
Stochastic Simulation

End-of-course practical MT 2022

This practical is to implement some of the methods covered in the course. You can
do this in your preferred language (python, Matlab, C/C++, R). Some sample code
is available, but not always in all languages.

Please work on this as a group of 3 or 4.

To submit: A document containing plots of the main results with a discussion of the
findings in relation to the theory; the code used to produce the plots.

1. Let U be uniformly distributed on [0, 1]. You are to use Monte Carlo
simulation to estimate the value of

f = E[f(U)] =

∫ 1

0

f(U) dU

where
f(x) = x cos πx.

(a) Calculate analytically the exact value for f and

σ2 = E[(f(U)− f)2] =

∫ 1

0

(f(U)− f)2 dU.

(b) Write a program to compute

Ym = N−1
N∑

n=1

f(U (m,n))

for 1000 different sets of 1000 independent random variables U (m,n).

(c) Sort the Ym into ascending order, and then plot Cm = (m− 1/2)/1000
versus Ym – this is the numerical cumulative distribution function.

Superimpose on the same plot the cumulative distribution function you
would expect from the Central Limit Theorem, and comment on your
results.

You may like to experiment by trying larger or smaller sets of points to
improve your understanding of the asymptotic behaviour described by
the CLT.

(For those doing experiments in C++, I suggest you do the plotting in
python.)

1

(d) Modify your code to use a single set of 106 random numbers, and plot

YN = N−1
N∑

n=1

f(U (n))

versus N for N = 103 − 106. This should demonstrate the convergence to
the true value predicted by the Strong Law of Large Numbers.

For each N , also compute an unbiased estimate for the variance σ2 and
hence add to the plot upper and lower confidence bounds based on 3
standard deviations of the variation in the mean.

Add a line corresponding to the true value. Does this lie inside the
bounds?

2. Now consider a European call option in which the final value of the underlying
is

S(T) = S(0) exp
(
(r− 1

2
σ2)T + σW (T)

)
where

W (T) =
√
T X =

√
T Φ−1(U)

with X being a unit Normal, or U a uniform (0, 1) random variable.

The payoff function is

f(S) = exp(−rT) (S(T)−K)+

and the constants are r = 0.05, σ = 0.2, S(0) = 100, K = 100.

The analytic value is given by the routine european call available from the
course webpage; read its header to see how to call it.

(There is no need to compute the analytic variance as in part a) in the
previous question; just use the unbiased estimator.)

Investigate the following forms of variance reduction:

(a) First, try antithetic variables using 1
2

(f(W) + f(−W)) where W is the
value of the underlying Brownian motion at maturity.

What is the estimated correlation between f(W) and f(−W)? How
much variance reduction does this give?

(b) Second, try using exp(−rT)S(T) as a control variate, noting that its
expected value is S(0).

Again, how much variance reduction does this give?

(c) For the case of a digital put option,

P = exp(−r T) H(K−S(T))

where H(x) is the Heaviside step function, with parameters r = 0.05,
σ = 0.2, T = 1, S(0) = 100 ,K = 50, investigate the use of importance
sampling:

2

i. First, estimate the value without importance sampling.
How many samples are needed to obtain a value which is correct to
within 10%? (i.e. the 3 standard deviation confidence limit
corresponds to ± 10%).

ii. Second, try using importance sampling, adjusting the drift
(i.e. changing the (r−1

2
σ2)T term to a different constant) so that half

of the samples are below the strike K, and the other half are above.
Now how many samples are required to get the value correct to
within 10%?

3. Look at the Matlab codes lec5 weak.m and lec5 strong.m which produced
the plots in Lecture 5, and make sure that you understand what they are doing
– ask if anything is unclear. Note that g(e+∆e) ≈ g(e) + ∆e g′(e), so that
if e is an estimate for E[f] with confidence interval ±3σ/

√
N then

g(e) is an estimate for g(E[f]) with confidence interval ±3(σ/
√
N) g′(e);

this is used in lec5 strong.m to obtain a confidence interval for
√

E[(∆S)2].

Convert the codes to C++, python or R if you wish. (For the C++ code, I
suggest you create an output file with the results data which you can then
read into Matlab or python to do the plotting.)

Modify lec5 strong for the Heston stochastic volatility model which is a
coupled pair of SDEs:

dS = r S dt+
√
|v|S dW (1),

dv = κ (θ−v) dt+ ξ
√
|v| dW (2),

with S(0) = 100, v(0) = 0.25, θ = 0.25, κ = 2, ξ = 0.5 over the time interval
[0, 1].

The two driving Brownian motions are correlated so that

E[dW (1)dW (2)] = −0.1 dt

so the correlation matrix is

Σ =

(
1 −0.1
−0.1 1

)
.

There is no (easy) exact solution in this case so just plot the comparison
between the h and 2h solutions.

What is the order of strong convergence?

4. Apply MLMC to a model of your own interest or (if you are stuck) the
problem suggested at the end.

Mike Giles supports an extensive MLMC software webpage, and you can use
any of this code to create your MLMC application.

3

https://people.maths.ox.ac.uk/~gilesm/mlmc/

• python groups: follow the link there to a bitbucket repository – the
“opre” example has code to more-or-less replicate the results in Mike
Giles’s original MLMC paper (the original calculations were done in
MATLAB using a different random number generator). If there are any
problems in using the bitbucket repository try this zip file.

• C++ groups: the “mcqmc06” C++ code is for a different set of
experiments in this paper.

• R groups: the link there takes you to the MLMC CRAN page; it also has
an example which is more-or-less the same as in the original paper

• all groups: I suggest you run the codes, see the results you get, and then
read through the codes in detail.

The routines like “mlmc” and “mlmc test” are generic, the same for every
application, and what the user has to write is the low-level “routine l” code
which computes the output correction on a particular MLMC level for the
particular application of interest. For more details, see section 3 in Multilevel
Monte Carlo methods, or Mike Giles’s original MLMC paper.

Suggestion. Consider the 1D random PDE

d

dx

(
κ

dp

dx

)
= 0

on the unit interval 0 < x < 1, subject to p(0)=0, p(1)=1, where
u(x) ≡ log κ(x) is Gaussian with covariance E[u(x)u(y)] = 1

4
exp(−|x−y|).

The objective is to estimate the quantity

E
[∫ 1

0

κ
dp

dx
dx

]
.

You can choose how to construct samples of u (Cholesky factorisation would
be simplest), and how to approximate the 1D equation (e.g. finite difference or
finite element method).

4

https://people.maths.ox.ac.uk/gilesm/files/OPRE_2008.pdf
https://people.maths.ox.ac.uk/~gilesm/mc/stoch_sim/pefarrell-pymlmc.zip
https://people.maths.ox.ac.uk/gilesm/files/mcqmc06.pdf
https://cran.r-project.org/web/packages/mlmc/index.html
https://people.maths.ox.ac.uk/gilesm/files/OPRE_2008.pdf
https://people.maths.ox.ac.uk/gilesm/files/acta15.pdf
https://people.maths.ox.ac.uk/gilesm/files/acta15.pdf
https://people.maths.ox.ac.uk/gilesm/files/OPRE_2008.pdf

