¹ SUPPLEMENTARY APPLIED MATHS

- ² Sturm-Liouville form: $Ly = -(p(x)y')' + q(x)y = \lambda r(x)y, r(x) \ge 0$ weight function. For evals and evecs
- use homogeneous BCs, then orthogonality relation is $\int y_m(x)y_n(x)r(x)dx = 0$ for $m \neq n$.
- General *L* with BC and adjoint *L*^{*} with BC^{*}: $Ly_k = \lambda_k y_k$ with BC=0 and adjoint eigenfunctions $L^*w_k = \lambda_k w_k$ with BC^{*}=0. Orthogonality: $\int y_m(x)w_n(x)dx = 0$ for $m \neq n$.
- ⁶ Solve Ly = f with inhomogeneous BCs: $\langle f, w_k \rangle = \langle Ly, w_k \rangle = \langle y, L^* w_k \rangle + BT = \langle y, \lambda_k w_k \rangle + BT$.
- ⁷ Subst $y = \sum c_n y_n$: $\langle f, w_k \rangle = \sum c_n \lambda_k \langle y_n, w_k \rangle + BT = c_k \lambda_k \langle y_k, w_k \rangle + BT$ (by orthogonality). Gives
- $c_k = (\langle f, w_k \rangle + BT) / (\lambda_k \langle y_k, w_k \rangle) \text{ if } \lambda_k \neq 0.$
- ⁹ Green's function: $Lg = \delta(x \xi)$ with homogeneous BCs. Then $y(x) = \int g(x;\xi)f(\xi)d\xi + y_h(x)$ where
- ¹⁰ $Ly_h = 0$ and y_h satisfies inhomogeneous BCs. If $Ly = p(x)y'' + \ldots$, then $[g']_{\xi}^{\xi+} = 1/p(\xi)$.
- ¹¹ Distributions: T is a distribution if it is linear and continuous, i.e.
- ¹² (i) $\langle T, \alpha \phi_1 + \beta \phi_2 \rangle = \alpha \langle T, \phi_1 \rangle + \beta \langle T, \phi_2 \rangle, \forall \alpha, \beta \in \mathbb{R} \text{ and } \forall \phi_1, \phi_2 \in C_0^{\infty}(\mathbb{R}).$
- (ii) If $\phi_n(x)$ is a sequence of test functions s.t. $\phi_n(x) \to 0$ as $n \to \infty$ then $\langle T, \phi_n \rangle \to 0$ as a sequence of real numbers. Then $\lim_{n\to\infty} \langle T, \phi_n \rangle = \langle T, \lim_{n\to\infty} \phi_n \rangle$.
- Equivalent continuity condition (for checking): $\forall L > 0, \exists C > 0 \text{ and } N \ge 0 \text{ s.t.}$
- $|\langle T, \phi \rangle| \le C \sum_{m \le N} \max_{x \in \mathbb{R}} |\phi^{(m)}(x)|, \forall \phi \text{ s.t. supp } \phi \subset [-L, L].$
- 17 Translation property: $\langle T(x+\alpha), \phi(x) \rangle = \langle T(x), \phi(x-\alpha) \rangle, \forall \phi \in C_0^{\infty}(\mathbb{R}).$
- ¹⁸ Distributional derivative: $\langle T', \phi \rangle = -\langle T, \phi' \rangle, \forall \phi \in C_0^{\infty}(\mathbb{R}).$
- ¹⁹ Convergence of T_j to T as $j \to \infty$ means $\lim_{j\to\infty} \langle T_j, \phi \rangle = \langle T, \phi \rangle, \forall \phi \in C_0^{\infty}(\mathbb{R}).$
- If $T(\alpha)$ is a family of distributions with continuous parameter α then $T(\alpha) \to T(\alpha_0)$ for $\alpha \to \alpha_0$ means $\lim_{\alpha \to \alpha_0} \langle T(\alpha), \phi \rangle = \langle T(\alpha_0), \phi \rangle, \forall \phi \in C_0^{\infty}(\mathbb{R}).$
- 22 APPLIED PDEs