Chapter 5-multiple scales
\rightarrow typically needed when there are two time cr lengin scales in a differential equation.
(Processes have their con scales which act simultaneensly...)
5.1 van der Pol oscillater

$$
\ddot{x}+\varepsilon \dot{x}\left(x^{2}-1\right)+x=0 \quad \text { with } 0<\varepsilon \ll 1 \text { with } x=1, \dot{x}=0 \quad e+=0
$$

Treating the problem as a regular perturbation expansiai:

$$
x \sim x_{0}+\varepsilon x_{1}+\ldots \quad \text {-expand and whect terms at each cropper: }
$$

$0(1): \ddot{x}_{0}+x_{0}=0 \operatorname{mth} x_{0}(0)=1, x_{0}(0)=0 \Rightarrow x_{0}(t)=$ cost .
$O(\Sigma): \ddot{x}_{1}+x_{1}=-\left(x_{0}^{2}-1\right) \dot{x}_{0}=\left(1-\cos ^{2} t\right)(-\sin t)=\frac{1}{4} \sin 3 t-\frac{3}{4} \sin t$

$$
x_{1}(t)=\frac{3}{8}(t \cos t-\sin t)-\frac{1}{32}(\sin 3 t-3 \sin t)
$$

will generate a resonant term...
Putting the term together:

$$
x(t ; \varepsilon) \sim \cos t+\varepsilon[\frac{3}{8}(\underbrace{\cos t}_{7}-\sin t)-\frac{1}{32}(\sin 3 t-3 \sin t)]+\cdots
$$

vand fer fixed as $\varepsilon \rightarrow 0$, but breaks down as $t \sim 0\left(\frac{1}{\varepsilon}\right)$ because of the resonant terms.
Problem: damping term ally changes the solution by $O(1)$ aver a timescale of $O\left(\frac{1}{\Sigma}\right)$-le tr's a slow accumulation of small eltects.
le the processes on the arfterent timescales are fast
oscillations and slow damping.
Solution - introduce two time vanables: $\tau=t$-fast time of

$$
\tau=t-\text { fast time of }
$$

$$
T=\Sigma t-\begin{aligned}
& \text { Oscillation } \\
& \text { slowtimect }
\end{aligned}
$$ amplitude ant.

seel a solution

$$
x(t ; \varepsilon)=x\left(\tau_{1} T ; \varepsilon\right)
$$

$$
V_{\text {treat } \tau} \text { and } T \text { as Independent. }
$$

$$
\left.\begin{array}{l}
\frac{d}{d t}=\frac{d \tau}{d t} \cdot \frac{\partial}{\partial \tau}+\frac{d T}{d t} \frac{\partial}{\partial T}=\frac{\partial}{\partial \tau}+\Sigma \frac{\partial}{\partial T} \\
\frac{d^{2}}{d t^{2}}=\frac{\partial^{2}}{\partial \tau^{2}}+2 \varepsilon \frac{\partial^{2}}{\partial \tau \partial T}+\varepsilon^{2} \frac{\partial^{2}}{\partial T^{2}}
\end{array}\right\}
$$

$$
\text { Converts ODES } \rightarrow \text { PDEs }
$$

le makes the problem more complicated! lusnally we am to go the over way - to see that this simphties the problem we heep gang...)
Expand: $x(\tau, T ; \varepsilon) \sim x_{0}\left(\tau_{1} T\right)+\varepsilon x_{1}\left(\tau_{1} T\right)+\ldots$ as $\varepsilon \rightarrow 0^{+}$.

$$
\begin{gathered}
o\left(\varepsilon^{0}\right): \frac{\partial^{2} x_{0}}{\partial \tau^{2}}+x_{0}=0 \text { with } x_{0}=1, \frac{\partial x_{0}}{\partial \tau}=0 \text { at } t=0 \\
\Rightarrow x_{0}(\tau, T)=R(T) \cos (\tau+\theta(T)) .
\end{gathered}
$$

amputnde and phase constant as far as the fast timescale τ concerned, but vary on slow timescale t.
CS $\Rightarrow R(0)=1$ and $\theta(0)=0<0 \mid W R(T), \theta(T)$ as yet undetermmed.

$$
\begin{align*}
O\left(\Sigma^{\prime}\right): \frac{\partial^{2} x_{1}}{\partial \tau^{2}}+x_{1}= & -\frac{\partial x_{0}}{\partial \tau}\left(x_{0}^{2}-1\right)-2 \frac{\partial^{2} x_{0}}{\partial \tau \partial T} \\
= & 2 R \frac{d \theta}{d T} \cos (\tau+\theta)+\left(2 R_{T}+\frac{1}{4} R^{3}-R\right) \sin (\tau+\theta) \\
& +\frac{1}{4} R^{3} \sin (3(\tau+\theta))
\end{align*}
$$ mill resonate

with $x_{1}=0, \quad \frac{\partial x_{1}}{\partial \tau}=-\frac{\partial x_{0}}{\partial T}=-\frac{d R}{d T}$ at $t=0$

$$
\binom{\text { comes tom the } O\left(\varepsilon^{\prime}\right) \text { term at } t=0 \text { : }}{\frac{\partial x_{1}}{\partial \tau}+\frac{\partial x_{0}}{\partial T}=0}
$$

* So we need to remove them ar the expansion mill cease to be valid for $t \sim O\left(\frac{1}{\Sigma}\right)$ (again!).
\rightarrow use me freedom in $R(T), Q(T)$ to do this...

Secularity conditions: $\quad 2 R \frac{d \theta}{d T}=0 \Rightarrow \frac{d \theta}{d T}=0$

$$
2 \frac{d R}{d T}+\frac{1}{4} R^{3}-R=0 \Rightarrow \frac{d R}{d T}=\frac{1}{8} R\left(4-R^{2}\right)
$$

Solving: $\quad \theta(T) \equiv 0$

$$
R(T)=2\left(1+3 e^{-T}\right)^{-\frac{1}{2}}
$$

$$
\text { (using } \theta(0)=0 \text { and } R(0)=1)
$$

$\rightarrow 2$ as $T \rightarrow \infty$ (is a stable unit cycle)

$$
\therefore x(t) \sim x_{0}\left(\tau_{1} T\right)=\frac{2}{\left(1+3 e^{-\varepsilon t}\right)^{\frac{1}{2}}} \cos t+o(\varepsilon)
$$

Can evaluate x_{1} as $x_{1}(\tau, T)=-\frac{1}{32} R^{3} \sin 3 \tau+s(T) \sin (\tau+\varphi(T))$ amphinde + phase the. will be determmed by terms again a seculanty condition on $x_{2} \ldots$
At higher orders, we would intact ind that reschant forcing is impossible to acid - eg in solving fer x_{1} we cannot avoid resonance in x_{2}. Can be mitigated by introducing another "slow-slow" timescale: $T_{2}=\varepsilon^{2} t$.
generally, At simpuries
NB could do everything using expanentials: The algebra!

$$
x_{0}=R(T) \cos |\tau+\theta(T)|=\frac{1}{2}\left(A e^{i \tau}+\bar{A} e^{-i \tau}\right) \text { meh } A=A(R, \theta)=R e^{i \theta}
$$

$o\left(\varepsilon^{\prime}\right): \quad \frac{\partial^{2} x_{1}}{\partial \tau^{2}}+x_{1}=-2 \frac{\partial^{2} x_{0}}{\partial \tau \partial T}-\left(x_{0}^{2}-1\right) \frac{\partial x_{0}}{\partial \tau}$

$$
\begin{aligned}
& =-i\left[\frac{d A}{d T} e^{i \tau}+\frac{d \bar{A}}{d T} e^{-i \tau}\right]-\left[\frac{1}{4}\left(A e^{i \tau}+\bar{A} e^{-i \tau}\right)^{2}-1\right] \cdot \frac{1}{2}\left[A e^{i \tau}\right. \\
& =\left[-i\left(\frac{d A}{d T}-\frac{1}{8} A\left(4-|A|^{2} \mid\right) e^{i \tau}+c . C .\right]+\right.\text { nonsecular terms. }
\end{aligned}
$$

suppressing resonant terms: $\frac{d A}{d T}=\frac{1}{8} A\left(4-|A|^{2}\right)$

$$
\left.\Rightarrow \frac{d R}{d T} e^{i \theta}+\mathbb{R} \frac{d \theta}{d T} e^{i \theta}=R e^{i \theta} \cdot \frac{1}{8}\left(4-R^{2}\right) \quad l m: R \frac{d \theta}{d T}=0 \quad \begin{array}{l}
\text { Re: } \frac{d R}{d T}=\frac{1}{8} R\left(4-R^{2}\right)
\end{array}\right\} \begin{gathered}
\text { sameeqns } \\
\text { as befere! }
\end{gathered}
$$

Homogenisation
Example $\quad \frac{d}{d x}\left(D\left(x, \frac{x}{\Sigma}\right) \frac{d u}{d x}\right)=f(x) \quad x \in(0,1)$ moth $u(0)=a, u(1)=b$ and $0<\varepsilon \ll 1$.

$$
O<D_{-}(x)<D\left(x, \frac{x}{2}\right)<D_{+}(x) \text { with } D_{ \pm} \text {continuous. }
$$

$$
\text { Fer eg } D\left(x, \frac{x}{\Sigma}\right)=10+x+\frac{1}{4} \sin \left(\frac{x}{\varepsilon}\right) \quad{ }_{0}^{0}
$$

Question - can we approximate by

$$
\begin{array}{r}
\frac{d}{d x}\left(\bar{\delta}(x) \frac{d u}{d x}\right)=f(x) \quad x \in(0,1) \\
u(0)=a \\
u(1)=b
\end{array} ?
$$

use the method ct multiple scales: let $u\left(x_{i} \varepsilon\right)=u\left(x_{1} X_{i} \varepsilon\right)$ with $X=x / \varepsilon$.
(NB here I'll unite $x=x$ and $X=\frac{x}{\Sigma}$ to make clear which x is which!)

$$
\begin{aligned}
& \frac{d}{d x} \mapsto \frac{\partial}{\partial x}+\frac{1}{\varepsilon} \frac{\partial}{\partial X} \Rightarrow\left(\frac{\partial}{\partial x}+\frac{1}{\varepsilon} \frac{\partial}{\partial x}\right)\left(D(x, x)\left(\frac{\partial}{\partial x}+\frac{1}{\varepsilon} \frac{\partial}{\partial x}\right) u\right)=f(x) \\
& \text { le }\left(\varepsilon \frac{\partial}{\partial x}+\frac{\partial}{\partial x}\right)\left(D(x, x)\left(\varepsilon \frac{\partial}{\partial x}+\frac{\partial}{\partial x}\right) u\right)=\varepsilon^{2} f(x) \\
& \text { Let } u(x, x ; \varepsilon)=u_{0}(x, x)+\sum u_{1}(x, x)+\cdots \quad \varepsilon^{2} \text { nero } \Rightarrow \text { mil } \\
& \text { need to go to } \\
& \text { higherarder in } \\
& \text { uni calculation! }
\end{aligned}
$$

$$
\begin{aligned}
& O\left(\varepsilon^{0}\right): \quad\left(D\left(x_{1} x\right) u_{0 x}\right)_{x}=0 \\
& O\left(\varepsilon^{\prime}\right):\left(D\left(x_{1} x\right)\left[u_{1 x}+u_{0 x}\right]\right)_{x}+\left(D\left(x_{1} x\right) u_{0 x}\right)_{x}=0 \\
& O\left(\varepsilon^{2}\right):\left(D\left(x_{1} x\right)\left[u_{2 x}+u_{1 x}\right]\right)_{x}+\left(D\left(x_{1} x\right)\left[u_{1 x}+u_{0 x}\right]\right)_{x}=f(x)
\end{aligned}
$$

Integrating at $O\left(\varepsilon_{0}\right)$: $D(x, X) u_{0 x}=c_{1}(x)$

$$
\Rightarrow u_{0}\left(x_{1} x\right)=c_{2}(x)+c_{1}(x)+\int_{0}^{x} \frac{1}{D(x, s)} d s
$$

Note that $\int_{0}^{x} \frac{1}{D(x, s)} d s \sim \operatorname{crd}(x)$ as $x \rightarrow \infty$ since $D(x, x)$ is bounded
Recall that $X=\frac{x}{\varepsilon}$ so as we tale $\varepsilon \rightarrow 0, X \rightarrow \infty$ and the Mtegral blows up \Rightarrow Need $c_{1}(x) \equiv 0$ to heep the Solution bounded $l^{\prime} . u_{0}=u_{0}(x)$.

$$
\begin{aligned}
o\left(\varepsilon^{\prime}\right): \quad\left(D(x, x)\left[u_{1 x}+u_{0 x}\right]\right) & \underbrace{}_{=}+(D\left(x_{1} x\right) \underbrace{u_{0 x}}_{=0})_{x}
\end{aligned}=0
$$

Then, similarly, fer $u_{1}\left(x_{1} x\right)$ to be bounded, we need the ard (x) terms to balance ie.

$$
\begin{aligned}
& d_{1}(x)=\lim _{x \rightarrow \infty}\left[x / \int_{0}^{x} \frac{1}{D(x, s)} d s\right] u_{0 x}:=D_{H}(x) u_{0} x \\
& O\left(\varepsilon^{2}\right):\left(D(x, x)\left[u_{2 x}+u_{1 x}\right]\right)_{x}+\underbrace{\left(D(x, x)\left[u_{1 x}+u_{0 x}\right]\right)_{x}}_{=d_{1}(x)}=f(x) \\
& \Rightarrow\left(P\left(x_{1} x\right)\left[u_{2 x}+u_{1 x}\right]\right)_{x}=f(x)-d_{1}^{\prime}(x)=d_{1} x \\
& \Rightarrow D\left(x_{1} X\right)\left[u_{2 x}+u_{1 x}\right]=e_{1}(x)+\left(f(x)-d_{1}^{\prime}(x)\right) X \\
& u_{2 x}=\frac{1}{D\left(x_{1} X\right)}\left[e_{1}(x)+\left(f(x)-d_{1}^{\prime}(x)\right) X\right]-u_{1 x} \\
& \therefore u_{2}(x, x)=e_{2}(x)+\underbrace{e_{1}(x) \int_{0}^{x} \frac{1}{D(x, s)} d s}, \operatorname{crd}(x) \text { as } x \rightarrow \infty \\
& +\left(f(x)-d_{1 x}\right) \int_{0}^{x} \frac{s}{D(x, s)} d s+\int_{0}^{x} u_{1 x} d s \\
& \operatorname{cra}\left(x^{2}\right) \text { as } x \rightarrow \infty \\
& \operatorname{ard}(x) \text { as } x \rightarrow \infty
\end{aligned}
$$

L_{\rightarrow} has nothing to balance it as $X \rightarrow \infty$

Recall that $d_{1}(x)=\lim _{x \rightarrow \infty}\left[X / \int_{0}^{x} \frac{1}{D(x, S)} d s\right] u_{0 x}=D_{H}(x) u_{0 x}$
Then we need $f(x)=d_{1 x} \Rightarrow \frac{d}{d x}\left[D_{H}(x) \frac{d u_{0}}{d x}\right]=f(x)$
\uparrow This is the homogenised equ!
NB If $D\left(x_{1} X\right)$ is penodic, say with penodi, then D_{H} simphties bytaking $X \in \mathbb{N}$ so that

$$
D_{H}=\lim _{X \rightarrow \infty}\left[X / \widetilde{X \int_{0}^{1}} \frac{1}{D(x, s)} d s\right]=\left[\int_{0}^{1} \frac{1}{D(x, s)} d s\right]^{-1}
$$

Chapter 6 the WKB method
(wentzel, Framers and Brillown)
Singmar perturbation problem that does not have boundary layers:

$$
\varepsilon^{2} y^{\prime \prime}+y=0 \quad(0<\varepsilon \ll 1)
$$

- Oscullatery solunons of the form $y=A \cos \left(\frac{x}{\Sigma}+\theta\right)$
- Typical ct many problems arising in ughtrequency oscullanous wave propagancin
- Need a method to deal asymptotically $\left(\varepsilon \rightarrow 0^{+}\right)$m th the se problems.

The WKB method is such a method fer uneair wave propagation problems. consider $\varepsilon^{2} y^{\prime \prime}+q(x) y=0$ moth $q(x)>0$ in the region a interest.

- Leads to the question of what happens when the frequency of oscullanons is modulated an the show scale.
\rightarrow For the van der POl oscullater, vi the Mot M s example, we saw that the amplitude was modulated ar the slow scale. So, here we expect that the frequency milibe modulated on the shows cate.

First-iry the m of $M s$ - and see mat it tails to capture the dynamics.
Let $\varepsilon X=x \Rightarrow \frac{d^{2} y}{d X^{2}}+q(\Sigma X) y=0 \leftarrow \underset{\substack{\text { oscullatermite sonly } \\ \text { varying frequency. }}}{\text { on d }}$
We might be tempted to men unite $y=y(x, X)$ so mat

$$
\frac{\partial^{2} y}{\partial x^{2}}+2 \frac{\partial^{2} y}{\partial x \partial x}+\varepsilon^{2} \frac{\partial^{2} y}{\partial x^{2}}+q(x) y=0 \quad\left(\frac{\partial y}{\partial x}=\frac{\partial y}{\partial x}+\varepsilon \frac{\partial y}{\partial x}\right)
$$

Expand as $y=y_{0}+\varepsilon y_{1}+\cdots$ and collect terns to give
$O(1): \frac{\partial^{2} y_{0}}{\partial x^{2}}+q(x) y_{0}=0 \quad \Rightarrow y_{0}=A(x) \cos \left(q(x)^{1 / 2} x+\theta(x)\right)$
arbitrary functions of x determined by seculainty conditions at $O(\varepsilon)$

$$
O(\Sigma): \quad \frac{\partial^{2} y_{1}}{\partial X^{2}}+\frac{2 \partial^{2} y_{0}}{\partial x \partial X}+q(x) y_{1}=0
$$

$$
\Rightarrow \frac{\partial^{2} y_{1}}{\partial x^{2}}+q(x) y_{1}=2 \frac{\partial}{\partial x}\left(A(x) q(x)^{1 / 2} \sin \left(q(x)^{1 / 2} x+\theta(x)\right)\right)
$$

$$
=2 \frac{d}{d x}\left(A q^{1 / 2}\right) \sin \left(q^{1 / 2} x+\theta\right)
$$

$$
-2 A q^{1 / 2}\left(X \frac{d q^{1 / 2}}{d x}+\frac{d \theta}{d x}\right) \cos \left(q^{1 / 2} X+\theta\right)
$$

Need both coefinuents to be zero to avoid resonant terms (secularity condition)

$$
\Rightarrow \frac{d}{d x}\left(A q^{1 / 2}\right)=0 \quad \text { and } \quad x \frac{d q^{1 / 2}}{d x}+\frac{d \theta}{d x}=0
$$

Since $q=q(x)$ and $\theta=\theta(x)$
this cannot be satished for $\forall X$
\rightarrow mill happen whenever the frequency of the fast oscillation depends on the slow scale.

Instead of the Mot $M S$, we need to use a WKB expansion ct the form $y(x)=e^{i \varphi(x) / \varepsilon} A(x ; \varepsilon) \quad$ NB we mitimarely want a real solution-
mill ultimately expand
$A(x ; \varepsilon)$ using an
asymptotic expansion (bu trot φ).

Then $\frac{d y}{d x}=e^{i \varphi(x) / \varepsilon}\left[\frac{i \varphi^{\prime}(x)}{\Sigma} A+A^{\prime}\right]$

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}=e^{i \varphi(x) / \varepsilon}\left[-\frac{\left(\varphi^{\prime}\right)^{2}}{\varepsilon^{2}} A+\frac{2 i \varphi^{\prime}}{\varepsilon} A^{\prime}+\frac{i \varphi^{\prime \prime}}{\Sigma} A+A^{\prime \prime}\right] \\
\therefore & e^{i \varphi(x) / \varepsilon}\left[-\frac{\left(\varphi^{\prime}\right)^{2}}{\varepsilon^{2}} A+\frac{2 i \varphi^{\prime}}{\varepsilon} A^{\prime}+\frac{i \varphi \varphi^{\prime \prime}}{\Sigma} A+A^{\prime \prime}\right]+q(x) e^{i \varphi(x) / \varepsilon}=0 \\
\Rightarrow & \varepsilon^{2} A^{\prime \prime}+2 i \varepsilon \varphi^{\prime} A^{\prime}+\left[-\varphi^{\prime 2}+i \varepsilon \varphi^{\prime \prime}+q\right] A=0 .
\end{aligned}
$$

Now, expand A by uniting $A=A_{0}+\Sigma A_{1}+\cdots$, substitute and conect terms:

$$
0(1): \quad\left[-\varphi^{\prime 2}+q_{0}\right] A_{0}=0 \Rightarrow \varphi^{\prime}(x)^{2}=q_{0}(x)
$$

$$
\text { ie } \varphi^{\prime}(x)= \pm \sqrt{q_{0}(x)}
$$

Hence, at leading order,

$$
y=e^{i \varphi(x) / \varepsilon} A(x ; \varepsilon) \sim e^{i \varphi(x) / \varepsilon} A_{0}(x)
$$

le $y(x)=\frac{\alpha_{+}}{[q(x)]^{1 / 4}} e^{\frac{i}{2} \int^{x} \sqrt{q(s)} d s}+\frac{\alpha-}{[q(x)]^{1 / 4}} e^{-\frac{i}{\varepsilon} \int^{x} \sqrt{q(s)} d s}$
loner units can
$N B$ insisting $y \in \mathbb{R}$ - sivice we hare $e^{ \pm i / s}$ then we need $\alpha_{+}=\bar{\alpha}_{-}$ie .c.s.
be absorbed into $\alpha_{ \pm}$-as is easiest for a given problem

$$
\begin{aligned}
& O(\varepsilon): \quad \frac{2 \varphi^{\prime} A_{0}^{\prime}+\varphi^{\prime \prime} A_{0}+\underbrace{\left[-\varphi^{\prime 2}+q_{0}\right]}_{=0} A_{1}=0}{} \\
& \Rightarrow 2 \varphi^{\prime} A_{0}^{\prime}+\varphi^{\prime \prime} A_{0}=0 \\
& \text { ie } \frac{2 A_{0}^{\prime}}{A_{0}^{\prime \prime}}+\frac{\varphi^{\prime \prime}}{\varphi^{\prime}}=0 \Rightarrow \log \left(A_{0}^{2} \varphi^{\prime}\right)=\text { constant } \\
& \uparrow_{\text {recall } \varphi(x) \text { input }} \quad \Rightarrow A_{0}=\frac{\alpha}{\sqrt{\varphi^{1}}} \quad \alpha \in \mathbb{C} .
\end{aligned}
$$

At higherorder:

$$
O\left(\Sigma^{n+1}\right): \quad A_{n-1}^{\prime \prime}+2 i \varphi^{\prime} A_{n}^{\prime}+i \varphi^{\prime \prime} A_{n}=0 \quad \text { (firstorder, unear equs) }
$$

$$
2 i \sqrt{\varphi^{\prime}}\left(\left(\varphi^{\prime}\right)^{2} A_{n}\right)^{\prime}=-A_{n-1}^{\prime \prime}
$$

$$
\Rightarrow A_{n}=\frac{i}{2 \sqrt{\varphi^{\prime}}} \int \frac{A_{n-1}^{\prime \prime}}{\sqrt{\varphi^{\prime}}} d x
$$

using integrating factors

Q- What happens if we have a $q(x)$ instead that has $q(x)=0$ fer some. leg as we go from $q(x)<0 \rightarrow q(x)>0)$?

NB change from $\sin l \cos \rightarrow e^{ \pm}$..
Example
\rightarrow semi-classical quantum turning paints.
ID steady state schrodinger equ:

$$
\psi^{\prime \prime}-x^{2} \psi=-E \psi \text { meth } \psi \rightarrow 0 \text { as } x \rightarrow \infty \text { and } \psi^{\prime}(0)=0 \quad(x \in \mathbb{R}, \psi \in \mathbb{C})
$$

Take an even reflection of 4 to generate an even wave function for $x \in \mathbb{R}$
Problem- find the large $(E \gg 1$) eigenvalues NB-cananly find a solution fer same values of E-known as the energy lever.
Rescale: $y=4, x=\frac{\bar{x}}{\Sigma}$ min $\varepsilon=\frac{1}{E}$
\swarrow (dropping bars)

$$
\Rightarrow \quad \varepsilon y^{\prime \prime}+\left(1-x^{2}\right) y=0 \text { and } y(\infty)=0, y^{\prime}(0)=0 \quad 0<\varepsilon \ll 1
$$

Proceeding exactly as betere: $y=e^{i \varphi(x) / \varepsilon} A(x ; \varepsilon) \sim e^{i \varphi(x) / \varepsilon} \sum \Sigma^{n} A_{n}(x)$
(NB problem of the same form but domain is duftecent.)

$$
\begin{aligned}
& O\left(\varepsilon^{0}\right): \quad \varphi^{\prime}(x)= \pm \sqrt{1-x^{2}} \\
& O\left(\varepsilon^{\prime}\right): \quad A_{0}(x)=\frac{\text { constant }}{\left(1-x^{2}\right)^{1 / 4}}
\end{aligned}
$$

Blows up as $x \rightarrow 1$ - an Indication the WKB will not warn close to $x=1$, but it will nom either sidle lower regions).

Using the WKB expansion:

$$
\begin{aligned}
0<x<1 \quad y & \sim \frac{m_{0}}{\left(1-x^{2}\right)^{1 / 4}} e^{i / \varepsilon} \int_{0}^{x} \sqrt{1-s^{2}} d s \\
& \sim \frac{N_{0}}{\left(1-x^{2}\right)^{1 / 4}} e^{-i / \varepsilon} \int_{0}^{x} \sqrt{1-s^{2}} d s \\
\left(1-x^{2}\right)^{1 / 4} & \cos \left(\frac{1}{\varepsilon} \int_{0}^{x} \sqrt{1-s^{2}} d s\right)+\frac{k_{0}}{\left(1-x^{2}\right)^{1 / 4}} \sin \left(\frac{1}{\varepsilon} \int_{0}^{x} \sqrt{1-s^{2}} d s\right)
\end{aligned}
$$

Then $y^{\prime}(0)=\left.\frac{d}{d x}\left(\frac{P_{0}}{\left(1-x^{2}\right)^{1 / 4}}\right)\right|_{x=0}+\frac{k_{0}}{\Sigma}+0(1)=0 \quad$ (LHOUTER)
hence, at leading order, $k_{0}=0$

$$
\begin{gathered}
\Rightarrow y \sim \frac{P_{0}}{\left(1-x^{2}\right)^{1 / 4}} \cos \left(\frac{1}{\Sigma} \int_{0}^{x} \sqrt{1-s^{2}} d s\right) \\
\underline{x>1} \quad y \sim \frac{Q_{0}}{\left(1-x^{2}\right)^{1 / 4}} e^{-\frac{1}{\varepsilon}} \underbrace{\int_{1}^{x} \sqrt{s^{2}-1} d s}_{a b}
\end{gathered}
$$

absabi into the integral (RHOUTER)

$$
=\sqrt{i^{2}\left(1-s^{2}\right)}=\sqrt{1-s^{2}}
$$

Solutions break down in a region around $x=1 \Rightarrow$ need to consider an inner region $e x=1$ and then mated to the $L H \mid R H$ outer solutions.
inner region (avound $x=1$) Let $x=1+\delta_{1}(\varepsilon) X$
anticipate $\delta_{1}(\varepsilon)$ small so that $X \rightarrow \infty$ marches the RHonter and $X \rightarrow-\infty$ matches the LH outer.
we don't know to the solutions linnerionter) will be an the same scale - since $\left(1-x^{2} 1^{-\frac{1}{2}}\right.$ blows up as we go from outer to inner

$$
\begin{align*}
& \Rightarrow \text { scale } Y(X)= \delta_{2}(\varepsilon) y \\
& \therefore \quad \varepsilon^{2} y^{\prime \prime}+\left(1-x^{2}\right) y=0 \Rightarrow \frac{\varepsilon^{2}}{\delta_{1}^{2}} y^{\prime \prime}(x)+\left(1-\left(1+\delta_{1} x\right)^{2}\right) y=0 \\
& \frac{\varepsilon^{2}}{\delta_{1}^{2}} y^{\prime \prime}(x)-\left(2 \delta_{1} x y+\delta_{1}^{2} x^{2} y\right)=0 \tag{1}
\end{align*}
$$

$N B$ (3) < (2)
Hence dominant balance is $\frac{\varepsilon^{2}}{\delta_{1}^{2}}=2 \delta_{1} \Rightarrow \delta_{1}=\left(\frac{\varepsilon^{2}}{2}\right)^{1 / 3}$ small

Let $Y(x)=y_{0}(x)+o(1)$
small correction - woult evaluate the scale!
Then $Y_{0}^{\prime \prime}(x)-x Y_{0}(x)=0 \quad-$ Boundary conditions mill cometrom matching with the LHIRHanter solus.
two unearly independent solus

$$
\begin{aligned}
& Y_{0}(x)=R_{0} A_{i}(x)+S_{0} B_{i}(x) \quad A_{i} \mid B_{i}-\text { Aryffunctions } \\
& A_{i}(x)=\frac{1}{\pi} \int_{0}^{\infty} \cos \left(\frac{1}{3} t^{3}+x t\right) d t \sim \frac{1}{2 \sqrt{\pi} x^{1 / 4}} e^{-2 / 3 x^{3 / 2}} \quad \text { as } x \rightarrow \infty \\
& \sim \frac{1}{\sqrt{\pi}(-x)^{1 / 4}} \sin \left(\frac{2}{3}(-x)^{3 / 2}+\frac{\pi}{4}\right) \\
& B_{i}(x)=\frac{1}{\pi} \int_{0}^{\infty} e^{\left(-\frac{1}{3} t^{3}+x t\right)} d t \sim \frac{1}{\sqrt{\pi} x^{1 / 4}} e^{2 / 3 x^{3 / 2}} \quad \text { as } x \rightarrow-\infty . \\
& \sim \frac{1}{\sqrt{\pi}(-x)^{1 / 4}} \cos \left(\frac{2}{3}(-x)^{3 / 2}+\frac{\pi}{4}\right)
\end{aligned}
$$

(Denving these expansions is a whole other exercise!)
Matching - inner $(X \rightarrow \infty)$ win RHonter $(x \rightarrow 1+)$
In the inner solution: $B_{i}(X) \rightarrow \infty$ as $X \rightarrow \infty \Rightarrow S_{0}=0$.
Otherwise everything scales with $\frac{1}{x^{1 / 4}} e^{-2 / 3 x^{3 / 2}}$
(using vomrorthe intermediate scaling)

So, we require that the coefficients match. Use an intermediate Vanable: recall first

$$
\begin{array}{lll}
0<x<1 & y \sim \frac{P_{0}}{\left(1-x^{2}\right)^{1 / 4}} \cos \left(\frac{1}{2} \int_{0}^{x} \sqrt{1-s^{2}} d s\right) & \text { LHOUTER } \\
x>1 & y \sim \frac{Q_{0}}{\left(1-x^{2}\right)^{1 / 4}} e^{-1 / \varepsilon} \int_{1}^{x} \sqrt{s^{2}-1} d s & \text { RHOUTER } \\
y \sim \frac{y_{0}(x)}{\delta_{2}(\varepsilon)}=\frac{R_{0} A_{i}(x)}{\delta_{2}(\varepsilon)} \quad x=1+\delta_{1}(\varepsilon) X, \delta_{1}(\varepsilon)=\frac{\varepsilon^{2 / 3}}{2^{1 / 3}} \quad \text { INNER }
\end{array}
$$

Matching $x-1=\delta_{1}^{\beta} \hat{x}=\delta_{1} X \quad \beta \in(0,1)$
Then $\varepsilon \rightarrow 0^{+}$gives $\delta_{1}^{\beta} \rightarrow 0 \Rightarrow x \rightarrow 1$ and $x \rightarrow \pm \infty$ (dependingon $\operatorname{sign}(\hat{x}))$

Tale $\hat{x}>0$ to match inner with RH cuter:

$$
\begin{aligned}
& Y_{0}=R_{0} A_{i}(X)=R_{0} A_{i}\left(\hat{x} / \delta_{1}^{1-\beta}\right) \sim R_{0} \frac{1}{2 \sqrt{\pi}}\left(\frac{\delta_{1}^{1-\beta}}{\hat{x}}\right)^{1 / 4} e^{-2 / 3} \frac{\hat{x}^{3 / 2}}{\left(\delta_{1}-\beta\right)^{3 / 2}} \\
& y \sim \frac{1}{\left(\left.(x-1)(x+1)\right|^{1 / 4}\right.} e^{-\frac{1}{\varepsilon} \int_{1}^{x} \sqrt{s^{2}-1} d s} \\
& \uparrow \text { let } s=1+\eta \text { with } \eta \text { small since } \\
& x \text { is close to } 1 \text {. } \\
& \int_{0}^{x} \sqrt{s^{2}-1} d s=\int_{0}^{x-1} \underbrace{\eta^{1 / 2} 2^{1 / 2}}_{\text {justtuis }}(1+\underbrace{\left.\frac{1}{2} \eta\right)^{1 / 2}}_{\text {neglect at }} d \eta \\
& \begin{array}{r}
=\sqrt{2} \frac{2}{3}(x-1)^{3 / 2} \text { leading } \\
\text { order }
\end{array} \\
& \text { Then, at leadingorder, } \\
& \text { order }
\end{aligned}
$$

$$
\begin{aligned}
\delta_{2} y_{0} & \sim \frac{\delta_{2} \varphi_{0}}{2^{1 / 4} \delta_{1}^{\beta / 4} \hat{x}^{1 / 4}} \exp \left[\frac{1}{\sqrt{2} \delta_{1}^{3 / 2}} \sqrt{2} \cdot \frac{2}{3}\left(\delta_{1}^{\beta}\right)^{3 / 2} \hat{x}^{3 / 2}\right] \\
& \sim \frac{\delta_{2} \varphi_{0}}{2^{1 / 4} \delta_{1}^{\beta / 4} \hat{x}^{1 / 4}} \exp \left[-\frac{2}{3} \frac{\hat{x}^{3 / 2}}{\left(\delta_{1}^{1-\beta}\right)^{3 / 2}}\right]
\end{aligned}
$$

And $y=\delta_{2} y \Rightarrow \sim \frac{R_{0} \delta_{1}^{1 / 4}}{2 \sqrt{\pi}} \frac{1}{\delta_{1}^{\beta / 4}} \frac{1}{\hat{x}^{1 / 4}} e^{-\frac{2}{3} \frac{\hat{x}^{3 / 2}}{\left(\delta_{1}^{1-\beta}\right)^{3 / 2}}}$
Fer coefficients to be equal: $\frac{R_{0} \delta_{1}^{1 / 4}}{2 \sqrt{\pi}} \frac{1}{\delta_{1}^{\beta / 4}}=\frac{\delta_{2} Q_{0}}{2^{1 / 4} \delta_{1}^{\beta / 4}}$
< Cannon establish o_{2} scaling!

$$
\therefore \delta_{2}=\sigma_{1}^{1 / 4}=\left(\frac{\varepsilon^{2 / 3}}{2^{1 / 3}}\right)^{1 / 4}=\frac{\varepsilon^{1 / 6}}{2^{1 / 12}} \text { and } \varphi_{0}=\frac{R_{0}}{2^{3 / 4} \sqrt{\pi}}
$$

Matching - inner $(x \rightarrow-\infty)$ with LHonter $(x \rightarrow 1+)$ As betere: $x-1=\delta_{1}^{\gamma} \hat{x}=\delta_{1} X$ win $\gamma \in(0,1), \hat{x} \sim \operatorname{cral}(1), \hat{x}<0$.

$$
Y_{0}(x)=R_{0} A_{i}(\underbrace{\frac{\hat{x}}{\delta_{1}^{1-\gamma}}}_{\rightarrow-\infty}) \sim \frac{R_{0} \delta_{1}^{(1-\gamma) / 4}}{\sqrt{\pi}(-x)^{1 / 4}} \sin \left(\frac{2}{3} \frac{(-\hat{x})^{3 / 2}}{\left(\delta_{1}^{1-\gamma)^{3 / 2}}\right.}+\frac{\pi}{4}\right)
$$

as $\delta_{1} \rightarrow 0 \rightarrow$ relevant expansion

$$
\begin{aligned}
& y \sim \frac{P_{0}}{((1-x)(1+x))^{1 / 4}} \cos \left(\frac{1}{\varepsilon} \int_{0}^{x} \sqrt{1-s^{2}} d s\right) \\
& \sim \frac{P_{0}}{2^{1 / 4} \delta_{1}^{1 / 4}(-\hat{x})^{1 / 4}} \cos \left(\frac{\pi}{4 \varepsilon}-\frac{1}{\Sigma} \int_{x}^{1} \sqrt{1-s^{2}} d s\right) \\
& \sim \frac{P_{0}}{2^{1 / 4} \delta_{1}^{1 / 4}(-\hat{x})^{1 / 4}} \cos \left(\frac{\pi}{4 \Sigma}-\frac{1}{\Sigma} \frac{2 \sqrt{2}}{3}\left(1-x^{2}\right)^{3 / 2}+\cdot\right) \\
& \int \text { convert } x \rightarrow \hat{x} \\
& \sim \frac{P_{0}}{2^{1 / 4} \delta_{1}^{1 / 4}(-\hat{x})^{1 / 4}} \cos \left(\frac{\pi}{4 \Sigma}-\frac{2}{3} \frac{1}{\left(\delta_{1}^{1-\gamma}\right)^{3 / 2}}(-\hat{x})^{3 / 2}\right) \\
& =\pi / 4 \\
& \nu \int_{0}^{x}=\int_{0}^{1}-\int_{x}^{1} \\
& \left.\left.y_{0} \sim \frac{y_{0}}{\delta_{2}} \Rightarrow \sim \frac{R_{0} \delta_{1}^{-1 / 4}}{\sqrt{\pi}(-\hat{x})^{1 / 4}} \sin \right\rvert\, \frac{\pi}{4}+\frac{2}{3} \frac{(-\hat{x})^{3 / 2}}{\left(\delta_{1}^{1-\gamma}\right)^{3 / 2}}\right) \\
& \text { match }
\end{aligned}
$$

\Rightarrow we require

$$
\left.\frac{P_{0} \cos \left(\frac{\pi}{2^{1 / 4}}-\frac{2}{3 \Sigma} \frac{1}{\left(\delta_{1}^{1-\gamma}\right)^{3 / 2}}(-\hat{x})^{3 / 2}\right.}{\omega}\right) \sim \underbrace{\frac{R_{0}}{\sqrt{\pi}} \sin (\frac{\pi}{4}+\underbrace{\frac{2}{3} \frac{(-\hat{x})^{3 / 2}}{\left(\delta_{1}^{1-\gamma}\right)^{3 / 2}}}_{W})}_{\omega}
$$

Expanding the sinllos terms:

$$
\frac{P_{0}}{2^{1 / 4}}\left[\cos \left(\frac{\pi}{4 \varepsilon}\right) \cos w+\sin \left(\frac{\pi}{4 \varepsilon}\right) \sin w\right] \sim \frac{R_{0}}{\sqrt{\pi}}\left[\sin \left(\frac{\pi}{4}\right) \cos w+\cos \left(\frac{\pi}{4}\right) \sin w\right]
$$

Note that w contains \hat{x} which vanes (recall-not matching at a single point)
\rightarrow hence equality must hold $\forall w$
\therefore coetticuents of $\cos w$ term must be equal: $\frac{P_{0}}{2^{1 / 4}} \cos \left(\frac{\pi}{4 \varepsilon}\right)=\frac{R_{0}}{\sqrt{2 \pi}}$

$$
\begin{aligned}
& \text { sine term } \quad \text { — } \frac{P_{0}}{2^{1 / 4}} \sin \left(\frac{\pi}{4 \varepsilon} \left\lvert\,=\frac{R_{0}}{\sqrt{2 \pi}}\right.\right. \\
& \therefore \tan \left(\frac{\pi}{4 \Sigma}\right)=1 \text { as } \varepsilon \rightarrow 0 \Rightarrow \frac{\pi}{4 \Sigma_{n}}=\frac{\pi}{4}+n \pi \text { and as } \varepsilon \rightarrow 0 \\
& \text { we need } n \rightarrow \infty \\
& \therefore E_{n}=\frac{1}{\Sigma_{n}}=1+4 n \leftarrow \text { energy levels this was the } \\
& \text { ajechre!) }
\end{aligned}
$$

Also,

$$
\begin{aligned}
& \cos \left(\frac{\pi}{4 \varepsilon_{n}}\right)=\cos \left(\frac{\pi}{4}+n \pi\right)=\frac{1}{\sqrt{2}}(-1)^{n} \\
\Rightarrow & P_{0}=\frac{2^{1 / 4}(-1)^{n} R_{0}}{\sqrt{\pi}}=2(-1)^{n} \varphi_{0}
\end{aligned}
$$

\therefore Have determme dall the loefticients in terms of Qo

- we canlt determine φ_{0} as we are deaing m in a unear dult equation m th homogeneas BCS $y(\infty)=0, y^{\prime}(0)=0$ so multiplying any soln by a constant gires anomer solution.

