensional description becomes
irrelevant. Thus a plume in a stratified medium will level out at a height zs which
can be determined from (3.144) in the form (see question 3.11)

zs = cB
1/4
0 N−3/4, (3.145)

where B0 is the buoyancy flux at z = 0, and N is assumed constant.
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3.9 Turbulent convection

As the Rayleigh number increases in Rayleigh–Bénard convection, the convective
rolls which can be seen at the onset of convection bifurcate to three-dimensional
planforms, typically either square cells or hexagons. In a layer of large horizontal
extent, convective rolls tend to be weakly chaotic, because the alignment in different
parts of the layer is different, and thus defects or dislocations are formed in the cellular
structure, and these migrate slowly, sometimes permanently. Three-dimensional cells
tend to be more stable, because they are essentially confined, but at higher Rayleigh
number, an oscillatory instability sets in. The thermal boundary layers which migrate
across the base of the cells and detach at the cell boundaries start to prematurely
thicken and then thin again before detachment, causing an oscillation which is a
manifestation of budding plume development. Eventually, these budding plumes do
begin to detach before reaching the cell walls, and at this point the convection becomes
temporally and spatially disordered. Thermal boundary layers thicken and plumes
detach irregularly, and a defined cellular structure disappears, being replaced by a
host of upwelling and downwelling thermal plumes. In fact, a large scale circulation
does come into existence, but this is on a much larger scale than the typical plume
spacing.

A very famous but simple model of turbulent thermal convection was put forward
by Lou Howard in 1964, at the International Congress of Mechanics in Munich. In
his model, a quiescent thermal boundary layer grows into an isothermal core until it
reaches a critical thickness, when it suddenly forms a plume and detaches, mixing the
fluid and returning to isothermal conditions. The average heat flux is then determined
by that during the quiescent, conductive phase. The conductive temperature in the
growing boundary layer is given by the solution of

Tt = κTzz, (3.146)

with

T = 1
2
∆T on z = 0,

T → 0 as z →∞; (3.147)

here we imagine a convecting fluid layer of depth d, across which the prescribed tem-
perature difference is ∆T (and thus half across the boundary layers on each surface).
Starting from an isothermal state T = 0 (boundary layer of thickness zero), the
solution is

T = 1
2
∆T erfc

(
z

2
√
κt

)
, (3.148)

and thus the average heat flux from the surface z = 0 is

F =
1

tc

∫ tc

0

(
−k∂T

∂z

)∣∣∣∣
z=0

dt, (3.149)

126



where tc is the time of detachment of the boundary layer. Using (3.148), we then find

F =
k∆T

2
√
κtc

=
k∆T

2dc
, (3.150)

where dc =
√
κtc is the thickness of the thermal boundary layer at detachment.

Howard hypothesised that detachment would occur when a locally defined Rayleigh
number, using the boundary layer thickness as the depth scale, became critical, of
order

Rac ∼ 103; (3.151)

thus we define the critical thickness dc via the effective critical Rayleigh number
condition

αρ0gd
3
c∆T

2µκ
= Rac, (3.152)

where the factor 2 allows for the temperature drop of 1
2
∆T across the boundary layer.

In terms of the Rayleigh number of the fluid layer

Ra =
αρ0gd

3∆T

µκ
, (3.153)

we thus have the dimensionless heat flux, called the Nusselt number Nu, given by

Nu =
F

(k∆T/d)
=

d

dc
= cRa1/3, (3.154)

where
c = (2Rac)

−1/3 ≈ 0.08. (3.155)

Thus the heat flux can be parameterised as

F = c

(
αgcp
µ

)1/3

(ρ0k)2/3 ∆T 4/3, (3.156)

which is the famous four-thirds law for turbulent convection. It is reasonably consis-
tent with experimental results.

3.10 Notes and references

The theory of continental drift was famously published by Alfred Wegener, a German
meteorologist, in 1915. An English translation of his book was published later, see
Wegener (1924). His ideas were scorned by the geophysical establishment, and in
particular, in Britain, by the colossal figure of Harold Jeffreys. The blind ignorance
with which he and other fellow geologists refuted Wegener’s ideas should serve (but
have not) as a lesson for scientists against the perils of treating science as religion,
and hypothesis as dogma. A notable supporter of the thesis of continental drift was
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Holmes (1978), who understood that mantle convection was the driving mechanism. A
more modern treatment of geodynamics is the classic book by Turcotte and Schubert
(1982), while Davies (1999) gives a readable but technically undemanding account.

The layered magma chamber known as the Skaergaard intrusion was the subject of
a massive memoir by Wager and Brown (1968), who gave painstaking descriptions of
the series of layered rocks. They made some attempts at a theoretical description, as
did McBirney and Noyes (1979), based on analogous processes in chemical reaction-
diffusion theory. Neither of these, nor any subsequent attempts at a theoretical model,
have been altogether successful.

Baines and Gill (1969), Turner (1979)
Balmforth et al. (2001)
The basic description of boundary layer theory at high Rayleigh number and

infinite Prandtl number was first done successfully by Turcotte and Oxburgh (1967).
A more complete theory is due to Roberts (1979), although even this is not quite
watertight.. The necessary numerical results to compute C in (3.37) are given by
Roberts (1979) and Jimenez and Zufiria (1987). The results are slightly different, with
the latter paper considering Roberts’ numerical results to be wrong. For a = O(1),
then 2C ≈ 0.1.

Jimenez and Zufiria (1987) claim that the equivalent problem to (3.48) for the
case of no-slip boundary conditions has no solution, but do not adduce details. Their
inference is that the boundary layer approximation fails: this seems a hazardous
conclusion.

Linden (2000), Morton et al. (1956).
The model of turbulent thermal convection described in section 3.9 is due to

Howard (1966). Baines and Turner (1969).

Exercises

3.1 The Boussinesq equations of two-dimensional thermal convection can be written
in the dimensionless form

∇.u = 0,
1

Pr
[ut + (u .∇)u] = −∇p+∇2u +RaT k̂,

Tt + u.∇T = ∇2T.

Explain the meaning of these equations, and write down appropriate boundary
conditions assuming stress-free boundaries.

By introducing a suitably defined stream function, show that these equations
can be written in the form

1

Pr

[
∇2ψt + ψx∇2ψz − ψz∇2ψx

]
= RaTx +∇4ψ,

Tt + ψxTz − ψzTx = ∇2T,
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with the associated boundary conditions

ψ = ∇2ψ = 0 at z = 0, 1,

T = 0 at z = 1,

T = 1 at z = 0,

and write down the conductive steady state solution.

By linearising about this steady state, show that

1

Pr

(
∂

∂t
−∇2

)
∇2ψt =

(
∂

∂t
−∇2

)
∇4ψ +Raψxx,

and deduce that solutions are ψ = eσt sin kx sinmπz, and thus that

(σ +K2)
( σ

K2Pr
+ 1
)
− Rak2

K4
= 0, K2 = k2 +m2π2.

By considering the graph of this expression as a function of σ, show that oscil-
latory instabilities can not occur, and hence derive the critical Rayleigh number
for the onset of convection.

3.2 A two-dimensional, incompressible fluid flow has velocity u = (u, 0, w), and
depends only on the coordinates x and z. Show that there is a stream function
ψ satisfying u = −ψz, w = ψx, and that the vorticity

ω = ∇× u = −∇2ψj,

and thus that
u× ω = (ψx∇2ψ, 0, ψz∇2ψ),

and hence
∇× (u× ω) = (ψx∇2ψz − ψz∇2ψx)j.

Use the vector identity (u .∇)u = ∇(1
2
u2)− u× ω to show that

∇× du

dt
=
[
−∇2ψt − ψx∇2ψz + ψz∇2ψx

]
j.

Show also that
∇× θk = −θxj,

and use the Cartesian identity

∇2 ≡ grad div − curl curl

to show that
∇×∇2u = −∇4ψ j,

and hence deduce that the momentum equation for Rayleigh–Bénard convection
can be written in the form

1

Pr

[
∇2ψt + ψx∇2ψz − ψz∇2ψx

]
= Ra θx +∇4ψ.
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3.3 Suppose that σ satisfies

p(σ) ≡ σ3 + aσ2 + bσ + c = 0,

and that a, b and c are positive. Suppose, firstly, that the roots are all real.
Show in this case that they are all negative.

Now suppose that one root (α) is real and the other two are complex conjugates
β ± iγ. Show that α < 0. Show also that β < 0 if a > α. Show that a > α if
p(−a) < 0, and hence show that β < 0 if c < ab.

If

a = K2

(
Pr + 1 +

1

Le

)
,

b = K4

(
Pr +

1

Le
+
Pr

Le

)
+
k2

K2
Pr(Rs−Ra),

c =
K6

Le
Pr + k2Pr

(
Rs− Ra

Le

)
,

show that a, b, c > 0 if Ra < 0, Rs > 0, and show that if Le > 1, then c < ab.

What does this tell you about the stability of a layer of fluid which is both
thermally and salinely stably stratified?

3.4 Suppose that σ satisfies

p(σ) ≡ σ3 + aσ2 + bσ + c = 0,

and that all the roots have negative real part if c < ab. Show that the condition
that there be two purely imaginary roots ±iΩ is that c = ab, and deduce that
there are two (complex) roots with positive real part if c > ab. With

a = K2

(
Pr + 1 +

1

Le

)
,

b = K4

(
Pr +

1

Le
+
Pr

Le

)
+
k2

K2
Pr(Rs−Ra),

c =
K6

Le
Pr + k2Pr

(
Rs− Ra

Le

)
,

show that this condition reduces to

Ra >

(
Pr +

1

Le

)
Rs

1 + Pr
+

(
1 +

1

Le

)(
Pr +

1

Le

)
Pr

K6

k2
.

Assuming K2 = k2+m2π2, where m is an integer, show that the minimum value
of Ra where this condition is satisfied is when m = 1, and give the corresponding
critical value Raosc.
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3.5 On the line XV in figure 3.9, the cubic

p(σ) = σ3 + aσ2 + bσ + c

has two positive real roots β and one negative real root α. Show that the
condition for this to be the case is that

a = α− 2β, b = β2 − 2αβ, c = αβ2,

and deduce that
aβ2 + 2bβ + 3c = 0. (1)

Show also that at the double root β,

3β2 + 2aβ + b = 0. (2)

Deduce from (1) and (2) that

β =
9c− ab
a2 − 6b

,

and hence, using (2), that

β = 1
3

[
−a+ {a2 − 3b}1/2

]
. (3)

Explain why the positive root is taken in (3), and why we can assume b < 0.

Use the definitions

a = K2

(
Pr + 1 +

1

Le

)
,

b = K4

(
Pr +

1

Le
+
Pr

Le

)
+
k2

K2
Pr(Rs−Ra),

c =
K6

Le
Pr + k2Pr

(
Rs− Ra

Le

)
,

to show that if Ra ∼ Rs � 1, Ra − Rs � 1 and Le � 1, then XV is
approximately given by

Ra ≈ Rs+
3K2Rs2/3

(4k2Pr)2/3
.

3.6 The growth rate σ for finger instabilities is given by

(σ +K2Pr)(σ +K2)

(
σ +

K2

Le

)
+ k2Pr

[
(Rs−Ra)σ

K2
+Rs− Ra

Le

]
= 0,

and Ra,Rs < 0 with −Ra,−Rs� 1; K is defined by K2 = k2 + π2.
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Define Rs = Ra r, and consider the behaviour of the roots when Ra → −∞
with r fixed. Show that when k is O(1), one root is given by

σ =

(
r − 1

Le

)
K2

1− r
+O

(
1

|Ra|

)
, (∗)

and that this is positive if
1

Le
< r < 1.

Show that the other two roots are of O
(
|Ra|1/2

)
, and by putting

σ = |Ra|1/2Σ0 + Σ1 + . . . ,

show that they are given by

σ = ±i k
K
{Pr(Ra−Rs)}1/2 − 1

2
K2

Pr +
1− 1

Le
1− r

+O

(
1

|Ra|1/2

)
,

and thus represent stable modes.

Show further that when k is large, an appropriate scaling when (∗) breaks down
is given by

k = |Ra|1/4α, σ = |Ra|1/2Σ,

and write down the equation satisfied by Σ in this case. Show also that when
α is large, the three roots are all negative, with Σ ∼ −α2S, and S = Pr, 1, or
1

Le
.

Deduce that the maximal growth rate for finger instability occurs when k ∼
|Ra|1/4.

3.7 The scaled Boussinesq equations for two-dimensional thermal convection at in-
finite Prandtl number and large Rayleigh number R in 0 < x < a, 0 < z < 1,
can be written in the form

ω = −∇2ψ,

∇2ω =
1

δ
Tx,

ψxTz − ψzTx = δ2∇2T,

where δ = R−1/3. Explain what is meant by the Boussinesq approximation, and
explain what the equations represent. Explain why suitable boundary condi-
tions for these equations which represent convection in a box with stress free
boundaries, as appropriate to convection in the Earth’s mantle, are given by

ψ = 0, ω = 0, on x = 0, a, z = 0, 1,
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T = 1
2

on z = 0, T = −1
2

on z = 1, Tx = 0 on x = 0, a.

Show that, if δ � 1, there is an interior ‘core’ in which T ≈ 0, ∇4ψ = 0.

By writing 1−z = δZ, ψ = δΨ and ω = δΩ, show that Ψ ≈ us(x)Z, and deduce
that the temperature in the thermal boundary layer at the surface is described
by the approximate equation

usTx − Zu′sTZ ≈ TZZ ,

with
T = −1

2
on Z = 0, T → 0 as Z →∞.

If us is constant, find a similarity solution, and show that the scaled surface
heat flux q = ∂T/∂Z|Z=0 is given by

q =
1

2

√
us
πx
.

3.8 The Boussinesq equations describing the rise of a cylindrical plume are, ignoring
turbulent eddy viscosity,

(ru)r + rwz = 0,

uwr + wwz = g′,

ug′r + wg′z = 0,

in which r and z are cylindrical coordinates, u and w are radial and vertical
velocities, and g′ is the reduced gravity. Explain the basis for the derivation of
these equations, including a definition of what is meant by the ‘reduced gravity’.

Write the equations in the form

Aφr +Bφz = c,

and hence show that the characteristics
dr

dz
= λ satisfying det (A−λB) = 0 are

λ =
u

w
,
u

w
, ∞.

What is meant by saying that the third characteristic is ∞? What might make
it finite?

Define a suitable stream function ψ for the flow, and show that the character-
istics are the streamlines.

Assuming the plume emerges from a chimney of finite radius a with uniform
upwards speed w0 and uniform buoyancy (reduced gravity) g0 > 0, and that
entrainment occurs at the plume edge, write down suitable boundary conditions
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for the flow, and draw a sketch of the resulting characteristic diagram. (Assume
that the plume boundary b(z) > a.)

By explicitly solving the characteristic equations, show that the edge of the
central part of the plume is given by

r =
a(

1 +
2g0z

w2
0

)1/4
.

What happens if g0 < 0? Explain this physically.

3.9 The equations describing the steady motion of a turbulent plume in z > 0 and
0 < r < b(z) (using cylindrical polar coordinates) are

(ru)r + rwz = 0,

uwr + wwz = g′ +
1

r

∂

∂r

[
νT r

∂w

∂r

]
,

N2w + ug′r + wg′z =
1

r

∂

∂r

[
νT r

∂g′

∂r

]
,

where u and w are radial and vertical velocities, g′ is the reduced gravity, N is
the Brunt–Väisälä frequency, and the eddy viscosity is assumed to be

νT = εT bw,

where εT � 1. Boundary conditions for the flow are

w = g′ = 0, u = −αw̄ at r = b,

where w̄ is the cross-sectional average of w and α (≈ 0.1) is a positive constant,
and

w = w0, g′ = g0 ≡
g∆ρ

ρ0

at z = 0, 0 < r < a,

where also b(0) = a.

Assuming a stratified atmosphere in which − 1

ρ0

∂ρ0

∂z
∼ 1

H
(H is the scale height)

and that w0 <∼
√
g0l, show how to non-dimensionalise the equations so that all

the terms in each equation balance. Hence show that the plume aspect ratio is

εT , and that the natural length scale is l ∼ H∆ρ

ρ0

.

By defining a stream function ψ with ψ = 0 on r = 0 and ψ > 0 for r > 0,
make a Von Mises transformation from variables z, r to z, ψ, and hence show
that w and g′ satisfy nonlinear diffusion-type equations.
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3.10 An isolated turbulent cylindrical plume in a stratified medium of density ρ0(z)
is described by the inviscid Boussinesq equations

uur + wuz = − 1

ρ0

pr,

uwr + wwz = − 1

ρ0

pz −
ρ

ρ0

g,

uρr + wρz = 0,

1

r
(ru)r + wz = 0,

where (r, z) are cylindrical coordinates, (u,w) the corresponding velocity com-
ponents, p the pressure, ρ the density, ρ0 the reference density, and g is the
acceleration due to gravity. If ρ = ρ0 − ∆ρ, explain what is meant by the
Boussinesq approximation.

Suppose the edge of the plume is at radius r = b, such that w = 0 there.
Suppose also that the plume entrains ambient fluid, such that

(ru)|b = −bαw̄,

where w̄ denotes the cross-sectional average value of w. Deduce that the plume
volume flux

Q = 2π

∫ b

0

rw dr

satisfies
dQ

dz
= 2παbw̄.

The momentum flux is defined by

M = 2π

∫ b

0

rw2 dr.

Show that, assuming that
∂p

∂z
= −ρ0g

throughout the plume, that

dM

dz
= 2π

∫ b

0

rg′ dr,

where

g′ =
g∆ρ

ρ0

.

Why would the hydrostatic approximation be appropriate?
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The buoyancy flux is defined by

B = 2π

∫ b

0

rwg′ dr;

assuming g′ = 0 at r = b, show that

dB

dz
= −N2Q,

where the Brunt–Väisälä frequency N is defined by

N =

(
−gρ

′
0(z)

ρ0

)1/2

.

3.11 The buoyancy flux B, momentum flux M , and mass flux Q of a turbulent plume
in a stratified atmosphere satisfy the equations

dB

dz
= −N2Q,

dM

dz
= 2π

∫ b

0

rg′ dr,

dQ

dz
= 2παbw,

where w is the plume velocity, b is its radius, g′ is the reduced gravity, N is the
Brunt–Väisälä frequency, α ≈ 0.1 is an entrainment coefficient, and r and z are
radial and axial coordinates. Assuming that

2π

∫ b

0

rA dr = πb2A

for any plume quantity, assumed to be approximated by a top hat profile, show
that

dB

dz
= −N2Q,

dM

dz
=
BQ

M
,

dQ

dz
= 2π1/2αM1/2.

Now suppose that B = B0, M = Q = 0 at z = 0. By non-dimensionalising the
equations appropriately, show that the level of neutral buoyancy where B = 0
is given by

zs =
ζs

(2απ1/2)1/2

B
1/4
0

N3/4
,
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where ζs is a numerical constant (it is approximately measured to be 1.5). Write
down the equations and boundary conditions necessary to determine ζs, and by
integrating them, show that

ζs =

∫ 1

0

db[
2

∫ 1

b

(1− β2)1/4 dβ

]1/2
.

If, instead, w = w0 and b = b0 at z = 0, show that the same model to determine
zs is valid provided w0 and b0 are small enough, and specifically if

w0 �
g′

N
, b2

0w0 �
g′3

N5
.

Show that if the first inequality is satisfied, then the second is as well, provided

b0 <∼
g′

N2
.

If the scale height of the medium is h (i. e., ρ′0/ρ ∼ 1/h), show that these two
inequalities take the form

w0 �
∆ρ

ρ0

√
gh, b0 <∼

∆ρ

ρ0

h.
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